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1.  INTRODUCTION

Collections of neonatal brain Magnetic Resonance 

Images (MRIs) are indispensable to understand brain 

development and to detect early signs of potential devel-

opmental disorders. One of the key tasks in MRI analysis 

is automated segmentation, the labeling of anatomical 
regions of interest (ROIs) that can be used for quantitative 
modeling of healthy development, for analyses in popula-
tion studies, for understanding disease effects as well as 
a starting point for further neuroimaging tasks. The seg-
mentation of infant MRIs is a challenging and non-trivial 
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undertaking due to the rapid non-linear changes during 
the postnatal brain growth period, elevated levels of head 
motion, limited availability of congruent datasets, varying 
intensity profiles across scanners, protocols and modali-
ties, as well as the inversion of gray-white contrast around 
the age of 5–9  months (Ajayi-Obe et  al., 2000; Dubois 
et al., 2014; Gilmore et al., 2012; Prastawa et al., 2005). In 
this paper, we focus on a sub-group of the infant 
population—newborns—and present a four-degree of 
freedom (4-DOF) transform module to address two core 
challenges within this cohort: non-uniform image resolu-
tions (scaling) and increased variability of head positions 
(rigid transformations  =  rotation and translation) during 
image acquisition. The 4-DOF transform module is 
directly integrated into the network architecture and 
addresses the variability of head positions internally. As 
such, it expands and generalizes the distinguishing fea-
ture, resolution independence, of the recently published 
Voxel-size Independent Neural Network (VINN) (Henschel 
et al., 2022) by rotation and translation transformations. 
We refer to our new framework as VINN with “internal 
augmentations” (VINNA).

In contrast to adults, newborn head positions in the 
scanner are far more diverse due to the scanning condi-
tions (asleep) and overall smaller anatomy. While padding 
is often used to stabilize the child’s head and to occupy 
the space between head coil and participant (e.g., foam 
cushions, pads, mats, pillows, or visco-elastic matters) 
(Copeland et al., 2021), its standardization is difficult. This 
results in diverse head orientations within the scanner and 
potentially high variations among imaging studies.

In addition, there is no de-facto standard resolution for 
newborn imaging. In the case of research protocols, 
when more time is available, MRIs are often acquired at 
higher resolutions to address the small size of brain 
structures and stronger partial volume effects (Dubois 
et al., 2019, 2021; Liu et al., 2019). However, the range of 
recorded resolutions across research and clinical studies 
is relatively large and heterogeneous, ranging from 
0.5 mm to 3.0 mm in past and recent research studies 
(e.g., NIH-PD (Evans, 2006), BCP (Howell et  al., 2019), 
Developing Human Connectome Project (dHCP) (Bastiani 
et  al., 2019; Makropoulos et  al., 2018), HBCD (Volkow 
et al., 2021)). Similarly, resolutions are not standardized 
across atlases (UNC 0-1-2 Infant atlases (Shi et al., 2011), 
Imperial Brain Development atlases (Gousias et al., 2012; 
Kuklisova-Murgasova et  al., 2011; Makropoulos et  al., 
2016; Serag et al., 2012)), that are often used to guide the 
automated labeling algorithms.

Traditional tools for newborn or infant segmentation 
predominantly interpolate images to a single chosen res-
olution and harmonize the spatial head position via atlas 
registrations (Cherel et  al., 2015; Dai et  al., 2013; 

Makropoulos et al., 2018; Prieto et al., 2019; Shi et al., 
2010; Zöllei et  al., 2020). Resampling of images can, 
however, result in loss of information, especially in the 
context of high-resolution label maps. Furthermore, 
atlas-guided approaches are usually highly dependent on 
registration accuracy. For newborns, registration is par-
ticularly challenging due to lower tissue contrast, specifi-
cally in the T1w scans. Errors in the process are hence 
common and improvement of the registration, for exam-
ple, with spatio-temporal information, anatomical con-
straints, and surface models, is an active field of research 
(Ahmad et  al., 2019; Bozek et  al., 2018; Dubois et  al., 
2021; Garcia et  al., 2018; Kuklisova-Murgasova et  al., 
2011; Lebenberg et al., 2018; Makropoulos et al., 2014; 
Shi et al., 2010).

The explicit definition of spatial and intensity features 
can be avoided by using Convolutional Neural Networks 
(CNNs). In fact, fast deep-learning methods for semantic 
segmentation are becoming increasingly popular for 
infant segmentation (Bui et  al., 2019; Dolz et  al., 2020; 
Kumar et al., 2018; Moeskops et al., 2015; Nie et al., 2016; 
Qamar et  al., 2020; Wang et  al., 2022, 2023; Zeng & 
Zheng, 2018; Zeng et al., 2023; Zhang et al., 2015). Appli-
cability of deep-learning approaches, however, is gener-
ally restricted to domains where sufficiently large training 
datasets exist. While there have been several initiatives to 
collect larger neuroimaging cohorts of newborns and 
infants in recent years (Bastiani et al., 2019; Howell et al., 
2019; Makropoulos et al., 2018; Volkow et al., 2021), their 
size is still relatively small compared to equivalent cohorts 
in the adult population. Additionally, accompanying man-
ual labels are sparse, due to high annotation costs (time 
and money) and non-uniform labeling protocols, limiting 
the pool for supervised training options further. Consider-
ing the newborn cohort, the variability in resolution and 
head positioning is likely underrepresented in the publicly 
available datasets, questioning whether a network trained 
on the available pairs of scans and labels can be robust 
enough without additional augmentation.

The most widely used solution to artificially increase 
the training set size, robustness, and generalizability of 
deep-learning methods has been traditional data aug-
mentation, such as rotation, scaling, or translation 
(Fig. 1A). In this case, both images and their labelmaps 
are interpolated to a new random position during training. 
Interpolation, however, in the native image space requires 
resampling of the discrete ground truth segmentations, 
resulting in information loss (e.g., from lossy nearest-
neighbor (NN) interpolation) and reduction in accuracy 
(Henschel et al., 2022).

With the VINN architecture (Henschel et al., 2022), we 
recently established the first network for resolution-
independent deep learning, which effectively circumvents 
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scaling augmentation and subsequent external resam-
pling, while leveraging information across datasets of 
varying resolutions. In VINN, the classic fixed-factor 
integer down- and up-scale transitions, often imple-
mented via pooling operations in UNet-like architectures 
(Ronneberger et  al., 2015), are replaced with a flexible 
re-scaling for the first and last scale transitions. This 
network-integrated resolution-normalization allows for 
segmentation in the native space during both, training 
and inference. In adults, this approach has been shown 
to outperform fixed-resolution CNNs as well as resolution-
ignorant CNNs trained with external scaling augmenta-
tion, and to improve performance both for sub-millimeter 
and one-millimeter scans.

Since newborn datasets are often acquired at various 
native resolutions and are particularly subject to partial 
volume effects, the resolution-normalization feature offers 
a basis to improve segmentation performance here as 

well. As is, VINN only addresses scaling and would still 
require external augmentations, and hence label interpo-
lation, to address the increased variability of head posi-
tions and limited availability of training data for newborns. 
With our VINNA and its 4-DOF transform module, we now 
close this gap and propose to shift away from classical 
data augmentation towards a detail-preserving internal 
augmentation scheme (Fig. 1B). While avoiding any type 
of label interpolation, we extend VINN’s network-
integrated resolution-normalization with spatial augmen-
tations (i.e., rotation and translation). At the first layer 
scale transition, the feature maps are hence not only flex-
ibly rescaled, but also randomly transformed to imitate 
the position variations commonly found in newborns, 
subsequently increasing the training distribution.

In conclusion, VINNA and its 4-DOF transform module 
effectively address the challenges associated with newborn 
segmentation, namely variation in head positions and  

Fig. 1.  Spatial augmentations in deep-learning networks: (A) One single resolution-ignorant CNN or resolution-
independent voxel size independent network (VINN) can learn to segment multiple resolutions and head positions by 
training on a diverse dataset. External scale, rotation, and translation augmentation (+ external augmentation, A. bottom) 
diversifies the existing training samples by resampling the images and the reference segmentation maps. Here, however, 
lossy interpolation and resulting artefacts, especially from nearest-neighbor interpolation of discrete label maps, may 
result in a loss of structural details and sub-optimal performance. (B) Our 4-DOF transform module (VINNA) completely 
avoids interpolation of the images and discrete labels by integrating the interpolation step into the network architecture 
itself (B. bottom). Rotations, translations, and scalings applied in the first interpolation block are later reversed, assuring 
segmentations to be in the original image orientation. Furthermore, the explicit transition from the native resolution to a 
normalized internal resolution facilitates an understanding of the difference between image features (MultiRes blocks with 
distances measured in voxels) and anatomical features (FixedRes inner blocks with normalized distances).
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resolutions in the context of limited data availability. The 
four key contributions of VINNA presented in this work are 
as follows:

	 (i)	� We provide the first publicly available open-source 
deep-learning pipeline for a combined subcortical 
segmentation as well as cortical, and white matter 
parcellation for newborn T1w or T2w MRIs.

	 (ii)	� We introduce a novel augmentation concept, 
which for the first time moves spatial augmenta-
tions into the network (instead of being performed 
outside). Our experimental results compare vari-
ous spatial augmentation approaches side-by-
side to isolate their effects.

	 (iii)	� We ensure fair comparisons throughout, for exam-
ple, by fixed dataset splits, retraining methods 
under equal data and parameter settings, compar-
ing architectures and setups with minimal differ-
ences, and quantifying real-world performance.

	 (iv)	� We, further, provide extensive comparison with 
state-of-the-art deep-learning methods (2D and 
3D nnUNet) adapted for newborn segmentation 
(retrained on the same data) and present an exten-
sive comparison to the publicly available newborn 
segmentation pipelines iBEAT and infantFS.

The specific application of VINNA to newborns 
(approximately 24–44 weeks post-menstrual age) will be 
made available as VINNA4neonates within our open 
source repository1 including Docker containers offering 
easy accessibility for the community.

1.1.  Related work

While various reliable and sensitive traditional (Fischl 
et al., 2002; Friston et al., 2007; Jenkinson et al., 2012; 
Zhang et al., 2001) and fast deep-learning solutions exist 
(Billot et al., 2020; Chen et al., 2018; Coupé et al., 2020; 
Henschel et  al., 2020, 2022; Huo et  al., 2019; Iglesias 
et al., 2021; Ito et al., 2019; McClure et al., 2019; Mehta 
et al., 2017; Roy et al., 2019; Sun et al., 2019; Wachinger 
et al., 2018) for adult whole-brain segmentation, applica-
tion of these methods to younger ages is hampered by 
the significant differences in size, MRI contrast profiles, 
and rapidly changing postnatal anatomy that is challeng-
ing to model with static templates.

1.2.  Traditional tools for infant segmentation

Infant-specific traditional atlas-guided tools (Beare et al., 
2016; Cherel et al., 2015; Makropoulos et al., 2018; Prieto 

et al., 2019; Shi et al., 2010; Zöllei et al., 2020) are pre-
dominantly optimized for a specific age range, resolution, 
and modality. Further, they differ significantly in the num-
ber of segmented classes and structure definitions.

The more recent Infant Brain Extraction and Analysis 
Toolbox (iBEAT) V2.0 (Wang et al., 2023) is a combination 
of age-specific CNNs for tissue segmentation, traditional 
surface generation, and parcellation, based on atlas reg-
istration, into 34 regions following the Desikan-Killiany 
protocol (Desikan et  al., 2006). It supports a large age 
range (0–6 years), and allows segmentation of both, T1w 
and T2w MRI. While multiple input resolutions are sup-
ported, iBEAT internally reorients and resamples each 
image to a standard format (RAS orientation and 0.8 mm 
isotropic resolution). Hence, it does not support native 
resolution segmentation and image interpolation is 
required to map segmentations back to the original input 
space. The resampling step is automatically included in 
the pipeline such that in- and output resolutions are flex-
ible. Furthermore, in its publicly available docker pipe-
line,2 segmentation is limited to white matter (WM), gray 
matter (GM), and cerebrospinal fluid (CSF).

infantFreeSurfer (infantFS) (Zöllei et  al., 2020), on the 
other hand, mimics the FreeSurfer (Fischl, 2012) process-
ing pipeline for adults and processes images from the first 
2 years postnatally. It supports anatomical segmentation 
into 32 classes based on multi-atlas label fusion strategy, 
including registration to the infantFreeSurfer training data 
set (de Macedo Rodrigues et al., 2015). The entire pipeline 
is publicly available3 and allows processing of T1w images 
at a resolution of 1.0 mm, where the atlas training data are 
defined. For newborns, T1w images often suffer from poor 
tissue contrast due to the underlying myelination process, 
aggravating accurate registration from the atlases onto 
individual brains. This age group can therefore be a chal-
lenge for infantFS’s mono-modality approach.

The dHCP minimal-processing-pipeline (Makropoulos 
et al., 2018) is an optimized framework for cortical and sub-
cortical volume segmentation, cortical surface extraction, 
and cortical surface inflation, which has been specifically 
designed for high-resolution T2w MRIs of newborns 
(Hughes et al., 2017). Here, an Expectation-Maximization 
algorithm, including an atlas-based spatial prior term, 
labels 87 classes based on a modified version of the 
ALBERTs atlas (Gousias et al., 2012; Makropoulos et al., 
2014). The segmentations include subcortical structures, 
cortical and WM parcellations. Due to the cubic increase in 
voxel size for high-resolution images, processing times are 
in the order of hours to days for a single subject. This is a 
common limitation among traditional methods.

1  github​.com​/Deep​-MI​/VINNA4neonates upon publication

2  https://github​.com​/iBEAT​-V2​/iBEAT​-V2​.0​-Docker
3  https://surfer​.nmr​.mgh​.harvard​.edu​/fswiki​/infantFS

http://github.com/Deep-MI/VINNA4neonates
https://github.com/iBEAT-V2/iBEAT-V2.0-Docker
https://surfer.nmr.mgh.harvard.edu/fswiki/infantFS
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1.3.  Deep-learning for infant segmentation

1.3.1.  Newborns

Overall, networks for cortical parcellations and subcorti-
cal structure segmentations in newborns are limited. The 
few existing CNNs support a single modality (T2w), fixed 
resolution, and segment a single (Rajchl et al., 2017) or 
eight (Moeskops et al., 2015) tissue classes. One recent 
exception is the deep-learning based neuroimaging pipe-
line by Shen et al. (2023), which is trained with the dHCP 
data. Here, the authors propose a 3D multi-task deep 
learning model with a U-Net like architecture to segment 
structural T1w and T2w images on both thin and thick 
sliced images. Unfortunately, the network follows a fixed-
resolution scheme (0.8 mm), it does not support native 
segmentation across resolutions commonly encountered 
in newborn cohorts, and it is not readily available online.

1.3.2.  Isointense phase

The vast majority of deep-learning tools focus on pro-
cessing of images at the isointense phase around 
6 months after birth (Ding et al., 2022; Dolz et al., 2020; 
Kumar et al., 2018; Nie et al., 2016; Pasban et al., 2020; 
Qamar et  al., 2020; Zeng & Zheng, 2018; Zeng et  al., 
2023; Zhang et  al., 2015). Via the iSeg-challenge (Sun 
et al., 2021; Wang et al., 2019); data for training and vali-
dation are conveniently available, partly explaining this 
predominance. While many interesting architectural solu-
tions have arisen, the main focus of the works is the 
effective combination of information from both T1w and 
T2w images to generate a broad segmentation into CSF, 
GM, and WM. This modality combination is specifically 
important in the isointense phase, which is characterized 
by changes in the myelination strongly effecting the 
appearance of the recorded MRIs (Gui et al., 2012; Wang 
et al., 2015; Weisenfeld & Warfield, 2009). The inversion 
of the WM-GM signal results in extremely low tissue con-
trast. The newborn cohort, on the other hand, demon-
strates good contrast between GM and WM, specifically 
on the T2w images. While the age difference is small, the 
two cohorts as well as the associated challenges are dis-
tinct and networks trained on the one cannot easily be 
applied to the other. Subsequently, neither resolution-
independence nor the stronger variation of head posi-
tions is specifically accounted for in network solutions for 
the isointense phase.

1.3.3.  Cross-age generalizability

To address generalizability across different age groups, 
recent research has suggested optimized training strate-
gies for neonates, such as multi-task learning of tissue 

segmentation and geodesic distances (Bui et al., 2019) or 
the use of inductive biases in the form of pre-trained 
weights (i.e., fine-tuning to the target domain) (Wang et al., 
2022). Both approaches improve segmentation accuracy, 
but they are still limited in their generalizability. They 
require retraining and hence a sufficient amount of labeled 
data; additionally, they rely on private datasets, limiting 
their reproducibility. Recently, a contrast agnostic seg-
mentation via synthetic images, originally proposed for 
adult brain segmentation (Billot et al., 2020; Iglesias et al., 
2021), has also been adopted for infant segmentation 
(Shang et al., 2022). Unfortunately, the output resolution is 
fixed for the network, and native resolution segmentations 
are not supported. Furthermore, while the model was able 
to generalize across a broader age range, the synthetic 
images still differ considerably from real data and the net-
work, therefore they underperformed compared to age-
specific models trained on existing MRIs. It should be 
noted that the authors did not aim to generate realistic 
images but rather a better segmentation tool.

1.4.  Resolution-independence and position 
transforms in deep learning

A general resolution-ignorant framework addressing 
position transforms via external augmentations is nnUNet 
(Isensee et al., 2021). This network has successfully been 
applied for a variety of segmentation tasks due to its 
inherent ability to construct optimal parameter settings 
based on the input data itself. It provides different net-
work set-ups (2D, 3D, and a cascaded 3D approach for 
large images) as well as a number of external image aug-
mentations, including random rotation, scaling, mirroring, 
and gamma transformation. Interestingly, while the 
trained network also follows a fixed-resolution scheme, 
pre- and post-processing automatically resamples 
between original image and network resolution. While 
native resolution segmentation is not supported, in- and 
output resolutions are not fixed and the method is there-
fore a valid alternative to our VINNA. Both, the 2D and 3D 
nnUNet with external augmentation (exA) therefore serve 
as a state-of-the-art baseline for the newborn segmenta-
tion task.

A siamese network for semi-supervised training of a 
network to become equivariant to elastic transformation 
has been proposed in a single-resolution setting (Bortsova 
et al., 2019). A dedicated loss function assures that seg-
mentations are consistent under a given class of transfor-
mation applied first to the image, and second to the 
output. The approach therefore relies on external aug-
mentation and applies the transformation in the image 
space (before and after a UNet). The proposed VINNA, on 
the other hand, is fundamentally different. It shifts this 
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step into the network itself, hence creating an internal 
augmentation. Overall, the approach by Bortsova et al. 
(2019) does therefore assure consistency across trans-
formations in the labeling space, while VINNA targets 
spatial consistency of the feature maps.

In spatial transformers (Jaderberg et al., 2015), trans-
formations attempt to harmonize or re-orient the image 
into a better position. To this end, an affine transformation 
is implicitly learned via a dedicated localisation network. 
Subsequent application of the calculated coordinate grid 
resamples the source feature maps via bi-linear interpola-
tion to the new position. While our approach shares grid 
calculation and interpolation within the network with spa-
tial transformers, our internal augmentation approach is 
inherently different. First, spatial transformers do not 
diversify or augment feature maps, but rather try to reach 
a harmonized position with respect to the data seen 
during training. External augmentations are still neces-
sary to expose the network to a wide data variety and 
approximate equivariance. Second, instead of a localiza-
tion network, we directly determine the sampling-grid 
based on a transformation matrix, which allows for an 
explicit integration of knowledge about the image, such 
as the resolution. As a result, computational complexity is 
reduced while achieving the desired position diversifica-
tion and resolution-independence.

2.  MATERIAL AND METHODS

2.1.  Datasets

As the largest publicly available newborn dataset with 
intensity images, accompanying subcortical segmenta-
tions as well as cortical and WM parcellations at the time 
of our experiments, we randomly assign participants 
from the dHCP cohort with corresponding T1w and T2w 
MRIs to the training, testing, and validation sets, while 
ensuring equal distribution of age and gender. Addition-
ally, the Melbourne Children’s Regional Infant Brain 
(M-CRIB) atlas cohort serves as an independent testing 
set for external validation of the final method. Written 
informed consent to participate in this study was pro-
vided by the participants’ legal guardian or next of kin in 
accordance with the Institutional Review Board. Com-
plete ethic statements are available at the respective 
study webpages.

2.1.1.  dHCP

The developing Human Connectome Project (Makropoulos 
et  al., 2018) includes T1w and T2w MRIs of newborns 
imaged without sedation on a 3 T Philips Achieva scanner. 
It provides 0.5 mm isotropic de-faced scans of individuals 

imaged postnatally between 24 to 45  weeks post-
menstrual age. Imaging data for 578 participants with 
matching T2w and T1w are selected. The original images 
were acquired in sagittal and axial slice stacks with in-
plane resolution of 0.8 mm × 0.8 mm and 1.6 mm slices 
overlapped by 0.8  mm. Motion correction and super-
resolution reconstruction techniques (Cordero-Grande 
et  al., 2018; Kuklisova-Murgasova et  al., 2012) created 
isotropic volumes of resolution 0.5 mm. All T1w scans fol-
low the same inversion recovery multi-slice fast spin-echo 
protocol with TR 4.795  s, TE 8.7 ms, TI 1.740  s, and 
SENSE factor 2.27 (axial) / 2.56 (sagittal). The parameters 
for the T2w scans are TR 12 s, TE 156 ms, and SENSE 
factor 2.11 (axial) / 2.66 (sagittal). The full dataset is avail-
able online.4 In the present study, 318 quality-checked 
images are used for network training and 90 for validation. 
A total of 170 images are used in the final test set.

Even though the dHCP follows a well-defined proto-
col, standardization of positioning during scanning is still 
a challenge. As shown in Figure  2, inter-subject head 
position diversity in the newborn cohort is larger than an 
equally standardized adult cohort (HCP).

2.1.2.  M-CRIB

The Melbourne Children’s Regional Infant Brain (M-CRIB) 
atlas (Alexander et al., 2019) is constructed from 10 T2w 
MRI and corresponding manual segmentations of healthy 
term-born neonates (four females, six males) with post-
menstrual age-at-scan between 40.29–43.00 weeks. The 
atlas comprises 94 neonatal brain regions compatible 
with the widely-used Desikan-Killiany-Tourville adult cor-
tical atlas (Klein & Tourville, 2012). The T2w MRIs scan-
ning protocols include the usage of a transverse T2 
restore turbo spin echo sequence with 1.0  mm axial 
slices, a TR of 8.910 s, TE of 152 ms, flip angle of 120 
degrees, Field Of View of 192  mm  ×  192  mm, and in-
plane resolution of 1  mm (zero-filled interpolated to  
0.5 mm × 0.5 mm × 1 mm). The T2w images are bias-
corrected, skull-stripped, and resampled to 0.63 mm × 
0.63 mm × 0.63 mm isotropic voxels. All 10 participants 
are used as an independent testing set for our external 
validation experiments.

2.2.  Generation of reference segmentation  
with the dHCP-minimal-processing-pipeline

To imitate various resolutions and create the desired ref-
erence segmentations for training, we processed all raw 
dHCP MRIs with the dHCP-minimal-processing-pipeline 
(Makropoulos et  al., 2018) at 1.0  mm, 0.8  mm, and 

4  https://data​.developingconnectome​.org/

https://data.developingconnectome.org/
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0.5  mm. The structure definitions follow the ALBERTs 
atlas (Gousias et  al., 2012) with the subdivision of the 
WM and cortex proposed by Makropolus et  al. (2014), 
resulting in a total of 87 structures (3 background labels, 
20 subcortical regions, 32 cortical parcels, 32 WM par-
cels). We further lateralized the intracranial background 
based on the average Euclidean distance to neighboring 
labels, resulting in a final count of 88 labels. We provide a 
list of all segmentation labels used for training in the 
Appendix (see Appendix Table B). As the dHCP cohort 
includes both, T2w and a co-registered T1w MRIs, we 
trained dedicated networks for each modality. A manual 
quality check for all selected scans assured good overlap 
after the registration. Note that the dHCP-minimal-
processing-pipeline relies on the original T2w images to 
create its segmentations, which are generally of higher 
quality in this collection.

2.3.  Traditional infant segmentation tools

To evaluate VINNA against state-of-the-art traditional 
segmentation methods, we further process the testing 
set with the docker version of the iBEAT V2.0 pipeline 
(Wang et al., 2023) and infantFS (Zöllei et al., 2020).

2.3.1.  iBEAT

The iBEAT V2.0 pipeline (Wang et  al., 2023) combines 
both traditional and deep-learning models to create tis-

sue segmentations into three classes (GM, WM, and 
CSF), surface models, and cortical parcellations of the 
pial surface into 34 regions based on the Desikan-Killiany 
protocol (Desikan et al., 2006). For tissue segmentation, 
iBEAT uses seven age-specific CNNs trained on data for 
the representative age group (≤1, 3, 6, 9, 12, 18, and 24+ 
months of age). Neither the source code nor the training 
data and labels are publicly available. Hence, retraining 
of the models is not possible and comparisons are lim-
ited to the iBEAT pipeline output as is. For processing 
with iBEAT, submissions via a webserver5 or processing 
with a docker image6 are possible. The docker version 
does not currently support the cortical parcellations of 
the surface models. Due to the large number of partici-
pants, privacy concerns, and longer processing times 
when submitting via the webserver, we decided to use 
the docker version to process the T2w images of the test-
ing set at the original 0.5  mm resolution. The resulting 
3-label tissue segmentations form the basis for compari-
son to the other tools in this paper.

2.3.2.  infantFS

To allow comparison of segmentation performance to 
VINNA, all available T1w images from the dHCP testing 
set are processed with infantFS with default settings. The 

Fig. 2.  Comparison of variation in head position in newborns (orange) and adults (blue). Newborns show greater variation 
with respect to rotation angles. Rotation transformation is based on alignment of each individual subject to their midspace. 
N = 90 for both cohorts.

5  https://ibeat​.wildapricot​.org/
6  https://github​.com​/iBEAT​-V2​/iBEAT​-V2​.0​-Docker

https://ibeat.wildapricot.org/
https://github.com/iBEAT-V2/iBEAT-V2.0-Docker
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neuroimaging pipeline infantFS creates surface models, 
anatomical segmentations, and cortical parcellations 
based on the Desikan-Killiany-Tourville atlas (Klein & 
Tourville, 2012) for 0- to 2-year-old infants akin to the ver-
sion for adults (FreeSurfer (Fischl, 2012)). The tool runs 
on T1w MRIs at a resolution of 1.0 mm (non-conforming 
images are resampled). infantFS relies on a registration-
based multi-atlas label fusion strategy and returns an 
anatomical segmentation into 32 classes, including two 
labels for GM and WM.

2.3.3.  Label harmonization

As the dHCP-ALBERTs atlas differs from the resulting 
segmentations of both iBEAT and infantFS, we merge, 
remove, and mask classes to reach an approximate con-
sensus across predictions. Figure 3 shows the merging 
protocol on a representative participant with the original 
and mapped ground truth dHCP labels (left side) together 
with iBEAT (top right side) and infantFS (bottom right 
side). First, the 32 cortical and WM parcels from the dHCP 
ground truth segmentation are reduced to two labels 
(cortex and WM) (top left in Fig. 3). For iBEAT, the WM 
additionally includes the corpus callosum while GM also 
encompasses the hippocampus and amygdala. The CSF 
label corresponds to the union of lateral-ventricles and 
CSF in the dHCP-ALBERTs atlas. In the dHCP ground 
truth, these labels are consequently merged to create the 
final three classes (GM, WM, and CSF; top second to left 
image). All other subcortical structures without a single 
possible assignment to GM, WM, or CSF are masked in 

the iBEAT prediction using the dHCP ground truth (Fig. 3, 
top right two images). For infantFS, the hippocampus and 
amygdala label remain, while individual cortex and WM 
parcels of the dHCP ground truth are merged (Fig. 3, bot-
tom left images). Hence, in the infantFS predictions the 
following four labels remain: cortex, WM, hippocampus, 
and amygdala (Fig. 3, bottom two images to the right).

2.4.  Network architectures

2.4.1.  Macro architecture

Figure 4 shows the macro architecture for VINNA. While 
the proposed 4-DOF transform module (purple) can, in 
theory, be included in any UNet-like architecture, we use 
the same basic setup for all trained models to assure 
maximum comparability (i.e., same number of parame-
ters, same kernel sizes, etc.). The parameter-equal CNN 
is referred to as CNN*. CNN*, VINN, and VINNA, all con-
tain an encoder and decoder consisting of five competi-
tive dense blocks, respectively, which are separated by a 
bottleneck layer. In the encoder, maxpooling operations 
rescale the feature maps at each level by one half between 
the blocks using a pooling kernel of size 2× 2 and stride 
2. In contrast, index-unpooling doubles the feature map 
size in the decoder. Skip connections between the blocks 
at each level allow the gradient to flow efficiently. In CNN* 
(Henschel et al., 2022), pooling and unpooling operations 
transition between all levels (i.e., the purple block in  
Figure 4 is substituted with the gray maxpooling/unpool-
ing operation). In VINN (Henschel et al., 2022), the first 

Fig. 3.  Harmonization of inconsistent label protocols between iBEAT, infantFS, and dHCP. Reduction of the original 
dHCP segmentation from 88 labels (left) by first merging all cortical parcels to cortex, WM parcels to WM and removal 
of subcortical structures, is followed by addition of CSF and ventricles (top) or amygdala and hippocampus (bottom) for 
comparison to iBEAT (3 labels: CSF (blue), WM (white), and GM (red), top second from left top) or infantFS (4 labels: WM 
(white), cortex (red), hippocampus (yellow), and amygdala (blue), bottom second from left), respectively. For iBEAT (right 
top), all GM and WM are modified using the dHCP segmentation for the subcortical structures, resulting in three labels for 
the final mapped version (3 labels, top second from right). For infantFS (right bottom), all structures except WM, cortex, 
hippocampus, and amygdala are removed (4 labels, bottom second from right).
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layer pooling and unpooling operation is replaced with a 
resolution-normalization module. This network-integrated 
flexible interpolation step allows transitions between res-
olutions without restrictions to pre-defined fixed voxel 
sizes, both during training and inference. Hence, images 
can be processed at their native resolution without prior 
resampling. Similar to spatial transformers (Jaderberg 
et al., 2015), the interpolation-based transition is divided 
into two parts: (i) calculation of the sampling coordinates 
(grid generator) and (ii) interpolation operation (sampler) 
to retrieve the spatially transferred output feature maps. 
Here, the sampling calculation relies only on the scale 
factor SF: the quotient of the resolution information of the 
inner normalized scale Resinner, a tune-able hyperparame-
ter set to 0.8 mm throughout our experiments, and the 
input image Resnative. The addition of parameter α sam-
pled from a Gaussian distribution with parameters 
sigma = 0.1 and mean = 0 slightly augments the scale 
factor SF (SF =Resinner / Resnative + α), introduces small 
resolution variations to the sampling, and increases the 
robustness of the latent space interpolation. Specifically, 
the presence of alpha allows for augmentations at the 
actual anatomical rather than the voxel size as the nor-
malization of the resolution inside VINN disentangles per-
ceived voxel versus actual structure size differences.

2.4.2.  Network-integrated 4-DOF transform  
module

In VINNA, the transition is implemented via the new 
network-integrated 4-DOF transform module shown in 
purple in Figure 4. Here, the sampling coordinate calcula-
tion is based on a transformation matrix M ∈R3×3 with 
four degrees of freedom, encoding not only scaling, but 
also in-plane rotation, and translation. Parameters for the 
rotation angle θ ∈R and translation T ∈R2 are randomly 
sampled on the fly during training. The scale factor SF is 
calculated as in VINNs resolution-normalization module, 
that is, by dividing the inner normalized scale by the 
image resolution with augmentation by the parameter α.  
In the first transition step (Fig.  4, pre-IDB to IDB), the 
affine per-channel mapping M : U → V  samples the input 
feature maps U ∈RHnative×Wnative to the output feature maps 
V ∈RHinner×Winner. In the final transition step (Fig. 4, compet-
itive dense block (CDB) to post-CDB), this spatial trans-
formation is reversed by using the inverse transformation 
matrix M−1 :V→ U . The interpolation itself is performed 
by applying a sampling kernel to the input map U to 
retrieve the value at a particular pixel in the output map V .  
The sampling is identical for each channel, hence con-
serving spatial consistency.

Fig. 4.  Network-integrated position variation and scaling normalization in VINNA. Flexible transitions between resolutions 
and head positions become possible by replacing (un)pooling with our network-integrated 4-DOF transform module 
(purple) after the first input dense block in the encoder (pre-IDB) and before the last competitive dense block in the 
decoder (post-CDB). A transformation matrix composed of rotation angle θ, translation parameter T, and the scaling factor 
SF defines the feature alterations. Scale transitions between the other competitive dense blocks (CDB) remain standard 
MaxPool and UnPool operations. Each CDB is composed of four sequences of parametric rectified linear unit (PReLU), 
convolution (Conv), and batch normalization (BN). In the first two encoder blocks ((pre)-IDB), the PReLU is replaced with a 
BN to normalize the inputs.
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2.4.3.  Network blocks

2.4.3.1.  Competitive dense block (CDB) design.  In 
VINNA, a CDB is formed by repetitions of the basic com-
posite function consisting of a probabilistic rectified lin-
ear unit (pReLU) activation function, a 3× 3 convolution, 
and a batch-normalization (BN). Feature competition 
within the block is achieved by using maxout (Goodfellow 
et  al., 2013) instead of concatenations (Jégou et  al., 
2017) in the local skip connections. The maxout opera-
tion requires normalized inputs and is therefore always 
performed after the BN (see position of maxout in CDB 
design in Fig. 4).

2.4.3.2.  Input competitive dense block (IDB) design.  In 
contrast to the described CDB, the first two network 
blocks follow a different order of operation. Here, the raw 
inputs are normalized by first passing them through a 
BN-Conv-BN combination before adhering to the original 
composite function scheme (Conv-BN-pReLU) (see 
Fig. 4, IDB).

2.4.3.3.  Pre-IDB.  The first encoder block in VINNA called 
pre-IDB (see Fig. 4) transfers image intensity information 
from the native image to the latent space and encodes 
voxel size and subject-space-dependent information 
before the internal interpolation step. The composite func-
tion scheme is identical to the IDB, and the added prefix 
simply allows differentiation of the block placements.

2.4.3.4.  Post-CDB.  Akin to the pre-IDB, an additional 
CDB block in the decoder merges the non-interpolated 
feature information returned from the pre-IDB skip con-
nection and the upsampled feature maps from the 
network-integrated 4-DOF transform modules. A concat-
enation operation combines both feature maps, before 
passing them to a standard CDB block (see Fig. 4, (post-)
CDB). After the final 1×1 convolution, a softmax operation 
returns the desired class probabilities.

2.5.  Loss function

All networks are trained with a weighted composite loss 
function of logistic loss and Dice loss (Roy et al., 2017) 
combined with the high-resolution specific weighting 
from VINN (Henschel et al., 2022). In short, erosion and 
dilation of the cortex labels creates a binary mask of the 
outer cortex, small WM strands, and deep sulci. Wrong 
predictions in these areas result in a higher loss, hence 
guiding the network to focus on areas particularly affected 
by partial volume effect (PVE). The original publications’ 
ablation experiments evaluated the impact of the differ-
ent function elements: the logistic loss and Dice loss 
combination improves overall segmentation performance 

(Roy et  al., 2017), while the high-resolution weighting 
leads to higher segmentation accuracy on the cortical 
parcels (Henschel et al., 2022).

If we consider pl, i x( ) as the estimated probability of 
pixel i that belongs to class l,y, as the corresponding 
ground truth probability, and ω i as the associated weight 
given to the pixel i based the loss function can be formu-
lated as

	

L = −
l, i
∑ω i y l, ilogpl, i x( )

Logistic loss
! "### $###

−
l
∑

2
i∑ pl, i x( ) yl, i

i∑ pl, i x( )+
i∑ yl, i

Soft Dice loss
! "#### $####

	

(1)

with ω i = ωmedian freq. +ωgradient +ωGM +ωWM/Sulci.
Here, ωmedian freq. represents median frequency bal-

ancing addressing the class imbalance and ωgradient  
boundary refinement through a 2D gradient vector (Roy 
et  al., 2017), while ωGM and ωWM/Sulci assign higher 
weights to PVE-affected areas (Henschel et al., 2022).

2.6.  View aggregation

In order to account for the inherent 3D geometry of the 
brain, we adopt the 2.5D view aggregation scheme from 
(Henschel et al., 2020, 2022) for CNN*, VINN, and VINNA. 
In short, we train one network instance per anatomical 
plane and calculate a weighted average of the resulting 
softmax probability maps. The weight of the sagittal pre-
dictions is reduced by one half compared to the other 
two views to account for the missing lateralization in the 
sagittal view. In this plane, the network predicts 23 
instead of 88 classes.

2.7.  Augmentations

2.7.1.  External augmentation (exA)

The current state-of-the-art approach to introduce 
robustness to position changes into neural networks is 
extensive external augmentation (see Fig. 1B). Therefore, 
we contrast our proposed network-integrated 4-DOF 
transform module against this approach. We use random 
transforms with rotation parameters sampled from a uni-
form distribution of the predefined range -180° to 180° 
and translation by 0 to 15 px to augment images during 
the training phase and interpolate linearly. For CNN* and 
nnUNet, augmentation also includes sampling of scaling 
parameters from a uniform distribution of the predefined 
range 0.8 to 1.15. VINN’s resolution-normalization mod-
ule makes this step obsolete. Every minibatch hence 
consists of a potentially transformed MRI (using bi-linear 
interpolation) and a corresponding label map (using NN 
sampling). By exposing a network to a large variety of 
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possible image positions during training, orientation-
robustness can be achieved. All external augmentation 
routines are implemented using torchIO (Pérez-García 
et al., 2021).

2.7.2.  Image intensity augmentation

To allow generalization outside of the dHCP cohort, we 
apply a number of intensity or texture augmentations on 
the fly to the training batch, namely bias field changes, 
random gamma alterations, ghosting, spiking, blurring, 
and Gaussian noise. Each batch sampled from the origi-
nal data is transformed by any of the operations above 
with a probability of 0.4. As before, all augmentations are 
implemented using torchIO.

2.8.  Evaluation metrics

We use the Dice Similarity Coefficient (DSC) (Dice, 1945; 
Sørensen, 1948) and Average Surface Distance (ASD) to 
compare different network architectures and modifica-
tions against each other, and to estimate similarity of the 
predictions with a number of previously unseen scans. 
Both are standard metrics to evaluate segmentation per-
formance. We establish improvements by statistical test-
ing (Wilcoxon signed-rank test (Wilcoxon, 1945) after 
Benjamini-Hochberg correction (Benjamini & Hochberg, 
1995) for multiple testing) referred to as “corrected p” 
throughout the paper.

2.9.  Training setup for all models

2.9.1.  Training dataset

For training, we select 318 representative participants 
from the dHCP cohort. Resolutions are equally repre-
sented with 106 MRIs at 1.0 mm, 0.8 mm, and 0.5 mm, 
respectively. Empty slices are filtered from the volumes, 
leaving on average 137 single view planes per subject 
and a total training size of at least 20k images per net-
work. The original nnUNet does not filter the volumes. 
The 3D version uses 3D patches instead of 2D slices. The 
parameters are automatically determined by nnUNet to 
guarantee an ideal set-up for the given segmentation 
task. Otherwise, we train all directly compared networks 
(CNN*, VINN, VINNA, 2D nnUNet, and 3D nnUNet) under 
the same conditions.

2.9.2.  Training parameters

We implement and train independent models to conver-
gence (early stopping) for the coronal, axial, and sagittal 
planes with PyTorch (Paszke et  al., 2017), using one 

NVIDIA V100 GPU with 32GB RAM. During training, the 
modified Adam optimizer (Loshchilov & Hutter, 2019) is 
used with a learning rate of 0.001. Using a cosine anneal-
ing schedule (Loshchilov & Hutter, 2017) with warm 
restarts, the learning rate is adapted after initially 10 
epochs. The epoch offset is subsequently increased by a 
factor of two. The momentum parameter is fixed at 0.95 
to compensate for the relatively small mini batch size of 
16 images for CNN*, VINN, and VINNA. For nnUNet, the 
optimal batch-size is automatically determined (Isensee 
et al., 2021). For the given segmentation problem, the 2D 
nnUNet uses a batch size of 128 while the 3D version 
relies on a smaller batch size of 128. To ensure a fair com-
parison, all networks (CNN*, VINN, VINNA, 2D nnUNet, 
and 3D nnUNet) have been trained under equal hardware 
and hyper-parameter settings otherwise. A comparing 
table is available in the Appendix (Section A.4).

3.  RESULTS

We group the presentation of results into three blocks: 1. 
ablative architecture improvements to determine the best 
performing module for orientation and position transforma-
tion (Section 3.1), 2. performance analysis to comprehen-
sively characterize the advantages of VINNA with respect 
to state-of-the-art traditional atlas- and deep-learning-
based methods (Section 3.2), and 3. external validation on 
M-CRIB (Alexander et  al., 2019) to asses generalizability 
and performance with respect to manual labels (Sec-
tion 3.3). Following best practice in data-science, we utilize 
completely separate datasets during the evaluations: the 
validation set for Section 3.1 (Appendix Table A: Validation), 
and various test sets for Sections 3.2 and 3.3 (Appendix 
Table A: Testing). This avoids data leakage and ensures that 
training, method design decisions, and final testing do not 
influence each other, which could otherwise lead to overly 
optimistic results (overfitting).

3.1.  External augmentation versus network-
integrated 4-DOF transform module in VINNA

As high variances with respect to head orientations and 
spatial resolutions are common in newborns and are 
likely to be underrepresented in the limited available 
data cohorts, we first compare multiple approaches for 
extension of the training distribution for accurate (sub)
millimeter newborn whole-brain segmentation. Tradi-
tionally, external data augmentation (exA), such as scal-
ing, rotation, or translation, addresses this problem by 
interpolating both, the image and label maps, to a new, 
random position during training. Due to the discrete 
nature of the label maps, lossy NN interpolation cannot 
be avoided, unless the transformations are applied to the 



12

L. Henschel, D. Kügler, L. Zöllei et al.	 Imaging Neuroscience, Volume 2, 2024

one-hot-encoded logits (soft-loss). We therefore evaluate 
both, the traditional exA and soft-loss implementation 
(referred to as exA (soft)). Our new 4-DOF transform 
module in VINNA internally emulates possible head 
transformations and acts directly on the encoded feature 
maps. To evaluate effectiveness of the exA versus VINNA, 
we compare VINNA with parameter-identical CNN*, VINN, 
and VINNA equipped with exA. Each subsequent impro
vement in segmentation performance is confirmed by 
statistical testing (corrected p < 0.05).

In Figure 5, we compare the model performance of six 
approaches: CNN* with exA and exA (soft), (Section 2.4, 
CNN* + exA, left box; CNN* + exA (soft), second box from 
the left), VINN with exA and exA (soft) (Section 2.4, VINN 
+ exA, third box from the left; VINN + exA (soft), fourth 
box from the left), VINNA with the new 4-DOF transform 
module (VINNA, second box from the right), and finally 
VINNA with exA (VINNA + exA, right box). The analysis of 
the DSC (top) and ASD (bottom) is grouped for three 
groups of structures (cortex averages 32 labels, WM 
averages 32 labels, and subcortical structures average 
20 labels) and three resolutions (from left to right 0.5 mm, 
0.8 mm, and 1.0 mm). We present performance for T2w 
MRIs, but we found the same ranking for T1w MRIs.7

Looking at the T2w segmentation and focusing on 
the different resolutions, the differences between the 
approaches are largest on the subcortical structures. The 

CNN* with exA reaches an average DSC of 91.91, 89.95, 
and 91.14 and an ASD of 0.238  mm, 0.192  mm, and 
0.193 mm for input data of 0.5 mm, 0.8 mm, and 1.0 mm, 
respectively. The slight reduction in performance for 
0.8 mm resolution consistently occurs for all evaluated 
models and is probably caused by the necessary image 
resampling from the original resolution of 0.5  mm 
and  subsequent reprocessing with the dHCP-pipeline 
(Section 2.2). Interpolation from 0.5 mm to 1.0 mm results 
in a well-aligned grid due to the even division by factor 2 
(8 voxels get averaged into a single larger voxel). Resam-
pling to 0.8 mm, on the other hand, requires an uneven 
interpolation grid with weighted averages and original 
voxels that contribute to multiple larger voxels. This more 
challenging setting could result in the slightly reduced 
segmentation performance. Optimization of the architec-
ture design towards multi-resolution (VINN, Section 2.4) 
leads to significant improvement in the DSC and ASD 
across the cortical, WM, and subcortical structures 
(Fig. 5, VINN + exA). Particularly, the subcortical segmen-
tations are improved by around 0.5%. Importantly, the 
internal 4-DOF transform module (VINNA), which avoids 
label interpolation all together, further reduces the error 
by one half and increases segmentation performance 
significantly compared to both CNN* and VINN with exA. 
This effect is consistent across all structures and resolu-
tions. Specifically, the ASD at the high-resolution benefits 
from the new module. Here, performance can be 
improved by 4.47% on the cortex, 5.19% on the WM, 
and 5.89% on the subcortical structures. For the lower 

Fig. 5.  Comparison of approaches for external and internal spatial augmentation on T2w images: Our VINNA method—
with the 4-DOF transform module—(fifth box in the group) outperforms both state-of-the-art approaches with external 
Augmentation (CNN* + exA and VINN + exA, first and third box) in Dice Similarity Coefficient (DSC, upper row) and 
average surface distance (ASD, lower row). This performance advantage is significant (corrected p < 10−9) and consistent 
across resolutions and structures. Combining VINNA with external augmentation (VINNA + exA, last box) reduces 
performance. When avoiding nearest-neighbor label interpolation by applying exA on one-hot encoded logits (+exA (soft)) 
instead of the label maps, performance improves for both CNN* and VINN (second box and fourth box, respectively). 
VINNA with the internal 4-DOF module outperforms the soft-loss methods on 1.0 and 0.5 mm by a significant margin 
(corrected p < 10−9, indicated with*). exA: external Augmentation.

7  To reduce redundancy, we relegate that analysis to the Appendix  
(Section A.1).
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resolution, the improvement on the cortex and WM is 
slightly lower (around 2%) while the subcortical struc-
tures benefit from the 4-DOF transform module similarly 
to the 0.5 mm resolution experiments.

The soft-loss, implementing augmentations for the 
label maps via linear interpolation of the one-hot encoded 
feature maps, does improve performance compared to 
the nearest-neighbor based external augmentation for 
both CNN* and VINN (see CNN*/VINN + exA versus 
CNN*/VINN + exA (soft)). The subcortical structures 
improve the most (0.27% DSC and 5.1% ASD for CNN* + 
exA versus + exA (soft); 0.21% and 2.35% ASD for VINN + 
exA versus + exA (soft)), followed by the cortex (0.15% 
DSC and 3.7% ASD; 0.07% DSC and 1.8% ASD). The 
improved performance without nearest-neighbor inter-
polation further strengthens our recommendation to 
avoid this type of label interpolation wherever possible. 
The proposed VINNA architecture outperforms VINN + 
exA (soft) on the 0.5 and 1.0 mm resolution by 0.17% and 
0.35% DSC and 5.27% and 6.23% ASD, respectively. 
The subcortical structures benefit the most with an aver-
age improvement by 0.34% DSC and 4.39% ASD, 
respectively. On the 0.8 mm resolution, no significant dif-
ference is detectable between the two approaches.

Overall, VINNA reaches the highest DSC and lowest 
ASD for the cortical structures (96.24, 0.079 mm), WM 
(98.18, 0.063  mm), and subcortical structures (91.87, 
0.190 mm) across all resolutions. The addition of exA to 
the framework (VINNA + exA, right box in each plot) again 
reduces performance. The DSC drops by 0.4%, 0.28%, 
and 1.15% on the cortex, WM and subcortical structures 
on average, while the ASD worsens by 4.75%, 3.92%, 
and 4.84%. Overall, results with VINNA are significantly 
better on 0.5 mm and 1.0 mm compared to all ablations 
on the validation set (corrected p < 10−6).

3.2.  Comparison to state-of-the-art neonate 
segmentation tools

To evaluate how VINNA compares to state-of-the-art 
neonate MRI segmentation tools, namely nnUNet (3D 
and 2D), iBEAT, and infantFS, we take a closer look at the 
DSC and ASD on the testing sets.

3.2.1.  Comparison of deep-learning networks

Figure 6 shows a detailed comparison of three different 
deep-learning based methods for neonate segmentation 
across modalities (T2w top, T1w bottom) and resolutions. 
All models are trained under equal parameter and dataset 
settings. Comparing performance between the two 
modalities shows that all models perform better on the 
T2w (top) than the T1w MRIs (bottom) across all struc-

tures. With VINNA (right box in each plot), the reduction is 
similar across all resolutions, with an average difference 
in DSC of 5.85, 3.47, and 5.16 on the cortex, WM, and 
subcortical structures. The ASD is, on average, improved 
by 0.09 mm when predicting on the T2w instead of T1w 
inputs. The nnUNet framework in 2D (left box) and 3D 
(second from left) has less improvement on the T2w 
images with an average difference between T1w and T2w 
of 3.75, 2.44, and 3.70 in DSC and 0.04 mm ASD on the 
aforementioned structures.

When comparing the four models, the 2D nnUNet + 
exA (left box) version performs worse than the 3D (sec-
ond from left box), and 2.5D VINNA (right box) across all 
resolutions, structures, and modalities. Particularly nota-
ble are the large variations of 2D nnUNet + exA in predic-
tion performance (large standard deviation) and large 
ASD (see Fig.  6), especially at the highest resolution 
(0.42 mm, for the cortex, 0.46 mm for WM and 0.41 mm 
for subcortical structures). This difference is less promi-
nent in the DSC scores, but 2D nnUNet + exA also per-
forms worst across all resolutions with respect to this 
metric (i.e., 92.39, 95.70, and 87.50 for a resolution of 
0.5  mm). The 3D nnUNet + exA (second from left) 
improves accuracy by 24.5%, 12.3%, and 22.9% for 
ASD and 1.75%, 1.06%, and 1.64% for DSC across the 
three different resolutions. VINNA with its 4-DOF trans-
form module (VINNA, right box) is again the best perform-
ing model, significantly outperforming all other networks. 
Compared to the 3D nnUNet + exA, ASD and DSC scores 
are significantly improved with the highest gain on the 
cortical structures (56%, 35%, and 45% ASD and 3.8%, 
2.7%, and 3.5% DSC for 0.5 mm, 0.8 mm, and 1.0 mm, 
respectively).

To evaluate if this trend is consistent across age 
groups, the 0.5  mm MRI images are split into three 
approximately equal-sized groups based on the partici-
pants’ age-at-scan information (32–36, 36–40, and 40–
46 weeks). Figure 6 shows DSC (top) and ASD (bottom) 
calculated for T2w (Fig. 7) for the 3D nnUNet + exA (left 
box) and VINNA with its 4-DOF transform module (right 
box) in each of the categories.

Consistent with the previous section, 3D nnUNet + 
exA reaches the weakest ASD and DSC across all age 
groups. On average, the VINNA with its 4-DOF transform 
module (right box) improves performance compared to 
nnUNet by 2.8%, 2.9%, and 2.8% DSC and 41.5%, 
43.6%, and 43.1% ASD from the youngest (32–36) to the 
oldest (< 46) age group and reaches a DSC of 96.86, 
96.913, and 97.17 for the cortical structures, 98.96, 
98.652, and 98.362 for the WM structures, and 92.18, 
92.69, and 92.80 for the subcortical structures across all 
age groups (youngest to oldest) on the T2w MRIs (Fig. 7, 
top). Here, VINNA also reaches the lowest ASD 
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Fig. 6.  SOTA Segmentation performance: Our VINNA with the 4-DOF transform module (last box in group) 
outperforms the three state-of-the-art deep-learning approaches, 2D nnUNet + exA and 3D (first and second box) 
in Dice Similarity Coefficient (DSC, upper row) and average surface distance (ASD, lower row). This performance 
advantage is significant (corrected p < 10−10, indicated with *) and consistent across three resolutions (0.5 mm, 
0.8 mm, and 1.0 mm), two modalities (T2w, top and T1w, bottom), and three structure groups (cortex, WM, and 
subcortical structures).

Fig. 7.  SOTA Segmentation performance across age groups: VINNA equipped with the 4-DOF transform module (right 
box) consistently outperforms state-of-the-art deep-learning approaches 3D nnUNet with external augmentation (+exA, 
left box) across four age groups. Improvement in dice similarity coefficient (DSC, top) and average surface distance 
(ASD, bottom) on T2w at 0.5 mm is significant (corrected p < 10−4, indicated with *) for < 36, < 40, and < 46 week-old 
newborns.
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(0.080  mm, 0.081  mm, and 0.081  mm for the cortical 
structures, 0.067 mm, 0.068 mm, and 0.066 mm for the 
WM structures, and 0.231 mm, 0.212 mm, and 0.212 mm 
for the subcortical structures). The results are signifi-
cantly better compared to 3D nnUNet + exA (corrected 
p < 10−9). As seen by the increasing DSC and decreasing 
ASD, the younger age groups (< 32− 36) have proved to 
be more challenging to segment. For VINNA, the perfor-
mance decreases most significantly for the subcortical 
structures (DSC by 1.82% and ASD by 20.09%) and least 
on the cortex (0.35% DSC and 4.65% ASD). This trend is 
consistent for the other two models. Assessment of qual-
itative differences between the 3D nnUNet + exA and 
VINNA on a representative participant at 40 weeks of age 
(Fig.  10) shows slight over-segmentation of the cortex 
and loss of small WM strands with the 3D nnUNet + exA 
(third row, second column, arrows). Overall, the segmen-
tation with VINNA (fourth row) appears less smoothed 
and closer to the ground truth (second row).

3.2.2.  Comparison to iBEAT

In Figure 8, the deep-learning models are compared to 
the docker version of iBEAT on the T2w images at 
0.5 mm. iBEAT is officially designed for ages 0–6 years 
and the docker version we used for processing returns 
three labels (WM, GM, CSF). The definition of these labels 
is different from that of the dHCP-atlas (see Section 2.3.3), 
so we map the ground truth as well as the predictions 
from the deep-learning networks (nnUNet3D and VINNA) 
to be able to compare segmentation similarity. As 
described in Section 2.3, retraining the CNN part of iBEAT 
under same data and label definitions is not possible, as 
neither the source code nor the original training data is 

available online. Note, even though we do not need to 
interpolate, cross-protocol comparisons include atlas dif-
ferences and may introduce additional errors due to the 
mapping. While results should be interpreted with the 
caveat that iBEAT uses a different atlas and training data-
set than 3D nnUNet + exA and VINNA, the label harmoni-
zation allows an as-fair-as-possible comparison with this 
state-of-the-art method.

With respect to the mapped dHCP-reference segmen-
tation, DSC (top) and ASD (bottom) are lower for iBEAT 
(left box in each plot) compared to the the deep-learning 
methods (3D nnUNet + exA, middle box, and VINNA, 
right box in each plot). Performance of iBEAT on the GM, 
WM, and CSF improves with age. GM and WM are clos-
est to the reference at 36–40  weeks (DSC 80.29/87.94 
and ASD 0.6840.813  mm), while CSF peaks at 32–
26 weeks (73.49 and 0.896 mm). The 3D nnUNet + exA 
and VINNA show a similar trend, but performance is more 
consistent. As mentioned before, the differences are not 
necessarily due to wrong predictions made by iBEAT. 
Looking at the qualitative comparison in Figure 10, differ-
ences appear small, with iBEAT (third row) missing a few 
WM strands (arrow) and slightly over-segmenting the cor-
tex compared to the mapped ground truth (second row).

3.2.3.  Comparison to infantFS

Figure  9 shows performance comparison between 
infantFS (left box) and the deep-learning methods, 3D 
nnUNet + exA (middle box) and VINNA (left box), but in 
contrast to previous evaluations on T1w images at 
1.0 mm, the operating resolution and modality of infantFS. 
Note that the infantFS labels are also different from those 
of dHCP and the ground truth labels must be mapped 

Fig. 8.  Deep-learning networks versus iBEAT: Similarity to the dHCP reference is higher with VINNA (third box) and 
3D nnUNet + exA (second box) than iBEAT (first box) with respect to dice similarity coefficient (DSC, top) and average 
surface distance (ASD, bottom) on T2w MRIs at 0.5 mm across three age groups. Segmentation results with VINNA are 
significantly closer to dHCP (corrected p < 10−6, indicated with *) for CSF, GM, and WM. Note that iBEAT’s structure 
definition is not identical to the dHCP-ALBERTs atlas and analysis is based on harmonized, merged labels.
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(see Section  2.3.3 for details). As for iBEAT, the cross-
protocol comparison can put the traditional method at an 
unfair disadvantage and results should be considered 
with this caveat.

Overall, the infantFS predictions differ strongly from 
the mapped dHCP ground truth, specifically for the 
younger age ranges. The highest similarity is reached for 
the subcortical structures (amygdala and hippocampus) 
at 40–46  weeks (DSC of 70.72/70.56 and ASD of 
0.7361.23 mm, respectively). The cortex and WM reach a 
maximum DSC of 60.60/41.62 and ASD of 1.013.20 mm. 
Qualitative comparison (see Fig. 10, third row, left panel) 
shows difficulties with the correct location of the GM and 
WM border on the dHCP T1w MRI. Larger portions of the 
cortex are under-segmented, and strands of WM are lost 
compared to the ground truth. The deep-learning meth-
ods reach a DSC above 80 and an ASD below 0.5 mm for 
all structures and age groups. The method closest to the 
dHCP reference is again VINNA with the 4-DOF trans-
form module (left box), followed by 3D nnUNet + exA 
(middle box). For a detailed comparison between nnUNet 
and VINNA on T1w, see Figure 7.

3.3.  External validation on manual labels (M-CRIB)

To assess generalizability to a different dataset in our tar-
get age range (24–44 weeks) and to provide results with 
respect to a manual reference, we compare the segmen-
tations produced by VINNA, 3D nnUNet + exA, and the 
dHCP-minimal-processing-pipeline to the 0.62 mm high-
resolution T2w scans forming the M-CRIB atlas (Alexander 
et  al., 2019). This dataset contains T2w MRIs from 10 
participants and accompanying label maps based on the 

Desikian-Killiany-Tourville (DKT) atlas (Klein & Tourville, 
2012). Note that the labels are not identical to the dHCP-
ALBERTs atlas. Hence, we combine the cortical parcels 
to one label (cortex) for the segmentation comparison 
and mask all but three structures (WM, hippocampus, 
and lateral ventricles). As iBEAT does not differentiate 
between subcortical structures and GM or WM, nor CSF 
and ventricles, mapping of both, the ground truth and 
prediction, would be different compared to nnUNet, 
VINNA, and the dHCP-minimal-processing-pipeline. A 
fair comparison is therefore only possible between the 
latter methods, and iBEAT is thus not included in the fol-
lowing section.

In Figure 11, the DSC (top) and ASD (bottom) are com-
pared over four structures (from left to right: cortex, WM, 
hippocampus, and lateral-ventricles) for the deep-
learning methods (3D nnUNet + exA and VINNA) as well 
as the dHCP-minimal-processing-pipeline. Predictions 
for these methods are all based on the same label defini-
tion (dHCP-ALBERTs atlas (Gousias et  al., 2012; 
Makropoulos et  al., 2014)). As for the dHCP test set, 
VINNA outperforms the 3D versions of nnUNet across all 
four structures with a DSC of 83.83 and an ASD of 
0.387 mm on the cortex, 78.41 and 4.268 mm on the WM, 
61.73 and 3.682 mm on the hippocampus, and 84.62 and 
0.585 mm on the lateral ventricles. Compared to nnUNet, 
the performance improves on average by 3.36% for the 
DSC and 19.40% for the ASD. Furthermore, 3D nnUNet + 
exA incorrectly flips left-right labels for five participants 
(P02-P04, P08-P09). We restore the lateralization in the 
presented results as DSC and ASD would have otherwise 
been close to zero for half of the participants. On the hip-
pocampus, ventricles, and WM performance of VINNA is 

Fig. 9.  Deep-learning networks versus infantFS: VINNA with the 4-DOF transform module (third box) and 3D nnUNet + 
exA (second box) are closer to the dHCP reference than infantFS (first box) on T1w at 1.0 mm, the supported modality 
and resolution for infantFS. Dice Similarity Coefficient (DSC, top) and average surface distance (ASD, bottom) significantly 
improve with VINNA (corrected p < 10−6, indicated with *) on the cortex, WM, hippocampus, and amygdala across all 
age groups. Note that definition of subcortical structures differs in infantFS and predictions are harmonized to allow 
comparison to the deep-learning models.
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similar to the dhcp-minimal-processing-pipeline, which is 
the best performing method. Specifically, predictions of 
the cortex are closer to the M-CRIB manual labels with 
the dhcp-pipeline (DSC of 89.60 and ASD of 0.257 mm), 

which is likely due to the reliance on surface models, 
while the trained deep-learning models seem to over-
segment the cortex (indicated by the similarity of the 
ASD, but larger differences in the DSC). Note that VINNA 
performs slightly better on the hippocampus with an 
increase in DSC by 1.25% and ASD by 0.58%. Due to the 
low number of participants, significance tests are not 
applicable for these experiments.

4.  DISCUSSION

In this paper, we present VINNA—a resolution-independent 
network for native-resolution neonatal brain MRI segmen-
tation. With VINNA and our novel network-integrated 
4-DOF transform module, we address two main difficul-
ties associated with neonate segmentation: resolution 
non-uniformity across data cohorts and the extended 
range of head positions in infants.

In contrast to adults, newborn head positioning in the 
scanner varies significantly due to imaging during sleep, 
smaller head sizes, and relevant necessary modifications 
to scanner equipment, such as the padding of head coils. 
Additionally, while scans are commonly recorded at high 
resolutions, no uniform standard exists across cohorts. 
The availability of newborn datasets is also scarcer than 

Fig. 10.  Qualitative T1w and T2w MRI segmentations on a representative scan at 41 weeks. VINNA with the 4-DOF 
transform module (last row) captures structural details lost in other methods. Comparison of the mapped ground truth 
(top) and segmentations from iBEAT (third row), 3D nnUNet + exA (fourth row) on a representative participant’s T2w MRI 
(left). The right side shows the T1w-scan from the same participant at 1.0 mm with ground truth (top), infantFS (third row), 
and the deep-learning methods.

Fig. 11.  External validation of segmentation performance 
on the M-CRIB dataset. VINNA (second box) outperforms 
nnUNet3D (first box) on all four structures and the dHCP-
strucutral-pipeline (third box) on the hippocampus. Dice 
Similarity Coefficient (DSC) and average surface distance 
(ASD) for cortex, WM, hippocampus, and lateral-ventricles 
are calculated with respect to harmonized manual labels on 
10 subjects from M-CRIB. Note that atlas definition differs 
between ground truth and predictions.
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that of adult subjects, and the existing collections to date 
are unlikely to represent that wide diversity in resolutions 
and head positions.

The current state-of-the-art to address spatial vari-
ability such as head positions is data augmentation, 
which applies randomly sampled scale, rotation, and 
translation transformations in the native imaging space 
(i.e., externally to both intensity and label map). In VINNA, 
we introduce the 4-DOF transform module that can apply 
such transformations internally as part of the network. As 
the parameters to the transformation are inputs to the 
network, they can be randomized during training, simi-
larly to external data augmentation methods. Moving the 
augmentation operation into the network, so it acts upon 
feature maps instead of inputs, marks a novel shift for 
data augmentation strategies. While we only imple-
mented an augmentation of 4 DOFs here, the concept 
may be generalized to 9 DOFs for 3D or even to warp 
fields as well as to other tasks such as classification, 
regression, etc.

We demonstrate that the new network-integrated 
4-DOF transform with internal augmentation outperforms 
state-of-the-art external augmentation approaches in 
CNN*, VINN, and nnUNet (Isensee et  al., 2021) on the 
dHCP cohort. Across three different resolutions and two 
modalities, our VINNA achieves the highest DSC (95.33 
on average), as well as the lowest ASD (0.102  mm on 
average). Metric evaluation combined with qualitative 
inspection indicates that the internal 4-DOF transform 
module in VINNA better retains high-level details across 
all resolutions and age groups. It should be noted that 
VINNA performs augmentation of the feature maps in the 
first-scale transition. The first (pre-IDB) and last (post-
CDB) blocks, therefore, act independent of any interpola-
tion and promote feature detection at an unaltered scale. 
While the ablative results in Figure 5 indicate better per-
formance than with external augmentation, generaliza-
tion beyond the scales encountered during training is not 
assured in these two blocks. Due to their simplicity, the 
initial, low-level features are, however, often empirically 
resolution-independent by nature (e.g., Line-Detector).

To better explain the factors and mechanisms driving 
the performance improvements of VINNA, we review the 
observation from FastSurferVINN (Henschel et al., 2022) 
that motivated the extension presented here: in one-to-
one comparisons, external augmentation reduces the 
segmentation performance on sub-millimeter MRIs. 
While—at first sight—the addition of data augmentation 
reducing performance seems contradictory, the one-to-
one comparison of VINNA and VINNA + exA (see Fig. 5, 
the only difference is added external augmentation) 
robustly confirms the observation and extends it from 
just scaling to rigid transforms.

The positive effect of data augmentation is usually 
associated with an expansion of the input dataset through 
equivariant operations. Implementing operations for 
image and label pairs that are truly equivariant can be 
difficult. We believe that the loss of information due to 
image interpolation (lossy interpolation of the label map 
and image) is larger than previously believed. Internal 
augmentation, for the first time, offers an alternative 
approach with interpolation of continuous values in mul-
tiple feature maps, reducing the information loss.

Furthermore, the 4-DOF transform module together 
with the internal augmentation regularizes the latent 
space of the network, because it imposes an additional 
constraint: spatial consistency of the feature maps. Com-
pared to equivalent CNN architectures, VINNA (and VINN) 
also benefit from a reduced capacity requirement to cap-
ture a large range of resolutions.

Our comparison to nnUNet highlights that 2D 
approaches lack contextual information, and fail to pro-
vide reliable predictions for whole-brain segmentation. 
The compromise between mid-range and long-range 
context in the 2.5D VINNA recovers structural information 
better and achieves higher segmentation performance 
across all age groups and structures—even compared to 
3D methods. As full-view 3D networks are currently not 
applicable for high-resolution MRI segmentation due to 
memory requirements, nnUNet and other 3D networks 
rely on patch-based processing. In this case, the 
increased 3D context comes at the cost of limited long-
range information and features a smaller field of view, 
potentially explaining the observed reduction in accuracy 
compared to 2.5D networks. This finding is in line with 
previous investigations which found limited performance 
differences between 2.5D and 3D approaches, even after 
extensive optimization of the 3D network architectures 
(Roy et al., 2022).

On the dHCP cohort, VINNA and its 4-DOF transform 
module also emulates the segmented structures better 
than traditional state-of-the-art infant pipelines, namely 
infantFS (Zöllei et al., 2020) and iBEAT (Wang et al., 2023). 
Notably, infantFS relies on traditional atlas-based seg-
mentation while iBEAT uses a combination of deep-
learning and traditional tools with a number of CNNs 
trained on defined target age ranges. While the re-trained 
networks (nnUNet + exA and VINNA) reach better results 
with respect to DSC and ASD, it should be noted that 
both, infantFS and iBEAT, differ significantly with respect 
to the returned number and definition of segmented 
regions. The necessary mapping between the segmenta-
tions is bound to introduce a bias, which can not be eas-
ily assessed. Additionally, both pipelines cater to a slightly 
different, larger age range (0–2  years for infantFS and 
0–6  years for iBEAT). Consequently, predictions from 
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both methods of the cortex and WM improve for partici-
pants closer to the officially supported age range 
(>40  weeks). Qualitative assessment also shows good 
performance for the older newborns in iBEAT. infantFS 
unfortunately fails to correctly capture the cortex and WM 
on the majority of participants.

The original iBEAT v2.0 paper (Wang et al., 2023) also 
evaluates performance on the dHCP data and reports a 
DSC of 0.9 for the WM and 0.85 for the GM. Our results 
are in concordance with this assessment for the 
>40 week-old participants (DSC of 0.83 on the GM and 
0.88 on the WM). The authors do not provide information 
on their label harmonization, therefore we cannot infer 
their reference standard. In contrast to the docker v2.0 
version, the cloud version of iBEAT (not available for local 
data processing) does provide cortical parcellations. 
Extracting the cortex from the GM label (a combination of 
both cortical and subcortical GM in the docker version) 
allows direct comparison to the dHCP solution after 
merging its cortical structures, possibly explaining per-
formance differences. In summary, iBEAT seems to work 
well on the supported age range while infantFS is less 
precise on the dHCP population. Other features included 
in the pipelines, such as surface generations, are an 
advantage compared to the proposed VINNA and can 
help to refine the segmentation of convoluted structures 
such as the cortex (Fischl, 2012). For our target domain in 
this paper, however, the VINNA architecture appears to 
emulate the investigated tissue classes more precisely.

Due to the limited extrapolation capabilities of neural 
networks, generalizability beyond the training set distri-
bution is, however, uncertain. While the 4-DOF transform 
module in VINNA serves as a diversification of the train-
ing distribution with respect to spatial orientations and 
image resolution, the base cohort is still only a represen-
tation of the dHCP population, that is, all scans encoun-
tered during training represent newborns between 
24–44 weeks post-menstrual age from a control cohort 
acquired on the same 3 T Phillips scanner. Therefore, 
dedicated experimental validation is required to confirm 
the models’ effectiveness under differing conditions. As 
for all automated methods, manual quality checks of the 
predictions are recommended. While VINNA does per-
form well on M-CRIB, which covers the same age range 
as the dHCP, generalization to other cohorts is not neces-
sarily guaranteed. Specifically, the T1w image intensities 
in dHCP appear significantly different from other cohorts 
which might also explain why infantFS performs poorly 
on the testing set. The T2w MRIs in dHCP are, on aver-
age, of better quality and the dhcp-minimal-processing-
pipeline builds the ground truth segmentations based on 
it (Makropoulos et  al., 2018). Additionally, in the early 
weeks of life, tissue contrast is higher in T2w recordings 

as the brain is not fully matured and myelination is still 
ongoing (Dubois et al., 2021; Miller et al., 2012). Struc-
tural details and specifically tissue boundaries might be 
missing, blurred, or ambiguous in T1w MRI. Hence, the 
imaging data may lack sufficient information to allow cor-
rect delineation of the (sub-)cortical structures. This may 
also explain why the deep-learning networks (i.e., 
nnUNet, CNN*, VINN), and VINNA are not able to emulate 
the ground truth on the T1w MRI as closely as on the T2w 
images. Including a SynthSeg-like intensity augmenta-
tion can potentially aid generalization across a wider age 
range. The method has previously been used in adults to 
generate contrast-agnostic networks that are able to 
segment both T1- and T2-weighted images (Billot et al., 
2020; Iglesias et  al., 2021). Due to the strong contrast 
changes in the early developmental years, implementing 
such a generative model may be an interesting direction 
for future work. However, as mentioned in the introduc-
tion, adaptation to the newborn cohort (Shang et  al., 
2022) showed that the synthetic images still differ con-
siderably from real data leading to performance reduction 
compared to age-specific models trained on real images. 
Successful adaptation requires a strategy to close this 
performance gap.

Better accessibility of newborn datasets would allow 
diversification of the training sets and subsequently a 
better representation of the newborn MRI distribution 
with respect to both, T1w and T2w modalities. It has 
been shown that an increase in the training corpus alone 
is extremely effective to boost performance (Henschel 
et al., 2022; Sun et al., 2017). Age-specific models, such 
as our VINNA or iBEAT’’s CNNs, are another way to 
reduce variations and therefore, segregate the problem 
(i.e., less variations within one age group). However, the 
limited data availability and non-uniform segmentation 
labels still pose significant barriers. Models for more spe-
cific segmentations than just CSF, WM, and GM are cur-
rently not trainable in a supervised fashion due to missing 
ground truth. In addition, definition of these three struc-
tures alone already varies across different atlases and 
tools, which makes fair method comparisons challeng-
ing. Neither manual labels nor automated segmentation 
tools exist for a unified segmentation definition across 
different resolutions, modalities, and age ranges. The 
M-CRIB atlas (Alexander et al., 2019), an infant-specific 
version of the Desikan-Killiany-Tourville-Atlas (Klein & 
Tourville, 2012) that is commonly used in adults, provides 
a first step towards this goal. A consistent structure defi-
nition across different stages of life is especially import-
ant in the context of longitudinal studies, as segmentation 
with age-dependent models can induce biases and 
reduce anatomical consistency (Reuter et al., 2012). How 
to solve this conundrum is an open question for the 
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future. Several NIH- and internationally-funded initiatives 
have recently been dedicated to acquire data from new-
borns (Makropoulos et al., 2018), infants, and pediatric 
age ranges (Howell et  al., 2019; Jernigan et  al., 2016; 
Volkow et al., 2021) as well as adolescence (Karcher & 
Barch, 2021). Due to the easy integration of varying data 
resolutions and accommodation for head position varia-
tions between infants, toddlers, and adults, our VINNA 
architecture might prove to be useful in this area once the 
data and label availability problem is resolved.

Overall, with VINNA, we provide a fast and accurate 
method for high-resolution subcortical structure segmen-
tation, cortical and WM parcellation of neonatal T1w and 
T2w MRI which generalizes well across the dHCP cohort. 
The presented 4-DOF transform module is also easy to 
integrate into other network architectures and might 
prove useful in different areas dealing with strong orienta-
tion variations. The application to neonates will be made 
available under VINNA4neonates as an open source 
package.8 Adaptation of the infantFS surface pipeline to 
the VINNA4neonates predictions, similar to the approach 
taken in FastSurfer (Henschel et al., 2020) for adults, is an 
exciting direction for future work.

DATA AND CODE AVAILABILITY

All MRI datasets used within this article are publicly avail-
able, and the open source repositories are cited within 
the article (Section 2.1). The source code of VINNA4neo-
nates will be made publicly available on Github (https://
github​.com​/deep​-mi​/VINNA4neonates) upon accep-
tance.
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Appendix  Fig. A1.  Comparison of approaches for external and internal spatial augmentation on T1w images: Our 
VINNA method—with the 4-DOF transform module—(fifth box in group) outperforms both state-of-the-art approaches 
with external Augmentation (CNN* + exA, CNN* + exA (soft), VINN + exA, and VINN + exA (soft); first to fourth box) in 
Dice Similarity Coefficient (DSC, upper row) and average surface distance (ASD, lower row). This performance advantage 
is significant on 0.5 mm and 1.0 mm (corrected p <  0.05, indicated with *) and consistent across structures. Combining 
VINNA with external augmentation (VINNA + exA, last box) reduces performance. exA: external Augmentation. soft: linear 
interpolation of one-hot encoded feature maps.

module in VINNA, is significant for 0.5 mm and 1.0 mm 
(corrected p < 0.05) and results in an average final DSC 
of 90.95, 90.03 and 90.36 and ASD of 0.295 mm, 0.2 mm, 
0.2 mm for the 0.5 mm. 0.8 mm, and 1.0 mm resolution, 
respectively. Re-addition of exA to VINNA (sixth box) 
reduces performance to a similar level as CNN* + exA.

Overall, all models perform better on T2w (Fig. 5) rather 
than T1w MRIs (Appendix Fig. A1) across all structures. 
When segmenting a T2w MRI of the same individual, pefor-
mance improves for all networks, on average, by 5.7, 3.63 
and 5.09 DSC points for the cortex, WM, and subcortical 
structures, respectively. The ASD difference between T1w 
and T2w applications nearly doubles for the highest reso-
lution (0.5 mm) with an average of 0.18 mm compared to 
both lower resolutions (ASD of 0.9 mm for 1.0 and 0.8 mm) 
for the three structure averages. The DSC point improve-
ment for the T2w images is similar across all resolutions. 
The trend is consistent for both networks (CNN* and VINN) 
and augmentation schemes (external versus internal).

A.2.  Dataset summary

Appendix Table A.  Summary of datasets used for 
training, validation, and testing.

Usage Dataset #P Age [weeks] Res [mm]

Training dHCP 318 26-44 0.5, 0.8, 1.0
Validation dHCP 90 27-41 0.5, 0.8, 1.0
Testing dHCP 170 30-44 0.5, 0.8, 1.0

M-CRIB 10 40-43 0.63

Table lists the dataset, number of participants (#P), range of 
post-menstrual age at scan in weeks and isotropic resolution in 
millimeter (Res [mm]) used in the paper.

Appendix Table B.  Subcortical segmentations of the 
dHCP-ALBERTs atlas and matching identifier (ID) equaling 
the number returned by VINNA for the structure.

ID

Subcortical structureLeft Right

0 0 Background
1 2 Hippocampus
3 4 Amygdala

17 18 Cerebellum
19 19 Brainstem
41 40 Caudate_nucleus
43 42 Thalamus_high_intensity_part_in_T2
45 44 Subthalamic_nucleus
47 46 Lentiform_Nucleus
48 48 Corpus_Callosum
49 50 Lateral-Ventricle
83 83 CSF
84 84 Extra_cranial_background
88 85 IntraCranialBackground
87 86 Thalamus_low_intensity_part_in_T2

Left and Right indicate the respective hemisphere. Four structures 
are not lateralized (same ID for Left and Right).

A.3.  Labels
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Appendix Table D.  Summary of training parameters for CNN*, VINN, VINNA, nnUNet 2D and nnUNet 3D.

Network Dim Time [h] # Param [10ˆ6] # Nets Patch size # Filter # Layers Kernel size Batch size

CNN* 2.5D 75 1.52 3 256 x 256 64 5 3 x 3 16
VINN 2.5D 122 1.52 3 256 x 256 64 5 3 x 3 16
VINNA 2.5D 123 1.52 3 256 x 256 64 5 3 x 3 16
nnUNet 2D 88 18.75 1 160 x 128 32-512 5 3 x 3 125
nnUNet 3D 104 30.65 1 128 x 128 x 112 32-320 5 3 x 3 x 3 2

The different augmentations (external or internal) do not affect the parameters. The table lists the network name (Network), dimension 
(Dim), training time in hours (Time [h]), number of trainable parameters (# Param), image patch size (Patch Size), number of filters per 
convolution (# Filter), number of layers (# Layers), convolution kernel size (Kernel Size), and the batch size (Batch Size).

Appendix Table C.  Segmentation parcels of the dHCP-ALBERTs atlas for gray matter (GM) and white matter (WM).

GM ID WM ID

StructureLeft Right Left Right

5 6 52 51 Anterior_temporal_lobe_medial_part
7 8 54 53 Anterior_temporal_lobe_lateral_part
9 10 56 55 Gyri_parahippocampalis_et_ambiens_anterior_part

11 12 58 57 Superior_temporal_gyrus_middle_part
13 14 60 59 Medial_and_inferior_temporal_gyri_anterior_part
15 16 62 61 Lateral_occipitotemporal_gyrus_gyrus_fusiformis_anterior_part
21 20 64 63 Insula
23 22 66 65 Occipital_lobe
25 24 68 67 Gyri_parahippocampalis_et_ambiens_posterior_part
27 26 70 69 Lateral_occipitotemporal_gyrus_gyrus_fusiformis_posterior_part
29 28 72 71 Medial_and_inferior_temporal_gyri_posterior_part
31 30 74 73 Superior_temporal_gyrus_posterior_part
33 32 76 75 Cingulate_gyrus_anterior_part
35 34 78 77 Cingulate_gyrus_posterior_part
37 36 80 79 Frontal_lobe
39 38 82 81 Parietal_lobe

Left and Right indicate the lateralization. The identifier (ID) equals the number returned by VINNA for the structure.

A.4.  Model parameters


