scientific reports

Check for updates

Thermally stable Bi2Te3/WSe2 Van OPEN Der Waals contacts for pMOSFETs application

Wen Hsin Chang¹, Shogo Hatayama¹, Yuta Saito1,2,3, Naoya Okada¹, Takahiko Endo⁴, Yasumitsu Miyata⁴ & Toshifumi Irisawa¹

Novel van der Waals (vdW) contacts formed by layered Bi2Te3 are found effective in improving the performance of WSe2 pMOSFETs. As compared with conventional transition metal-based Ni/Au S/D contacts, over 103 times on-state current improvement is achieved. vdW interface formation between Bi2Te3 and WSe2 is confirmed by X-ray diffraction analysis and scanning transmission electron microscope observation. An atomically flat Bi2Te3/WSe2 vdW interface, where the number of defects could be reduced as small as possible, contributes to the suppression of Fermi-level pinning caused by defect-induced gap states. Moreover, the semimetal-like characteristics of Bi2Te3 are also effective in minimizing the impact of metal-induced gap states. These features offer WSe₂ pMOSFETs with **exceptional S/D junction characteristics, including suppressed off-state leakage and a higher on–off ratio. In addition, it is found that WSe2 pMOSFETs with Bi2Te3 S/D contacts have excellent thermal stability, maintaining device performance even after 400 °C annealing, which is very promising for CMOS back-end-of-line application. The layered tellurides, reconciling low contact resistance and high thermal stability, are promising, particularly from the perspective of their application in the manufacturing process.**

The device performance of transition metal dichalcogenide (TMDC) metal-oxide-semiconductor field-effect transistors (MOSFETs) has been constrained by a large contact resistance owing to severe Fermi level pinning (FLP) between metal electrodes and TMDCs^{1-3} TMDCs^{1-3} TMDCs^{1-3} . The origins of FLP are usually attributed to the metal-induced gap states (MIGS) owing to metal wave function tailing into forbidden energy states⁴ or disorder-induced gap states (DIGS) owing to interfacial disorders/defects at metal/semiconductor interface^{[5](#page-7-3)}. For the past few decades, several approaches have been studied on TMDC for both n and pMOSFETs to alleviate FLP. Semimetal bismuth (Bi) has been shown to reduce MIGS because of its small density of states (DOS) near the Fermi level, which is very promising to enhance the device performance of $MoS₂$ nMOSFETs^{[6](#page-7-4)}. However, the thermal stability of Bi is a major concern when considering its application to CMOS fabrication^{[7](#page-7-5)}. Besides semimetal material, van der Waals (vdW) contacts were also found effective in enhancing the device performance of $MoS₂$ nMOSFETs as well as WSe₂ pMOSFETs with metal contacts including In^8 In^8 , Au⁹, SnSe₂^{[10](#page-7-8)}, NiSe¹¹, and a-GeTe¹². In the meantime, the atomically flat vdW interface has a great potential to eliminate the interfacial disorders/defects between the contact material and TMDC, where the DIGS can also be suppressed. Nevertheless, the thermal stability of these kinds of contact materials are still unclear.

Recently, Sp_2Te_3 , a famous and well-studied layered phase-change memory material^{13,14}, has been proven as a promising S/D contact material for $MoS₂$ nMOSFETs with low contact resistance^{[15](#page-7-13)}. Through appropriate postmetallization annealing (PMA), the well-aligned vdW Sb_2Te_3/MoS_2 interface can be achieved by the sputtering technique. Besides, Sb_2Te_3 is a degenerate narrow band gap (~0.3 eV) semiconductor with p-type conduction, where the Fermi level of Sb_2 Te₃ usually resides around the valence band maximum^{[16](#page-7-14)[–18](#page-7-15)}. This feature allows Sb_2Te_3 to possess a semimetal-like characteristics. Meanwhile, since the Fermi level of Sb_2Te_3 is aligned near the conduction band minimum of MoS₂, Sb₂Te₃ can reduce the contact resistance of MoS₂ nMOSFETs by a mechanism of suppressing the FLP and resultant small barrier height for electrons. However, for realizing TMDC CMOS logic devices, not only $MoS₂$ nMOSFETs but also pMOSFETs should be considered. WSe₂ is a well-known p-type TMDC material, showing high intrinsic hole mobility¹⁹. Although high-performance \overline{M} oS₂

¹Semiconductor Frontier Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan. 2Research Center for Green X-Tech, Tohoku University, 6-6-11, Aoba-Yama, Aoba-Ku, Sendai 980-8579, Japan. 3Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11, Aoba-Yama, Aoba-Ku, Sendai 980-8579, Japan. ⁴Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan. ^[2]email: wh-chang@aist.go.jp; yuta.saito.e5@tohoku.ac.jp

nMOSFETs with high-quality CVD-grown MoS₂ channels have been generally demonstrated worldwide, the WSe₂ pMOSFETs with comparable performance to the MoS₂ nMOSFETs are still beset with difficulties^{[20–](#page-7-17)[22](#page-7-18)}, owing to unstable monolayer channel quality^{[23](#page-7-19)}, ambipolar transport behavior²⁴ and large contact resistance²².

Searching for a similar Te-based material but with high electron affinity/work function for $\mathrm{WSe}_2\,\mathrm{pMOSETS}$ application, we found Bi_2Te_3 is a promising candidate. Bi_2Te_3 shows the similar crystal structure as Sb_2Te_3 with slightly different lattice constants. Nevertheless, Bi_2Te_3 exhibits a tendency to become a degenerate n-type semiconductor, where its Fermi-level locates near the conduction band minimum²⁵. Figure [1](#page-1-0) shows the comparison of band alignment of Sb_2Te_3 with MoS₂ and Bi₂Te₃ with WSe₂ as depicted using the theoretical/ experimental band parameters²⁵⁻²⁹. As mentioned and already demonstrated, judging from the band alignment, $\mathrm{Sb_2Te_3}$ is suitable for MoS₂ nMOSFETs, while Bi₂Te₃ has a potential being compatible for WSe₂ pMOSFETs.

In this work, monolayer (1L) WSe₂ pMOSFETs with Bi₂Te₃ S/D contacts were fabricated and subjected to PMA at different temperatures to verify the feasibility of Bi_2Te_3 as a contact material and to investigate its thermal stability. The Bi₂Te₃/WSe₂ can also form a well-aligned vdW interface under appropriate thermal treatment, just
... like that of $\text{Sb}_2 \text{Te}_3$ on Mo_2 . It is worth noting that significant device performance enhancement of the WSe₂ $pMOSFET$ with Bi_2Te_3 S/D contacts was observed as compared with the controlled device using the Ni/Au contacts, indicating the possibility of contact resistance reduction at the Bi_2Te_3/WSe_2 interface. Most important of all, the S/D contact characteristics and device performance can maintain or even improve after 400 °C PMA, suggesting the high thermal stability of ${\rm Bi}_2{\rm Te}_3$ and the feasibility of applying it to CMOS fabrication

Results and discussion

Figure [2a](#page-2-0) is the top view of optical microscope (OM) image of CVD-grown WSe₂ flakes, where the WSe₂ flakes consist of WSe₂ with different thickness including 1L, two-layer (2L) and bulk region with layer numbers over 10L. The comparison of Raman spectra of WSe_{[2](#page-2-0)} with different thicknesses is shown in Fig. 2b. It is found that the distribution of Raman peaks is very sensitive to WSe_2 thickness and can be used as a fingerprint for WSe_2 with different layer numbers. For WSe₂ with multi-layers over 10L, obvious E_{2g}^1 (248. 1 cm⁻¹) mode and A_{1g}^2 mode (251.8 cm⁻¹) peaks were observed, which agrees with the spectra extracted from a WSe₂ bulk crystal³⁰. On the other hand, for few-layer WSe₂, the E_{2g}^1 mode and A_{1g} mode merged or degenerated into a single peak and $2LA(M)$ mode near 261.2 cm⁻¹ resulting from the second-order Raman mode owing to two-phonon scatterin at the M point of the Brillouin zone^{[31,](#page-7-24)[32](#page-7-25)} appeared. Besides, as compared with multi-layer WSe₂ (the inset of Fig. [2b](#page-2-0)), the absence of *B*¹ ²*g* peak at around 308.5 cm−1 is a signature to confirm the monolayer thickness of the $WSe₂ channel^{30,33}.$ $WSe₂ channel^{30,33}.$ $WSe₂ channel^{30,33}.$ $WSe₂ channel^{30,33}.$

The WSe₂ samples used for X-ray diffraction (XRD) analysis can be separated into two kinds. One mainly consists of 1L WSe₂ with small portion (<10%) of multi-layer WSe₂, which will be referred to as 1L WSe₂ afterward. The other mainly consists of multi-layer WSe₂ with layer numbers over 10L, which will be referred to as > 10L WSe₂ afterward. Figure [3a](#page-2-1),b shows the XRD $\theta/2\theta$ scan of W/Bi₂Te₃/WSe₂/SiO₂/Si stacked films before and after PMA at temperatures from 200 to 450 °C extracted from 1L WSe₂ and > 10L WSe₂ samples. For the as-deposited sample, a small peak of Bi₂Te₃ 015 can be found at around 2θ=28°. This is the strongest peak observed for the powder sample³⁴, indicating the as-deposited Bi_2Te_3 film consists of randomly oriented

Fig. 1. The band alignment of $\text{Sb}_2\text{Te}_3/\text{MoS}_2$ and $\text{Bi}_2\text{Te}_3/\text{WSe}_2$, indicating the Te-based contacts are suitable for fabricating MoS₂ nMOSFETs and WSe₂ pMOSFETs. The figure is remodified from Fig. [5](#page-4-0)a in Ref. [15](#page-7-13).

Fig. 2. (a) The optical microscope (OM) image of the top view of CVD-grown WSe₂ with different thicknesses. The scale bar is 10 μ m. (**b**) The comparison of Raman spectra of WSe₂ with different thicknesses. The fingerprint of Raman peaks is very sensitive to WSe₂ thickness. The inset shows WSe₂ Raman spectra focusing on Raman shift from 290 to 320 cm−1.

Fig. 3. XRD $\theta/2\theta$ scan of W/Bi₂Te₃/WSe₂/SiO₂/Si stacked films before and after PMA from 200 to 450 °C extracted from (**a**) 1L WSe₂ and (**b**) > 10L WSe₂. The high-resolution scanning transmission electron microscope (STEM) cross-sectional images of 400 °C annealed W/Bi₂Te₃ stacked film as deposited on (**c**) 1L WSe₂ and (**d**) > 10L WSe₂. The yellow dashed line indicates the boundary between polycrystalline Bi₂Te₃ with tiny grain size and layered $\mathrm{Bi}_2\mathrm{Te}_3$.

polycrystalline with tiny grain size. The Bragg reflections of the crystalline Bi2 Te3 (*001*) plane emerged after 200 °C PMA and became much stronger after 400 °C PMA, indicating that the Bi_2Te_3 crystal grains changed the orientation from random to *c*-axis oriented through thermal treatment. Note that highly *c*-axis oriented Bi₂Te₃ and WSe₂ peaks were still present even after 400 °C PMA, suggesting that the layer structure of Bi₂Te₃ film and the well-aligned Bi₂Te₃/WSe₂ interface preserved. This behavior of thermal-induced crystallization of Bi₂Te₃ on WSe₂ is very similar to that of Sb₂Te₃/MoS₂ case¹⁵. However, further annealing at 450 °C resulted in a decrease of the peak intensity for both Bi_2Te_3 and WSe_2 peaks, indicating the degradation of the interfacial quality of the heterostructure. From a materials point of view, the Bi_2Te_3/WSe_2 heterostructure can sustain at least 400 °C annealing, which meets the thermal budget requirement of back-end-of-line (BEOL) for CMOS fabrication. Moreover, the peak intensity of Bi₂Te_{[3](#page-2-1)} 006 and 0015 peaks is much stronger for Bi₂Te₃ on 1L WSe₂ (Fig. 3a) as compared with those on > 10L WSe₂ (Fig. [3b](#page-2-1)), suggesting Bi_2Te_3 has better crystallinity on 1L WSe₂. This phenomenon was also confirmed in the STEM cross-sectional images as shown in Fig. [3](#page-2-1)c,d for W/Bi₂Te₃ stacked film deposited on 1L WSe₂ and > 10L WSe₂ after 400 °C annealing. For W/Bi₂Te₃ on 1L WSe₂ (Fig. [3c](#page-2-1)), a wellaligned layered structure of Bi_2Te_3 is clearly observed without any in-plane grain boundaries and distinct defects at this scale. Conversely, a clear grain boundary (yellow dashed line) was observed for those on >10 L WSe₂ (Fig. [3](#page-2-1)d). It is found that SeO_x on the surface of > 10L WSe₂ hinders the atomic alignment between Bi₂Te₃ and WSe₂. Moreover, some grains do not show *c*-axis orientation as indicated by absence of lattice fringes parallel to the substrate surface. Since selenium (Se) has very low chemical reactivity and the selenization of WO_3 only happens at certain growth condition, the Se may tend to pile up on > 10L WSe₂ during CVD growth owing to incomplete reaction³⁵. The Se residues will then lead to SeO_x formation after air exposure.

A detailed energy dispersive X-ray (EDX) mapping analysis of the Fig. [3d](#page-2-1) is presented. (see Supplementary Fig. S1). In addition, surface roughness for thick WSe₂ film may affect the growth behavior of Bi₂Te₃ film. This evidence indicates that the surface cleanness as well as flatness of WSe_2 are key factors for transferring poly crystalline Bi2 Te3 into a highly oriented structure during thermal treatment.

Figure [4a](#page-3-0) shows the smallest repeating cell of the Bi_2Te_3/WSe_2 vdW interface viewed from the [001] (*c*axis) direction based on the lattice information, where Bi_2Te_3 possesses lattice constants of $a = b = 4.388$ Å and $c = 30.46$ Å³⁶, and those of WSe₂ are $a = b = 3.288$ Å and $c = 12.989$ Å³⁷. Note that since both materials adopt hexagonal symmetry, the deposited Bi_2Te_3 could follow the atomic alignment of underlayer WSe₂, where the atomic positions of terminated Te and Se nearly match every three and four unit cells, respectively, along the in-plane direction. Moreover, thanks to the layered nature of Bi_2Te_{3} , the large in-plane lattice mismatch does not influence the growth on WSe_2 , which is known as the vdW epitaxy^{[38](#page-7-31)}. Figure [4b](#page-3-0) shows the High-Angle Annular Dark Field (HAADF)-STEM images focusing on the interface between Bi_2Te_3 and WSe₂, where Bi_2Te_3 is also fabricated by sputtering as mentioned in Fig. [3](#page-2-1), and Fig. [4](#page-3-0)c–f correspond to the EDX mapping analysis of W, Se, Bi, and Te. The heterostructure is subjected to a 400 °C annealing process. Note that as can be seen in Fig. [4](#page-3-0)c, the elemental mapping of W exhibits two lateral lines, indicating the observed area contains bilayer WSe₂.

Fig. 4. (a) A top-view illustration of the smallest repeating cell of the Bi_2Te_3/WSe_2 vdW interface. To prevent complexity, only Te and Se atoms adjacent to a vdW gap are shown. (**b**) The enlarged HAADF-STEM images of the Bi_2Te_3/WSe_2 interface, indicating the formation of the vdW interface. The EDX mapping of (**c**) W, (**d**) Se, (**e**) Bi, and (**f**) Te at the Bi_2Te_3/WSe_2 interface, suggesting no chemical interaction occurs.

Nevertheless, the discussion regarding the interfacial stability is still valid for $Bi_2Te_3/2L$ -WSe₂ heterostructure. A vdW interface composed of Bi_2Te_3 quintuple layer (QL) (Te-Bi-Te-Bi-Te stacking) and WSe₂ monolayer (Se-W-Se stacking) is clearly visible. It was found that the Bi_2Te_3 layer contains not only QLs but the bilayer (BL) can be also seen (Fig. [4b](#page-3-0)).

The same BL stacking fault, known as bilayer swapping, was reported for $\mathrm{Sb_2Te_3},$ but the electrical properties such as carrier concentration are not largely influenced by the presence of $BL^{39,40}$ $BL^{39,40}$ $BL^{39,40}$ $BL^{39,40}$. According to the EDX mapping, neither interfacial mixing nor interdiffusion is observed at the Bi₂Te₃/WSe₂ interface, indicating that the vdW interface can be maintained even after 400 °C annealing. We believe that the almost defect-free and highly stable vdW interface could provide the Fermi-level unpinning at the Bi_2Te_3/WSe_2 interface, which helps to enhance the device performance of the $WSe₂$ device.

Figure [5](#page-4-0) shows the typical height and average work function (WF) profile of the Bi_2Te_3/WSe_2 and Ni/WSe_2 interface extracted by Kelvin Probe Force Microscopy (KPFM), respectively. Since the electrodes on WSe_2 were fabricated through lift-off process, the abrupt edge between electrodes and WSe₂ is hard to obtain owing to the photoresist residue. We define the averaged CPD of WSe₂ away from the interface about 1 μm. The averaged WF value of WSe₂ of 5.37 eV was derived through the CPD difference from Au $(5.47 \text{ eV})^{41}$ reference pad on WSe₂. The corresponding optical images and KPFM CPD images are also presented (see Supplementary Fig. S2). The WF of Bi_2Te_3 and Ni were then determined to be 5.21 and 5.02 eV, respectively. The obtained WF value of WSe₂ and Bi₂Te₃ are all very close to the theoretical value as depicted in Fig. [1.](#page-1-0) Moreover, a lower Fermi-level difference is expected for Bi_2Te_3/WSe_2 than that of Ni on WSe₂. If the Fermi-level is unpinned, Bi_2Te_3 has a great potential to achieve better p-type transport properties on WSe_2 .

To investigate the electrical properties of Bi_2Te_3 on WSe₂ as a contact material, we fabricated the back gate 1L WSe₂ pMOSFETs with Bi₂Te₃ contact. Figure [6a](#page-5-0) is the detailed process flow and a schematic cross-sectional figure of a 1L WSe₂ pMOSFET with Bi_2Te_3 S/D contacts. Figure [6b](#page-5-0) shows the Raman spectrum obtained from the channel region between the S/D metal pads of WSe₂ pMOSFET, as shown in the inset, where the electrode gap size is around 5 µm. The peak position shift between E_{2g}^1 mode and A_{1g} mode and the absence of B_{2g}^1 peak is in good agreement with $1L$ WSe₂, as mentioned in Fig. [2.](#page-2-0)

Figure [7a](#page-5-1) compares the $I_D - V_G$ transfer curves extracted from the 1L WSe₂ pMOSFETs with Bi₂Te₃ and Ni/Au S/D contacts. For a fair comparison, all the devices were subjected to PMA at 200 °C for 10 min. The 5- μ m-gate-length WSe₂ pMOSFETs with Bi₂Te₃/W contacts exhibited significant device performance enhancement as compared with those of Ni/Au control devices. A high on–off ratio of ~10⁶ was obtained at a V_D of -50 mV. Moreover, the on-state current (I_{on}) of the devices with Bi₂Te₃/W contacts considerably increases to approximately 10^3 times greater than that of the MOSFETs using Ni/Au for S/D contacts. These results suggest a significant contact resistance reduction by employing ${\rm Bi}_2{\rm Te}_3$ contacts, which can be attributed

Fig. 5. Height profile and corresponding averaged work function profile of the (**a**) Bi_2Te_3/WSe_2 and (**b**) Ni/ WSe_{2} interface.

Fig. 6. (a) The detailed process flow and a schematic cross-sectional figure of a 1L WSe₂ pMOSFET with Bi₂Te₃ contacts and Au back-gate. (**b**) 1L WSe₂ Raman spectrum obtained from the channel region between the S/D metal pads. The inset shows the OM image of a top view of the back-gate 1L WSe₂ pMOSFET.

Fig. 7. (a) Comparison of I_D - V_G transfer curves of devices with Bi_2Te_3/W and Ni/Au S/D contacts on 285-nmthick SiO₂ dielectrics. (**b**) Comparison of I_D - V_G transfer curves of devices with Bi₂Te₃/W contacts before and after the PMA process at different temperatures. (c) The linear scale of I_D - V_G transfer curves shown in Fig. [6](#page-5-0)b. (**d**) The comparison of I_G of devices with Bi_2Te_3/W contacts before and after the PMA process at different temperatures.

to the low Fermi-level difference between Bi_2Te_3 and WSe_2 (Fig. [5\)](#page-4-0). Due to the semi-metallic characteristics of Bi_2Te_3 for suppressing MIGS and vdW interface for suppressing DIGS, the Fermi-level between Bi_2Te_3 and WSe_2 tends to unpin, so the small Fermi-level difference can be maintained and leads to better device performance. Besides Ni/Au S/D contacts, we also compare Bi_2Te_3 contacts with Cr/Au contact (see Supplementary Fig. S3). Significant device performance enhancement was also observed, suggesting the effectiveness of Bi_2Te_3 contacts for improving junction characteristics on WSe₂. The thermal stability of 1L WSe₂ pMOSFETs was also investigated. Figure [7](#page-5-1)b shows the comparison of I_D - V_G transfer curves at V_D of -50 mV and -2 V for 1L WSe₂ pMOSFETs with Bi₂Te₃/W contacts before and after the PMA process at different temperatures. Reduced offstate leakage (I_{off}) and enlarged on–off ratio with increasing PMA temperature are visible, indicating the S/D

junction characteristics improvement through thermal treatment. At V_D of − 2 V, increasing I_{on} is observed with increasing PMA temperature, which is more obvious in the linear scale as shown in Fig. [7c](#page-5-1). This indicates the contact resistance reduction and the high thermal stability of Bi_2Te_3/WSe_2 contacts. Approximately 3 times *I*_{on} enhancement was achieved after 400 °C PMA as compared with its as-deposited counterpart, suggesting the benefits of vdW interface formation for reducing contact resistance. The *I*_{on} enhancement mainly resulted from the contact resistance reduction instead of gate leakage current (I_G) , as I_G remains considerably low during the thermal treatment, as shown in the Fig. [7](#page-5-1)d.

Nevertheless, kinks at the subthreshold region were visible after thermal treatment and got worse at 400 °C. Since the WSe₂ of our devices is not covered by any protection layer, this phenomenon may be attributed to the interfacial degradation between WSe_2 and backside SiO $_2$ and the damage of WSe_2 itself

Conclusion

Thermally stable Bi_2Te_3/WSe_2 vdW contact up to 400 °C was fabricated, and significant device performance improvement was realized owing to the atomic-level defect-free vdW interface. The Bi_2Te_3/WSe_2 heterostructure can go through and maintain its quality at least after 400 °C annealing, which fulfills the requirement for the BEOL CMOS process. Moreover, significant enhancement of device performance in terms of up to 10³ times current improvement was demonstrated using Bi_2Te_3/WSe_2 contacts as compared with conventional transition metal contacts. This also indicates significant contact resistance reduction. All evidence shown in this work supports that layered tellurides can be applied to not only $MoS₂$ nMOSFETs but also WSe₂ pMOSFETs as S/D contacts, which is very promising for TMDC CMOS applications.

Methods

Synthesis of WSe₂

By using chemical vapor deposition (CVD), WSe₂ flakes were deposited on SiO₂ (285 nm)/Si substrates at 880 °C with WO₃ powder, Se beads, and KBr powder^{42,43}. KBr powder was used as the growth promoter⁴⁴.

Bi2Te3 deposition by sputtering

To investigate the crystal quality of Bi_2Te_3 on WSe₂ and its applicability to contact material, 20-nm-thick Bi_2Te_3 and 30-nm-thick tungsten (W) films were deposited onto the WSe₂ by magnetron sputtering at room temperature (300 K) (QAM-4, ULVAC KYUSYU Corp.)^{[14](#page-7-12),45}. W was treated as a protection layer for Bi_2Te_3 during the thermal treatment.

Material characterization

Raman analysis was used to determine the thickness of the WSe₂ layer. The Raman spectra were extracted from the HORIBA LabRAM Raman spectrometer with 488 nm wavelength laser excitation using a power of 5 mW. X-ray diffraction (XRD) and scanning transmission electron microscope (STEM) were used to investigate the crystallinity of Bi_2Te_3 and the Bi_2Te_3/WSe_2 interface. For XRD analysis, Cu-Ka (l=1.542 Å) was used in a Bragg–Brentano geometry (Ultima IV, Rigaku Corp.). A focused ion beam (FIB) technique was used to prepare the STEM sample, and JEM-ARM200F (JEOL, Ltd.) was used to study the cross-sectional images of Bi_2Te_3 and WSe₂ and energy dispersive X-ray (EDX) mapping with an accelerating voltage of 200 kV was performed. Kelvin probe force microscopy (KPFM) was used to measure the contact potential difference (CPD), which can be used to extract the work function difference between metal electrodes and WSe_2 . A standard atomic force microscope (Park Systems NX10) was utilized with a conductive cantilever (Olympus AC240TM, Pt coat) for CPD measurement under ambient condition.

Fabrication of back gate 1L WSe₂ MOSFETs

After WSe₂ growth, photolithography was used for defining S/D regions. 20-nm-thick Bi_2Te_3 and 30-nmthick W films were then deposited onto the $WSe₂$ layer by magnetron sputtering. The S/D contacts were then fabricated through a lift-off process using acetone and isopropanol (IPA) at 25 °C. Subsequently, the backside $SiO₂$ of the samples was removed using hydrogen fluoride (HF) solution, followed by back-gate Au deposition using sputtering. Post metallization annealing (PMA) was performed in Ar ambient for 10 min at 200, 300 and 400 °C. The back-gate devices with Ni (50 nm)/Au (50 nm) S/D metal contacts were also fabricated for comparison. Ni and Au were deposited by e-beam evaporator, respectively. To eliminate the impact from WSe, quality and $\text{WSe}_2/\text{SiO}_2$ interfacial condition on device performance, we fabricated the devices with different S/D metal contacts on the same $\mathop{\mathrm{WSe}}\nolimits_2$ sample grown by CVD.

Electrical characterization

All electrical characterization of WSe₂ MOSFETs was performed in a standard probe station under atmospheric condition at room temperature, and Keysight B1500A was used for electrical measurements.

Data availability

The datasets used and/or analyzed during the current study available from the corresponing author on reasonable request.

Received: 6 September 2024; Accepted: 12 November 2024 Published online: 19 November 2024

References

- 1. Bampoulis, P. et al. Defect dominated charge transport and fermi level pinning in MoS₂/metal contacts. *ACS Appl. Mater. Inter.* **9**, 19278–19286. <https://doi.org/10.1021/acsami.7b02739>(2017).
- 2. Sotthewes, K. et al. Universal fermi-level pinning in transition-metal dichalcogenides. *J. Phys. Chem. C* **123**, 5411–5420. [https://d](https://doi.org/10.1021/acs.jpcc.8b10971) [oi.org/10.1021/acs.jpcc.8b10971](https://doi.org/10.1021/acs.jpcc.8b10971) (2019).
- 3. Liu, X., Choi, M. S., Hwang, E., Yoo, W. J. & Sun, J. Fermi level pinning dependent 2D semiconductor devices: Challenges and prospects. *Adv. Mater.* **34**, 2108425. <https://doi.org/10.1002/adma.202108425>(2022).
- 4. Mönch, W. Chemical trends of barrier heights in metal-semiconductor contacts: On the theory of the slope parameter. *Appl. Sur. Sci.* **92**, 367–371. [https://doi.org/10.1016/0169-4332\(95\)00257-X](https://doi.org/10.1016/0169-4332(95)00257-X) (1996).
- 5. Hasegawa, H. & Ohno, H. Unified disorder induced gap state model for insulator-semiconductor and metal-semiconductor interfaces. *J. Vac. Sci. Technol. B* **4**, 1130–1138.<https://doi.org/10.1116/1.583556> (1986).
- 6. Shen, P. C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. *Nature* **593**, 211–217. [https://doi](https://doi.org/10.1038/s41586-021-03472-9) [.org/10.1038/s41586-021-03472-9](https://doi.org/10.1038/s41586-021-03472-9) (2021).
- 7. Chou, A. S. et al. Antimony semimetal contact with enhanced thermal stability for high performance 2D electronics. *IEEE Int. Electron Device Meet.* 150–153. <https://doi.org/10.1109/IEDM19574.2021.9720608>(2021).
- 8. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. *Nature* **568**, 70–74.<https://doi.org/10.1038/s41586-019-1052-3> (2019).
- 9. Kwon, G. et al. Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. *Nat. Electron.* **5**, 241–247.<https://doi.org/10.1038/s41928-022-00746-6>(2022).
- 10. Jang, J. et al. Fermi-level pinning-free WSe₂ transistors via 2D Van der Waals metal contacts and their circuits. Adv. Mater. **34**, 2109899.<https://doi.org/10.1002/adma.202109899> (2022).
- 11. Zhao, B. et al. Van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe₂ as high performance contacts for WSe₂ transistors. *Nano Res.* **12**, 1683-1689. <https://doi.org/10.1007/s12274-019-2423-7>(2019).
- 12. Li, W. et al. Synthesis of 2D *α*-GeTe single crystals and *α*-GeTe/WSe₂ heterostructures with enhanced electronic performance. *Adv*. *Funct. Mater.* **32**, 2201673.<https://doi.org/10.1002/adfm.202201673> (2022).
- 13. Noé, P., Vallée, C., Hippert, F., Fillot, F. & Raty, J.-Y. Phase-change materials for non-volatile memory devices: From technological challenges to materials science issues. *Semicond. Sci. Technol.* **33**, 013002. <https://doi.org/10.1088/1361-6641/aa7c25>(2018).
- 14. Saito, Y. et al. Recent developments concerning the sputter growth of chalcogenide-based layered phase-change materials. *Mater. Sci. Semicond. Process* **135**, 106079. <https://doi.org/10.1016/j.mssp.2021.106079> (2021).
- 15. Chang, W. H. et al. Sb₂Te₃/MoS₂ Van der Waals junctions with high thermal stability and low contact resistance. *Adv. Electron. Mater.* **9**, 2201091.<https://doi.org/10.1002/aelm.202201091> (2023).
- 16. Kulbachinskii, V. A. et al. Valence-band changes in $\mathrm{Sb}_2\text{-In}_{x}$ Te_{3 and} Sb_2 Te_{3-y}Se_y by transport and Shubnikov-de Haas effect measurements. *Phys. Rev. B* **52**, 10915–10922. <https://doi.org/10.1103/physrevb.52.10915>(1995).
- 17. Horak, J., Drasar, C., Novotny, R., Karamazov, S. & Lostak, P. Non-stoichiometry of the crystal lattice of antimony telluride. *Phys. Status Solidi A* **149**, 549–556. <https://doi.org/10.1002/pssa.2211490205>(1995).
- 18. Ko, D. K., Kang, Y. & Murray, C. B. Enhanced thermopower via carrier energy filtering in solution-processable Pt-Sb₂Te₃ nanocomposites. *Nano Lett.* **11**, 2841–2844. <https://doi.org/10.1021/nl2012246> (2011).
- 19. Movva, H. C. P. et al. High-mobility holes in dual-gated WSe₂ field-effect transistors. *ACS Nano* **9**, 10402-10410. [https://doi.org/1](https://doi.org/10.1021/acsnano.5b04611) [0.1021/acsnano.5b04611](https://doi.org/10.1021/acsnano.5b04611) (2015).
- 20. Maxey, K. et al. 300 mm MOCVD 2D CMOS materials for more (Than) moore scaling. *Symp. VLSI Technol.* 419–420. [https://doi.](https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830457) [org/10.1109/VLSITechnologyandCir46769.2022.9830457](https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830457) (2022).
- 21. Hung, T. Y. T. et al. pMOSFET with CVD-grown 2D semiconductor channel enabled by ultra-thin and fab-compatible spacer doping. *IEEE Int. Electron. Device Meet.* 150–153. <https://doi.org/10.1109/IEDM45625.2022.10019321> (2022).
- 22. O'Brn, K. P. et al. Advancing 2D monolayer CMOS through contact channel and interface engineering. *IEEE Int. Electron. Device Meet.* 146–149. <https://doi.org/10.1109/IEDM19574.2021.9720651>(2021).
- 23. Choi, S. H. et al. Is chemical vapor deposition of monolayer WSe₂ comparable to other synthetic routes? *APL Mater*. **11**, 111124. <https://doi.org/10.1063/5.0175469> (2023).
- 24. Wang, X. et al. High-performance n-type transistors based on CVD-grown large-domain trilayer WSe₂. *APL Mater*. **9**, 071109. <https://doi.org/10.1063/5.0048983> (2021).
- 25. Liu, D. et al. Anisotropic layered Bi₂Te₃-In₂Te₃ composites: Control of interface density for tuning of thermoelectric properties. *Sci. Rep.* **7**, 43611.<https://doi.org/10.1038/srep43611> (2017).
- 26. Zhang, Z., Zhang, H., Wu, Y., Zeng, Z. & Hu, Z. Optimization of the thermopower of antimony telluride thin film by introducing tellurium nanoparticles. *Appl. Phys. A* **118**, 1043–1051.<https://doi.org/10.1007/s00339-014-8871-8>(2014).
- 27. Guo, Y. H., Wang, Z. F., Zhang, L. Z., Shen, X. D. & Liu, F. Thickness dependence of surface energy and contact angle of water droplets on ultrathin MoS2 films. *Phys. Chem. Chem. Phys.* **18**, 14449–14453.<https://doi.org/10.1039/C6CP00036C> (2016).
- 28. Kang, J., Tongay, S., Zhou, J., Li, J. & Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. *Appl. Phys. Lett.* **102**, 012111.<https://doi.org/10.1063/1.4774090> (2013).
- 29. Liu, W. et al. Role of metal contacts in designing high-performance monolayer n-type WSe₂ field effect transistors. *Nano Lett.* **13**, 1983–1990. <https://doi.org/10.1021/nl304777e>(2013).
- 30. Tonndorf, P. et al. Photoluminescence emission and Raman response of monolayer MoS₂, MoSe₂, and WSe₂. *Opt. Express* 21, 4908–4916. <https://doi.org/10.1364/OE.21.004908> (2013).
- 31. Sourisseau, C., Cruege, F. & Fouassier, M. Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2 . *Chem. Phys.* **150**, 281–293. [https://doi.org/10.1016/0301-0104\(91\)80136-6](https://doi.org/10.1016/0301-0104(91)80136-6) (1991).
- 32. Molina-Sánchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS₂ and WS₂. *Phys. Rev. B* **84**, 155413. [https://doi.org/10.](https://doi.org/10.1103/PhysRevB.84.155413) [1103/PhysRevB.84.155413](https://doi.org/10.1103/PhysRevB.84.155413) (2011).
- 33. Terrones, H. et al. New first order Raman-active modes in few layered transition metal dichalcogenides. *Sci. Rep.* **4**, 4215. [https://d](https://doi.org/10.1038/srep04215) [oi.org/10.1038/srep04215](https://doi.org/10.1038/srep04215) (2014).
- 34. Xu, J.-L. et al. Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers. *Sci. Rep.* **5**, 14856.<https://doi.org/10.1038/srep14856>(2015).
- 35. Yao, Z., Liu, J., Xu, K., Chow, E. K. C. & Zhu, W. Material synthesis and device aspects of monolayer tungsten diselenide. *Sci. Rep.* **8**, 5221. <https://doi.org/10.1038/s41598-018-23501-4> (2018).
- 36. α-Bi₂Te₃ (Bi₂Te₃) Crystal Structure: Datasheet from "PAULING FILE Multinaries Edition-2022" in SpringerMaterials ([https://mat](https://materials.springer.com/isp/crystallographic/docs/sd0543893) [erials.springer.com/isp/crystallographic/docs/sd0543893](https://materials.springer.com/isp/crystallographic/docs/sd0543893)).
- 37. 2H-WSe₂ (WSe₂ rt 2H) Crystal Structure: Datasheet from "PAULING FILE Multinaries Edition-2022" in SpringerMaterials [\(https:](https://materials.springer.com/isp/crystallographic/docs/sd0310430) [//materials.springer.com/isp/crystallographic/docs/sd0310430](https://materials.springer.com/isp/crystallographic/docs/sd0310430)).
- 38. Koma, A. Van der Waals epitaxy—A new epitaxial growth method for a highly lattice-mismatched system. *Thin Solid Films* **216**, 72–76. [https://doi.org/10.1016/0040-6090\(92\)90872-9](https://doi.org/10.1016/0040-6090(92)90872-9) (1992).
- 39. Wang, J.-J. et al. Layer-switching mechanisms in Sb2 Te3 . *Phys. Stat. Sol. (RRL)* **13**, 1900320.<https://doi.org/10.1002/pssr.201900320> (2019).
- 40. Wang, J. et al. Enhancing thermoelectric performance of Sb₂Te₃ through swapped bilayer defects. *Nano Energy* 79, 105484. [https:/](https://doi.org/10.1016/j.nanoen.2020.105484) [/doi.org/10.1016/j.nanoen.2020.105484](https://doi.org/10.1016/j.nanoen.2020.105484) (2021).
- 41. Yoshitake, M. & Yagyu, S. Work function for applications—How work function is determined, modified and applied for band alignment. *IEEJ Trans. EIS* **129**, 1169–1175.<https://doi.org/10.1541/ieejeiss.129.1169> (2009).
- 42. Irisawa, T. et al. CVD grown bilayer WSe₂/MoSe₂ heterostructures for high performance tunnel transistors. *Jpn. J. Appl. Phys.* **59**, SGGH05.<https://doi.org/10.7567/1347-4065/ab650d> (2020).
- 43. Wada, N. et al. Efficient and chiral electroluminescence from in-plane heterostructure of transition metal dichalcogenide monolayers. *Adv. Funct. Mater.* **32**, 2203602.<https://doi.org/10.1002/adfm.202203602> (2022).
- 44. Li, S. et al. Halide-assisted atmospheric pressure growth of large WSe₂ and WS₂ monolayer crystals. *Appl. Mater. Today* **1**, 60–66. <https://doi.org/10.1016/j.apmt.2015.09.001> (2015).
- 45. Saito, Y. et al. Compositional tuning in sputter-grown highly-oriented Bi–Te films and their optical and electronic stuctures. *Nanoscale* **9**, 15115–15121. <https://doi.org/10.1039/C7NR04709F>(2017).

Acknowledgements

This work is supported by JST-MIRAI (JPMJMI22708192), JST FOREST Program (JPMJFR213X), JST-CREST (JPMJCR23A4), NICT (05901), and Kakenhi Grants-in-Aid (JP21H05232, JP21H05234, JP22H04957) from the Japan Society for the Promotion of Science (JSPS).

Author contributions

T. I. supervised the overall project. T. I., W. H. C., and N. O. planned and conceived the research and experiment. S. H. and Y. S. contributed to the Bi₂Te₃ deposition and XRD analysis. T. E. and Y. M. contributed to the WSe₂ CVD growth. W. H. C. contributed to the device fabrication, electrical properties measurement, KPFM measurement and data analysis. The manuscript was written by W. H. C., S. H., Y. S., and T. I. with discussion and inputs from all authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at [https://doi.org/1](https://doi.org/10.1038/s41598-024-79750-z) [0.1038/s41598-024-79750-z](https://doi.org/10.1038/s41598-024-79750-z).

Correspondence and requests for materials should be addressed to W.H.C. or Y.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit [http://creativecommo](http://creativecommons.org/licenses/by-nc-nd/4.0/) [ns.org/licenses/by-nc-nd/4.0/.](http://creativecommons.org/licenses/by-nc-nd/4.0/)

© The Author(s) 2024