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Effect of adaptive cruise control on fuel
consumption in real-world driving
conditions

Ayman Moawad 1 , Matthew Zebiak2,3, Jihun Han1, Dominik Karbowski1,
Yaozhong Zhang1 & Aymeric Rousseau1

This paper presents a comprehensive analysis of the impact of adaptive cruise
control on energy consumption in real-world driving conditions based on a
natural experiment: a large-scale observational dataset of driving data from a
diverse fleet of vehicles and drivers. The analysis is conducted at two different
fidelity levels: (1) a macroscopic trip-level benefit estimate that compares trips
with and without cruise control in a counterfactual way using statistical
methods, and (2) a situation-based comparison achieved through the seg-
mentation of trips into distinct driving situations such as acceleration, braking,
cruising, and othermaneuvers. The results of this research show that the effect
of cruise control on energy consumption varies across different driving
situations and levels of analysis. In a macroscopic trip-level analysis, cruise
control engagement is associated with a slight increase in fuel consumption
across thefleet. As revealed later by the situation-based analysis, this result can
be attributed to the negative impact of cruise control on energy consumption
in cruising mode, which is the most common driving situation. However, the
situation-based comparison demonstrates that cruise control can provide fuel
consumption benefits in situations involving acceleration and braking, parti-
cularly when a preceding vehicle is present. The study also emphasizes the
importance of controlling for various factors that can influence both fuel
consumption and the likelihood of cruise control engagement to properly
evaluate its effects.

Adaptive cruise control (ACC) has emerged as a promising technology
in the realm of advanced driver assistance systems (ADAS) and has the
potential to improve driving safety, enhance driver comfort, and
reduce energy consumption. ACC automatically adjusts the speed of a
vehicle to maintain a safe distance from the vehicle ahead. Nowadays,
nearly all major automotive manufacturers offer ACC on their new
vehicle models, however the impact of this technology on vehicle
energy consumption has sparked debate.

Despite the growing body of research on the topic, there is still a
need for further investigation using real-world driving data to better

understand the real-world energy impact of ACC. Most studies per-
formed to date have relied on limited datasets or simulation environ-
ments, which may not capture the full range of driving conditions,
vehicle types, and driver behaviors that affect ACC performance and
energy consumption in real-world scenarios.

Formanydecades, automakers couldonly improve vehicle energy
efficiency by attacking physical sources of energy loss in a vehicle -
aerodynamic drag, tire rolling resistance, engine friction, inertial losses
due tomass, etc. In thepast 20–30years, theproliferationof electronic
control systems and electrically controlled actuators in engines,
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transmissions, electric drivemotors, andbatteries hasmade significant
optimization and loss reduction within propulsion systems possible
through better software and control strategies.

However, energy efficiency in the real world is determined as
much or more by driver behavior as by a manufacturer’s engineering
decisions. Anecdotally, it is possible for two drivers (e.g., a parent and
teenage child) to achieve vastly different performance levels in fuel
economy, despite driving the exact same vehicle on similar routes.
Thus, marginal improvements in baseline vehicle efficiency could be
easily outweighed by the inefficient habits of a particular driver.

Until very recently, automakers have had virtually no control over
how their vehicles are driven by end users, and thus, they have had
limited control of their products’ use-phase energy efficiency. Auto-
mated driving technologies present the first opportunity to date for
automakers to exercise a greater degree of control over the use-phase
emissions of their products. In fact, this opportunity is actively grow-
ing; recent usage rates show that the share of distance driven using
automated systems has increased significantly as systems have
become capable of operating without interruption in more types of
road and traffic environments.

This opportunity is the central motivation for examining the
spectrum of human driving habits, as well as the capabilities and
typical behaviors of today’s automated driving systems. In under-
standing the relative strengths and weaknesses of the two populations
(humans and automated driving systems), we can better inform the
development of next-generation automated driving systems to deliver
vastly improved efficiency.

Initial studies investigating the impact of ACC systems on energy
consumption and efficiency showed promising results.1 and2

explored early research advances in adaptive cruise control, shed-
ding light on its potential energy-saving benefits. More recent
research has primarily focused on simulation studies3 and test-track
experiments4. The energy impact of ACC and other automated
driving technologies has typically been analyzed in free-flow or car-
following modes, often using artificially constructed scenarios and
relying on the questionable capabilities of common models to pro-
duce realistic vehicle dynamics and/or driving behavior5. For
instance6, conducted a microsimulation study with a scenario-based
approach, offering insights into the impact of automated vehicles on
highway network emissions.

In general, the results have been mixed, depending on factors
such as the tools employed, the methodology, the underlying control
mechanisms, and the implementation7,8. For example9, demonstrated
in a meta-analysis of ACC’s environmental impacts that the outcomes
were highly sensitive to time gap settings, and various ACC control
strategies that influence the results have also been identified10,11

emphasized the importance of critically reviewingmodel assumptions
and their practical applicability. Efforts to compare results and draw
general conclusions from existing literature are challenging due to the
differences in terminology, assumptions, scenarios, and evaluation
criteria across studies. Simulation-based results are heavily dependent
on internal models and assumptions, often focusing on theoretical
potential in ideal conditions rather than on practical impacts. Experi-
mental studies are potentially able to produce more reliable conclu-
sions, but require more resources and offer more limited scope for
generalizations. Experiments can also be prone to behavioral bias,
where the participants change their behavior because they are aware
that they are participating in a study. On this point, this particular
study is able to avoid this bias because the data was collected in the
background as part of GM’s normal course of business, and the drivers
did not have awareness of any studies that would make use of the
driving data.

Moreover12, highlighted in a systematic review the existing
knowledge gap regarding interactions between human-driven and
non-connected automated vehicles. Accurately representing these

interactions in traffic models is challenging and can affect the results
when assessing energy impacts.

The use of real-world driving data to analyze ACC systems’ effects
on energy consumption has becomemore prevalent and sophisticated
in recent years. However, the literature on this topic remains limited.
Despite advances in on-board measuring and high-performance com-
puting, acquiring comprehensive data remains challenging.13 notes the
growing prevalence of ACC systems in modern commercial vehicles
but highlights the lackof information on their operationand impacton
traffic dynamics. They propose a unified data structure for easier
comparison across various tests, vehicles, and systems. The complete
dataset is published as an open-access database called OpenACC,
which is planned to evolve asmore tests are conducted. This project is
at attempt to engage the scientific community in understanding ACC
vehicles’ properties and potential impacts on traffic flow and energy
consumption, identifying key differences between ACC systems and
human drivers, and helping design new ACC car-following models for
traffic microsimulation.

Specifically, studies like14 investigate the energy impact of ACC in
real-world highway scenarios by comparing ACC driving behavior to
human drivers. The research discovered that ACC followers con-
tributed to string instability and had tractive energy consumption 2.7%
–20.5% higher than human drivers individually and 11.2% –17.3% higher
on a platoon level.4 also examines the impact of ACC systems on traffic
flow, energy consumption, and safety in real-world driving conditions
through the testing of 10ACC-equipped vehicles fromdifferent brands
and powertrains at low speeds in various configurations. This study
confirmed previous findings regarding the string instability of ACC
systems, suggesting that their current form may lead to increased
energy consumption. However, other researchers such as15 found in a
field test data evaluation that the fuel consumption rate for vehicles in
ACCmode was about 5%–7% lower than for vehicles in non-ACCmode
when traveling in similar conditions.

Despite the scarcity of literature and lack of consensus on the
impact of ACC systems on energy consumption, particularly those
utilizing real-world driving data, it is clear that the energy-saving
potential of ACC systems can vary depending on factors such as traffic
conditions, specific algorithms, driving conditions, vehicle type, and
driver behavior. Further research is necessary to fully understand the
potential energy savings and drawbacks of ACC in different driving
scenarios, particularly on a larger scale and at a fleet level.

In this study, we extend the existing body of researchby analyzing
a large and diverse dataset of real-world driving data collected from a
fleet of General Motors (GM) vehicles and drivers in the United States.
Our dataset includes powertrain data, sensor and ADAS data, and GPS
data at 1-Hz resolution, providing a rich anddetailed account of vehicle
performance, driving conditions, and ACC usage. This time-series data
is augmented with (1) encrypted driver logs in order to uniquely
identify drivers, (2) decoders to extract detailed vehicle information
fromVINs, and (3)mapmatching capabilities viaHEREMaps to retrieve
the surroundingdriving environment and route-level information. This
large observational study allows us to gain valuable insights into the
real-world energy impact of ACC across a wide range of scenarios.
Understanding the impact of ACC on energy consumption on a large
scale and in a real-world setting can inform the development of future
vehicle technologies that further improve fuel efficiency and reduce
emissions, create better automated driving controls, and allow for the
study of trade-offs between safety and efficiency.

The remainder of this paper is organized as follows: First, we
present the results of our data analysis, and discuss our findings at two
different levels: a macroscopic, trip-level analysis in which the results
show ACC’s effect on energy use over the entirety of the fleet; and a
more granular, situation-based analysis that segments trips for a
higher-resolution understanding of ACC impact. We then present a
discussion of the results, their implications, and their limitations, and
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suggest directions for future research. Before concluding,wedetail the
methods used in the study.

Results
In this observational study, we investigated the treatment effect of
engaging ACC on vehicle fuel consumption while controlling for
potential confounding factors. The primary objective was to deter-
mine whether the engagement of ACC resulted in a significant differ-
ence in fuel consumption.

We examined the factors influencing vehicle fuel consumption in
L/100 km using a linear mixed effect model, as a statistical modeling
technique that allows for the analysis of hierarchical and clustered
data.Model details can be found in theMethods section. An analysis of
the results in Table 1 reveals several significant relationships between
the fixed effects and fuel consumption.

First, we observed a strong positive relationship between inverse
average vehicle speed and fuel consumption.Herewenote that inverse
average vehicle speed is transformed as 60 times the inverse of speed,
so that units are inmin/km. Specifically, a 1-unit increase in this variable
was associated with an increase of 4.069 units in FC (t = 35.619). This
can be interpreted as every additional min spent on a km (decrease in
trip speed) increases the FC by roughly an additional 4 L/100 km. This
finding confirms previous statements that lower average trip speeds
contribute to increased FC.

Additionally, we find other significant and insightful associations
between other covariates and fuel consumption. Specifically, we note
that elevation change exhibits a small positive association with FC. An

increase in elevation increases FC by +0.6 L/100 km for every added
100 m over the trip.

Also, we found a significant negative association between engine
temperature and FC. Every 10-degree increase in engine temperature is
linked to a decrease of 0.4 L/100 km in FC (t = −50.737). This result
implies that higher engine temperatures are associated with lower fuel
consumption due to improved engine efficiency at optimal operating
temperatures.

We noticed that ambient temperature is not a statistically sig-
nificant factor (t = 0.667) for fuel consumption change. This result
indicates that higher ambient temperatures could marginally con-
tribute to increased FC. Ambient temperature has a secondary effect
on fuel consumption when engine temperature is controlled, as the
latter has a more direct impact on FC.

The inverse distance covered showed a substantial positive rela-
tionship to FC. For each additional unit of inverse distance covered,
fuel consumption increased by 6.1544 units (t = 65.713). This finding
highlights the intuitive fact that as the distance traveled increases, FC
usually improves (shorter trips generally exhibit higher fuel con-
sumption due to the impact of cold start penalty, for example).

Also, it appears that a 1-unit increase in maximum vehicle speed
corresponded to a 0.0513-unit increase in FC (t = 89.367). Provided
everything else remains constant, this result suggests that vehicles
reaching higher maximum speeds during a trip may consume more
fuel. Similarly, trip level acceleration energy was another significant
predictor of fuel consumption. A 1-unit increase in vehicle acceleration
energy was associated with a 4.5827-unit increase in FC (t = 102.702).
This result emphasizes that vehicles with higher acceleration energy
levels at trip level are likely to consume more fuel.

Finally, our analysis revealed a significant (t = 3.793) treatment
effect of engaging adaptive cruise control on fuel consumption.
After controlling for the other variables in the model, we found that
when the adaptive cruise control was engaged, fuel consumption
increased by 0.26 L/100 km compared to when it was not engaged
(t = 3.793). This result indicates that at the fleet level, the use of
adaptive cruise control may lead to a slight increase in FC. All else
being equal, ACC engagement has a negative impact on fuel con-
sumption (on average, i.e., across all vehicles, drivers, speeds, etc.),
with an FC increase of 0.26 L/100 km. We observed that the average
FC across the fleet was 14.7 L/100 km; by tying back this number we
can conclude from this result that ACC may present about 2% FC
penalty on the fleet.

Interaction terms
In this section we focus on including an interaction termbetween ACC
usage and average trip speed. Althoughwe observed a +0.26 L/100 km
penalty on average across all trips, we can further investigate the ACC
effect on fuel consumption as a function of trip speed to better
understand the results. In that case, theATEof ACConFCwe are trying
to extract depends on and may vary with the different trip speed
profiles:

τi = Y ið1Þ � Y ið0Þ
=β2ðACC engaged catTRUEÞ
+β9ðACC engaged catTRUEÞðveh spd meanIÞ

ð1Þ

where τi represents the average treatment effect of ACC on fuel con-
sumption for the ith trip, Yi(1) represents the fuel consumption with
ACC engaged, and Yi(0) represents the fuel consumption without ACC
engaged. β2 captures the treatment effect of engaging adaptive cruise
control, and β9 is the introduction of an additional coefficient for the
cross interaction term. The βs are new estimates from the results of a
fitted model that includes interactions, with β2 = 4.96 (t = 14.96) and
β9 = − 3.91 (t = −10.71). Solving for a negative treatment effect on trip

Table 1 | Linear mixed effect model estimates of the effect of
adaptive cruise control engagement and other covariates on
fuel consumption at the trip level

Dependent variable
FuelCons p-value

Inverse Avg Speed (km/h)−1 4.069*** <2e−16

(veh_spd_meanI) (0.114)

ACC Engagement 0.260*** 0.000438

(ACC_engaged_cat) (0.068)

Max Vehicle Speed 0.051*** <2e−16

(veh_spd_max) (0.001)

Inverse Trip Distance (1/km) 6.154*** <2e−16

(dist_covered_kmI) (0.094)

Trip Acceleration Energy 4.583*** <2e−16

(veh_accel_nrg) (0.045)

Trip Elevation Change 0.006*** <2e−16

(elev_delta) (0.0001)

Avg. Ambient Temperature 0.001 0.504531

(amb_temp) (0.001)

Avg. Engine Temperature − 0.040*** <2e−16

(eng_temp) (0.001)

Constant 3.543*** <2e−16

(0.205)

Observations 40,507

Log Likelihood − 78,939.110

Akaike Inf. Crit. 157,912.200

Bayesian Inf. Crit. 158,058.600

Note: 7D3*p < 0.1, **p < 0.05, ***p < 0.01.
The main numbers represent the estimated effects evaluated using t-tests based on Sat-
terthwaite’s method; numbers in parentheses represent the standard errors, and reported
p-values are two-sided based. Included are also measures of model fit and quality, and
significance levels are denoted by *p < 0.1 (90% confidence), **p < 0.05 (95% confidence),
***p < 0.01 (99% confidence).
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mean vehicle speed �v when ACC is engaged leads to the following:

β2 +β9 × 1=�v<0 ) �v <0:79 ð2Þ

In this case, we find that the ATE of ACC on FC depends on a trip speed
threshold of 0.79 km/min → ≈ 50 km/h; trips with lower average
speeds see fuel consumption benefits from engaging ACC.

Further analysis (see Fig. 1) revealed that trips that average less
than 50 km/h represent trips with the following characteristics:

– Higher functional class trips ( > 2.5 means trips that are mainly
local/non-highway). Functional class is a road type indicator,
reflecting traffic speed and volume, as well as the importance and
connectivity of the road.
– Maximum speed < 90–100 km/h.

Our analysis here reveals that the effect of ACC on fuel con-
sumption varies with average trip speed. While ACC engagement
generally results in a slight increase in fuel consumption (+0.26 L/100
km), it tends to be more fuel-efficient at lower speeds, particularly
below 50 km/h. This indicates that ACC systems can provide fuel
consumption benefits in urban and suburban driving conditions.
However, at higher speeds, the rigid speed maintenance of ACC leads
to increased fuel consumption compared to human drivers. This
interaction between ACC engagement and trip speed underscores the
importance of considering different driving conditions when evaluat-
ing the energy impact of ACC systems. Additionally, these benefits are
limited to a smaller number of trip profiles, which connects with the
overall negative impact that was noted previously.

Situation-level analysis
The macro-level evidence presented above demonstrates that real-
world use of ACC is overall not beneficial for trip-level fuel consump-
tion. Furthermore,whenbenefits are present, they appear to be limited

to certain trip conditions. A lower level analysis is needed to reinforce
these findings and provide more granular explanations for ACC’s
impact on FC in distinct road and traffic conditions.

On a given trip, vehicle speed changes tend to be caused by cer-
tain external factors, under specific situations due to road events.
Examples of these situations include braking, stopping, and accel-
erating due to red lights or stop signs, cruising for a while, braking and
accelerating due to red lights or sudden lane changes by a preceding
vehicle, and so on. Isolating those events by segmenting a given trip
into specific situations allows us to obtain more targeted ACC benefit
estimates for specificmaneuvers, improvingour overall understanding
of the system and providing a more nuanced analysis.

Various situations occur in the driving of each trip. Figure 2 shows
an example of a composite drive cycle (in this case, the EPA HWFE

Fig. 1 | Relationship between trip speed and trip topology by looking at average trip functional class structure.

Fig. 2 | Example of trip situation segmentation using the standard U.S. Envir-
onmental Protection Agency highway drive cycle. (Crs = Cruise, BSnA = Brake,
Stop & Accelerate, BnA = Brake & Accelerate, A = Accelerate, B = Brake, Crp
= Creep).
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cycle), after it has been run through our situation segmentation algo-
rithm and broken up into distinct maneuvers. More details on the
algorithm can be found in16.

The algorithm enables situation-level and driving-level processing
of the trips for the purpose of trip segmentation. By leveraging signals
such as time, speed, yaw rate, position, acceleration, brake pedal
position and accelerator pedal position, relative distance and speed
with respect to the preceding vehicle, aswell as ACC status,modes and
settings, we can detect distinct situations within trips.We identified six
different important situations, which we define as follows:

• Cruise (Crs): Maintain speed with little variation.
• Brake and Accelerate (BnA):

– Brake and accelerate again without stopping.
– Due to traffic lights, turns, roundabouts, etc.

• Brake, Stop, and Accelerate (BSnA):

– Brake, stop completely, and accelerate again.
– Due to traffic lights, stop signs, etc.

• Acceleration (A): Accelerate due to speed limit increase.
• Braking (B): Brake due to speed limit decrease.
• Creeping (Crp): Move forward at very low speed with some stops.

Figure 3 provides an illustration of the situations detected over a
given trip. For added nuance, situations involving braking can be fur-
ther split into brake events with and without turning, and, more
importantly, situations in which the driver is aware of the preceding
vehicle’s status. In fact, it is also relevant to separate situationswith and
without the presence of a preceding vehicle.

Situation-level results
In Fig. 4 we show the distribution of detected driving situations over
trips, as well as the distribution of ACC usage over these maneuvers.
The figure shows that the most common driving situation is cruising
mode, accounting for 50% of driving time. BnA and BSnA are observed
with almost equal frequency in the dataset. The creeping situation is
seldomdetected by the algorithm.We also note that, as expected, ACC
is predominantly used in cruising mode.

It is important to note that situation segmentation enhances the
resolution of our analysis and yields a larger number of data points.
Consequently, we observe a significant increase in the number of
situations generated during a trip. This increased sample size ulti-
mately leads to better model coefficient estimates, asymptotic statis-
tical efficiency, and consistency.

For our analysis, we employ a linearmixed-effect model similar in
structure to the one used in the macroscopic study, with some mod-
ifications to the variable selection design. In the earlier trip-level ana-
lysis, we controlled for acceleration energy to normalize the trip. This
was acceptable at a macroscopic level, but with shorter and more
stable segments, we need to ensure that we do not double count the
effect of aggressiveness on FC in relation to ACC. To do this, we
introduce four newvariables tomake situation segmentsmore directly
comparable: average speed, entry and exit speeds over the segment,
and minimum and maximum speeds during the segment. We also
account for variability in thermal conditions, such as engine and
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ambient temperature, as well as changes in elevation and segment
distance.

Table 2 reveals several interesting findings (due to the small
sample size, the Crp situation data were deemed unreliable and have
been excluded from the analysis):

– As elevation increases over a segment, FC also increases. This
effect is most pronounced in acceleration situations and less so in
BSnA and BnA situations. In cruising mode, a change in elevation
has one-tenth the effect. Specifically, for every meter of change in
elevation, FC is penalized by +0.37 L/100 km if the vehicle is in
strong acceleration mode but only +0.037 L/100 km when
cruising.

–Higher engine temperatures primarily benefit BSnAmodes, with a
decrease in FC of −0.12 L/100 km. In BnA situations, the benefit is
slightly lower at −0.084 L/100 km. This is likely due to the absence
of idling events (no stop), since engine temperature is a dominant
factor in idle fuel rates. In cruisingmode, the impact is smaller, with
a decrease of only −0.05 L/100 km.
– The effect of ACC on fuel consumption varies depending on the
situation. In cruising segments, the engagement of ACC results in a
slight increase in FC (+0.14 L/100 km). In braking situations, the
penalty that ACC offers is less clear (+0.334 L/100 km); however, we
hypothesize that human drivers are better able to leverage coasting
before an actual brake event, which may lead to efficiency benefits

Table 2 | Linearmixed effectmodel estimates of the effect of adaptive cruise control engagement and other covariates on fuel
consumption across six predefined situations

Dependent variable: Fuel Consumption

(1) (2) (3) (4) (5) (6)
Cruise Brake, Stop & Accelerate Brake & Accelerate Accelerate Brake Creep

Inverse Avg Speed (km/h)−1 5.594*** 2.956*** 2.035*** 4.082*** 3.406*** 2.931***

(0.152) (0.121) (0.190) (0.216) (0.125) (0.127)

[<2e−16] [<2e−16] [9.27e−15] [<2e−16] [<2e−16] [<2e−16]

ACC Engagement 0.142*** − 0.316*** −0.278*** −0.714*** 0.334*** −1.175

(0.017) (0.060) (0.026) (0.089) (0.037) (1.599)

[<2e−16] [1.21e−07] [<2e−16] [8.28e−16] [<2e−16] [0.4629]

Inverse Trip Distance (1/km) 0.314*** 2.880*** 2.459*** 2.777*** − 0.179*** 0.460**

(0.003) (0.014) (0.007) (0.018) (0.008) (0.189)

[<2e−16] [<2e−16] [<2e−16] [<2e−16] [<2e−16] [0.0152]

Starting Vehicle Speed
(km/h)

−0.129*** −0.137*** −0.117*** 0.533*** −1.401*** −0.161**

(0.001) (0.001) (0.001) (0.040) (0.052) (0.065)

[<2e−16] [<2e−16] [<2e−16] [<2e−16] [<2e−16] [0.0136]

Ending Vehicle Speed
(km/h)

0.151*** 0.248*** 0.234*** − 1.519*** 0.588*** 0.081

(0.001) (0.001) (0.001) (0.084) (0.015) (0.062)

[<2e−16] [<2e−16] [<2e−16] [<2e−16] [<2e−16] [0.1898]

Min Vehicle Speed (km/h) −0.059*** 0.072 −0.114*** −0.739*** −0.567***

(0.002) (0.274) (0.0005) (0.040) (0.015)

[<2e−16] [0.7916] [<2e−16] [<2e−16] [<2e−16]

Max Vehicle Speed (km/h) 0.127*** 0.125*** 0.084*** 1.891*** 1.381*** 0.007

(0.002) (0.002) (0.001) (0.083) (0.052) (0.110)

[<2e−16] [<2e−16] [<2e−16] [<2e−16] [<2e−16] [0.9463]

Trip Elevation Change 0.037*** 0.300*** 0.240*** 0.370*** 0.264*** 0.196**

(0.0003) (0.003) (0.001) (0.004) (0.002) (0.085)

[<2e−16] [<2e−16] [<2e−16] [<2e−16] [<2e−16] [0.0212]

Avg. Ambient Temperature − 0.009*** 0.093*** 0.022*** 0.036*** 0.009*** 0.333***

(0.001) (0.002) (0.001) (0.003) (0.001) (0.039)

[<2e−16] [<2e−16] [<2e−16] [<2e−16] [1.14e−09] [<2e−16]

Avg. Engine Temperature − 0.050*** − 0.123*** − 0.084*** − 0.108*** − 0.028*** − 0.353***

(0.0005) (0.001) (0.001) (0.001) (0.001) (0.036)

[<2e−16] [<2e−16] [<2e−16] [<2e−16] [<2e−16] [<2e−16]

Constant 0.294* −0.890** 2.265*** −5.405*** 4.575*** 37.389***

(0.162) (0.348) (0.218) (0.440) (0.162) (4.355)

[0.0735] [0.0118] [<2e−16] [<2e−16] [<2e−16] [<2e−16]

Observations 283,589 126,871 249,879 38,730 79,775 961

Log Likelihood −710,619.700 −406,352.400 −698,783.900 −118,174.300 −210,477.500 −3,847.556

Akaike Inf. Crit. 1,421,271.000 812,736.700 1,397,600.000 236,380.600 420,986.900 7725.111

Bayesian Inf. Crit. 1,421,440.000 812,892.800 1,397,767.000 236,517.600 421,135.500 7798.131

Note: 7D3*p < 0.1, **p < 0.05, ***p < 0.01.
Themain numbers in bold represent the estimated effects evaluated using t-tests based on Satterthwaite’smethod; numbers in parentheses represent the standard errors, and included in brackets
are two-sided based p-values.
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as the nominal fuel consumption of a deceleration event is spread
over a greater distance traveled. Furthermore, some human drivers
might utilize multi-anticipation, reacting to more than one vehicle
ahead17.
– Engaging ACC for acceleration-involved situations (such as BSnA,
BnA, and A) seems to provide advantageous FC benefits. This is
because the positive impact of ACC on FC during pure acceleration
outweighs the negative impact observed during braking.

Supplementary Table 1 presents results with an additional layer of
detail that differentiates maneuvers based on the presence or absence
of a preceding vehicle. In all situations where no preceding vehicle is
present during the segment, engaging ACC appears to increase FC.
Conversely, when a vehicle is present, the engagement of ACC can
provide some benefits, with the exception of braking situations. This
can be calculated by combining ACC_engaged_cat and veh_a-
head_cat along with their interaction term coefficient. The negative
interaction term in all situations (except braking) suggests that ACC is
advantageous when engaged in the presence of a preceding vehicle. It
is important to note that the number of data points is significantly
reduced in this design, leading to marginally statistically significant
estimates in some cases.

Discussion
This research has investigated the impact of adaptive cruise control on
fuel consumption, shedding light on how this technology can affect
driving efficiency. Our findings contribute to the growing body of lit-
erature on the subject, which includes several studies that have ana-
lyzed the impacts of ACC and other advanced driver assistance
systems on fuel efficiency and emissions.

In examining the segmented results in Supplementary Table 1, we
find that certain maneuvers (BnA, BSnA, A) are better executed by
automated driving systems, while others (Crs, B) are better executed
by humans. The automated driving system’s efficiency is also drama-
tically affected by the presence or absence of another vehicle ahead. In
focusing on the dynamics of these individualmaneuvers, we can assess
the underlying causes of the efficiency discrepancies and theoretically
design an automated system that can outperform humans in all types
of driving maneuvers and road conditions.

Open-road cruising
According to Table 2, we observe a 0.14 L/100 km fuel consumption
penalty for engaging adaptive cruise control in cruising situations. At
first, the fact that current cruise control systems are less efficient on
average than human drivers in “cruising” maneuvers may seem
counter-intuitive. However, closer inspection of a typical cruising
scenario illuminates the reasons for the relative shortfall of automated
driving systems and presents opportunities for future improvement.

First18, asserts that “in today’s cruise control systems, substantial
energy is wasted by rigidly controlling to a single set speed regardless
of the terrain or road conditions, [and] significant improvements in
fuel economy and EV range can be achieved by relaxing the require-
ment that cruise control maintain a single constant speed at all times.”
We hypothesize that human drivers benefit from more flexibility
compared to automated systemswhile in a cruisingmode—that is, they
tend to hold relatively constant pedal position and allow vehicle speed
to vary slightly (often without noticing), particularly over changing
terrain and in open-road conditions where traffic is not a significant
concern. This allows for more steady-state operation, which is parti-
cularly advantageous in ICE applications that can experience step
changes in efficiency (e.g., powertrain downshifts, engine operating
mode changes) as a result of small changes in vehicle load.

The mechanisms for improving efficiency through flexibility in
cruise control were explored in detail in ref. 18. In this experimental
study, a modified cruise control system was designed to let its speed

vary within defined limits ( ± 8 km/h) in response to changing road
grades. This modified cruise control was tested back-to-back against
standard cruise control on a grade schedule (taken from US-23 in
Michigan) programmed into a dynamometer at the GM Proving
Grounds. The study found that the modified cruise control uniformly
achieved higher fuel economy than standard cruise control on all
tested vehicles, by an average of 3.5% for the gasoline vehicle, 3.9% for
the diesel vehicle, and 3.8% for the electric vehicle. It achieved these
gains primarily by limiting engine braking on declines, limiting pow-
ertrain downshifts on inclines, and reducing overall tractive power
requirements on inclines by around 15% by capping engine torque
increases and allowing vehicle speed to drop temporarily. As auto-
mated driving systems evolve from simplistic cruise control to Level 2/
3+ autonomy, there is evidence that human occupants are more tol-
erant of the system changing the cruising speed without human input.
Therefore, future automated driving systems should fully capitalize on
this flexibility that is deemed acceptable by passengers to achieve
gains in energy efficiency.

We plan to conduct further investigations to support and explain
the underlying mechanisms. Specifically, we are undertaking two stu-
dies: one analyzing the energy-saving benefits of ACC against different
driver profiles, and another leveraging machine learning methods to
model the relationship of vehicle dynamics to energy consumption
with and without ACC at a microscopic level (second-by-second ana-
lysis). These studies will enhance our understanding of the efficiency
improvements and provide more evidence for the hypotheses dis-
cussed in this paper.

Dynamic maneuvers and driving with vehicles ahead
Supplementary Table 1 expands on the results of Table 2 by including
the presenceof a vehicle ahead as an interaction term. Introducing this
new factor results in some notable changes in the effects of ACC
engagement on fuel consumption. We now see fuel consumption
penalties for engaging adaptive cruise in all studied maneuvers (no
vehicle ahead), whereas Table 2 showed some benefits for more
dynamicmaneuvers such as BnA and BSnA. However, in examining the
ACC engaged effect only in cases where there is a vehicle ahead (by
accounting for the interaction term), we observe fuel consumption
benefits, though some maneuvers do not have statistically significant
main effects (e.g., ACC system braking event with no vehicle ahead is
not part of the technology). In other words, while ACC is less efficient
than humans on average in the examined dataset, it is more efficient
than humans on average when it is following another vehicle. This is a
significant finding, and one that refines our understanding of the
mechanisms of energy savings in automated driving. Our hypotheses
regarding the differences in ACC impact on FC in open-road vs. fol-
lowing conditions are as follows.

Cruising with vehicles ahead
In cruising maneuvers, open-road ACC suffers efficiency penalties
(+0.14 L/100 km) as a result of its rigid control to a single set speed at
all times. However, in the presence of a vehicle ahead, ACC allows
vehicle speed to drop below the driver’s set speed in order tomaintain
a comfortable following distance to the vehicle ahead. Therefore, in
cases where human-driven vehicles ahead may naturally slow down
due to inclines or other external factors, a vehicle with ACC will cor-
respondingly slow down to maintain an appropriate following dis-
tance. In effect, the system temporarily mimics the more efficient
behavior of the human driver ahead, and claims the associated effi-
ciency benefits. On the other hand, a vehicle with ACC does not
experience a symmetric FC penalty in cases where a human driver
ahead is less efficient than ACC (e.g., surpassing the driver’s set speed)
since it is not permitted to exceed its set speed.

We assert that this asymmetric opportunity for efficiency
improvement is the core driver of ACC’s energy savings while cruising
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in the presenceof a vehicle ahead—the systemmatches the behavior of
efficient human drivers ahead and collects the associated savings, but
does not match the behavior of less efficient drivers ahead and thus
avoids the associated penalties.

Dynamic maneuvers (BnA, BSnA)
In BnA/BSnAmaneuvers, which are common in dense traffic (including
stop-and-go scenarios), we assert that there is a similarly asymmetric
opportunity to improve efficiency through both flexible speeds and
flexible acceleration rates. Open-road ACC has predefined calibrations
that determine how the vehicle accelerates/decelerates in response to
changes in set speed or initial engagement of ACC. Typically, these
calibrations are set fairly aggressively, so that the vehicle achieves the
driver’s requested set speed as quickly as possible. Even with these
fairly aggressive calibrations, ACC engagement results in an average
−0.3 L/100 km impact to fuel consumption across the entire dataset.
When there is a vehicle ahead, ACC is able to reduce fuel consumption
even further in BnA and BSnA maneuvers. This is because ACC cannot
ever accelerate any more aggressively than the open-road calibration
limit even when a human driver ahead is particularly aggressive, but it
has the opportunity to accelerate much more efficiently when fol-
lowing an efficient driver. This asymmetry results in a net savings in
these maneuvers, when automated driving systems follow a suffi-
ciently large number of distinct drivers with different behaviors.

Strict acceleration maneuvers
Table 2 and Supplementary Table 1 show that ACC engagement during
strict accelerationmaneuvers leads to a reduction in fuel consumption
of −0.71 L/100 km. We contend that these savings arise from a cali-
brated limit of allowed acceleration while ACC is engaged. While
human drivers are able to command up to the full capability of the
engine during an acceleration maneuver (and incur massive fuel con-
sumption penalties for doing so), ACC is limited to a maximum
acceleration value that is much lower than the vehicle’s full capability,
even in open-road conditions. The data supports this point — the
maximum acceleration observed in the dataset is 7.5m/s2 for ACC, just
about half of the 14.7 m/s2 maximum for human drivers. Likewise, the
median positive commanded acceleration is 0.187 m/s2 for ACC com-
pared to 0.316 m/s2 for human drivers (41% lower while in ACC). If we
focus only on events where ACC is following a vehicle ahead, FC sav-
ings in accelerationmaneuvers are significantly greater. This is another
result of the asymmetric upside potential discussed in the previous
section; ACC benefits from following efficient drivers, but incurs no
penalty relative to open-road ACC for following inefficient drivers.

Strict braking maneuvers
Table 2 and Supplementary Table 1 show that ACC engagement during
strict braking maneuvers leads to an increase in fuel consumption,
+0.33 L/100 km. In these maneuvers, we hypothesize that this FC
penalty is largely a result of ACC’s high deceleration rates. These rates
are intentionally set high bymanufacturers because the downside risks
of insufficient deceleration in cruise are severe. However, there is some
opportunity tomake these default deceleration rates less conservative
(and thereby, more efficient) in future systems as sensing capabilities
and control systems improve.

In open-road conditions, deceleration events can only be trig-
gered by a decrease in the driver’s requested set speed. As mentioned
in an earlier section, the deceleration rates commanded in these
maneuvers are predefined in calibration tables, and are generally set to
be aggressive so the vehiclequickly responds to the driver’s command.
This means that braking maneuvers in ACC are generally shorter in
both time and distance compared to equivalent maneuvers executed
by human drivers. We see this reflected in the median deceleration
commanded during braking events, which is −0.2 m/s2 for ACC and
−0.18 m/s2 for human drivers.

In cases where there is a vehicle ahead, deceleration events are
mostly triggered by the vehicle ahead slowing down.We observe from
Table 2 and Supplementary Table 1 that the penalty for braking events
when there is a vehicle ahead is about 30% less than the dataset
average.Wehypothesize that this is a result of the reduced capacity for
a driver to coast when there is a slowing vehicle ahead. In other words,
human drivers tend to slow down more rapidly when there is slowing
traffic than in open-road conditions, so the capacity for human drivers
to coast and outperformACC shrinks in theseparticular situations but,
notably, is not eliminated entirely.

Limitations of the study
Our study in its current form has some limitations.

Causality. As an observational study, it cannot establish causality.
While we have attempted to control for various factors, it remains
possible that unobserved variables may have influenced the results.
We feel that the hypotheses presented in the subsections above are the
most plausible explanations for the observed impacts of ACC on fuel
consumption in certain maneuvers, but further, more direct A-B
comparisons of humans and automated driving systems in these spe-
cific maneuvers would be required to definitively establish the root
causes for the observed phenomena.

Macroscopic vs microscopic analysis. There is a need for high-
resolution, microscopic-level analysis (i.e., second-by-second) to bet-
ter understand the nuances of ACC’s impact on fuel consumption.
Future research should explore these aspects in greater detail to vali-
date and extend our findings. Specifically, more granular analyses of
traffic conditions, powertrain types, differences in ACC settings or
potentially control types, and regional regulatory differences in ACC
performance are needed to build a more comprehensive under-
standing of the factors influencing fuel consumption in ACC.

The findings from the macroscopic trip level and the situation-
based findings are interconnected and reinforce each other. While the
macroscopic analysis indicates a slight increase in fuel consumption
across the fleet when ACC is engaged, the situation-based results
reveal that ACC has a negative impact on energy consumption speci-
fically in cruising. Given that cruising is the most prevalent driving
situation, the fuel penalty observed in themacroscopic analysis can be
attributed primarily to the increased fuel consumption during cruising
with ACC. This connection between the two levels of analysis high-
lights the importance of examining the effects of ACC on energy
consumption in different driving situations to gain a comprehensive
understanding of its overall impact.

Data representativeness. The representativenessof our sample is also
a potential limitation, as it consists of a singlefleet of vehicles primarily
used by GM employees and engineers. Although our data covers a
large area of the U.S., it is not guaranteed that the findings can be
generalized to the broader population. We believe that we have pre-
sented, in the data section, the details, key statistics and distributions
pertaining to the population of vehicles in this study for full
transparency.

Data quality. The accuracy of our results is contingent upon the
quality of the sensors, data collection processes, and the algorithms
involved in the analysis. Despite our diligent data processing and
cleaning, these factors may have introduced some degree of unde-
tected error or bias.

Data sufficiency. The sufficiency of data for the ATE analysis is an
important aspect, especially for researchers that would be interested
in conducting such a study in the future. We did not conduct a specific
data sufficiency study to determine the minimum amount of data
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needed for consistent ATE results. However, we can provide some
general insights based on statistical principles.

Moredata generally leads tobetter results in statistical analysis.As
the sample size (N) increases, the standard error decreases, leading to
more precise estimates and reduced uncertainty. This principle,
knownas statistical power, is crucial for detecting small effects, such as
the impact of ACC on fuel consumption. When the effect signal in the
data is small, a significant amount of data is needed to overcome the
noise. Additionally, statistical consistency implies that as the sample
size increases, the bias in the estimations is reduced, providing more
reliable results.

The effect of ACC on fuel consumption is relatively small, neces-
sitating a significant amount of data todetect the signal amid thenoise.
But also, we control for many variables in our analysis, effectively sli-
cing the data space across multiple dimensions. To ensure statistical
significance and meaningful results in this high-dimensional space, a
large number of data points are needed. Without sufficient data, the
hypercubes within this multidimensional space would lack enough
points to draw reliable conclusions.

It is worth noting that conducting a data sufficiency study is not as
simple as it may seem, as there are various ways the data could be
sampled, including random sampling, cluster sampling, or stratified
sampling. Each of these methods can introduce different biases and
complexities, requiring a sophisticated study design to offer relevant
recommendations. In our case, we are dealing with a natural experi-
ment from a purely observational study, making it challenging to
predict how the results might differ under alternative sampling
methods. Future research could include a well-crafted data sufficiency
study to determine the minimum data requirements for robust ATE
analysis. This study could include randomly reducing the existing
dataset (e.g., by 20 percent) to test if the main findings are still uni-
formly observed in all reduced datasets.

Future research directions
Our research offers valuable insights that can inform vehicle manu-
facturers, policymakers, and drivers about the potential effects of ACC
on fuel consumption. Our findings indicate that ACC has the capacity
to dramatically impact vehicle energy efficiency in both positive and
negative directions, depending on driving situations, system behavior,
and the presence of a vehicle ahead.

Much as flexibility in cruising speed can allow for more steady-
state operation over changing grades, greater flexibility in following
distance (instead of a single, driver-selectable “gap setting” as is
common in today’s vehicles) can allow for steadier, safer, more effi-
cient operation in highly dynamic traffic conditions. For example, an
automated driving system that detects a severe slowdown far ahead in
its lane of travel could choose to coast and slow the vehicle pre-
emptively, rather than travel at the set speed and command a severe
braking event only when the vehicle is at imminent risk of not main-
taining its minimum following distance.

Both human and automated drivers can theoretically pay atten-
tion to the trajectories of several vehicles ahead, scanmultiple lanes of
traffic, and modulate their speed proactively to prevent severe and
costly braking and acceleration events. In practice, we find that few
human drivers put in this level of thought and effort to achieve an
efficient ride, but automated systems have the potential to con-
sistently operate with high efficiency in traffic, if their sensing and
planning capabilities are fully leveraged to achieve this objective. The
tested ACC systems track both the first and second vehicle ahead as
separate objects, and the position, velocity, and acceleration of these
vehicles can be used as separate, distinct inputs in the ACC system’s
decision-making process. Particularly when traffic conditions are at
their most unpredictable, automated systems can benefit substantially
from their multi-modal sensing capabilities, which are always active
and free of the distractions that can affect human drivers. When

powerful data about surrounding traffic conditions is combined with a
proactive control system designed to limit unnecessary speeding and
acceleration in traffic, automated driving systemshave the potential to
vastly outperform human drivers in terms of safety, comfort, and
energy efficiency.

Overall, this study provides a deeper understanding of the inter-
play between ACC and fuel consumption in various driving situations.
Our findings underscore the importance of considering the broader
context when assessing the impact of advanced driver assistance sys-
tems. Future research should focus on overcoming the limitations of
this study by conductingmore controlled experiments, investigating a
wider variety of vehicles and driving conditions, and refining data
collection and analysis methods. Such research will contribute to the
ongoing efforts to optimize ACC systems and other advanced driver
assistance technologies for improved fuel efficiency and reduced
greenhouse gas emissions.

Methods
Overview and comparison to prior work
The work presented in this paper uses a significant amount of real-
world data in various environments rather than simulations or small-
scale, real-world experiments described earlier. First, we will take a
close look at the previous relatedwork conductedbyGMin201919. The
approach, the data, and the methodology will be detailed to under-
score how this current study extends the existing research.

In previous research conducted by GM engineers19, data were
collected from the 2018 Cadillac CT6, the first vehicle with Super
Cruise technology, which combined ACC and advanced lane-keeping
functionality using cameras, sensors, and GPS locators. The study
involved 51 vehicles driven by employees on their daily commutes for
62 days between November 16, 2017, and January 16, 2018, covering
320,742 km in 13,416 trips. The data contained information on fuel
consumption, vehicle speed, and ACC state collected at a 1-Hz rate.

In this previous study, the researchers analyzed the impact of ACC
on energy consumption by comparing fuel values when ACC was ON
versus OFF at various speed intervals across the entire fleet. The
method involved aggregating fuel consumed per mile at each speed
interval for vehicles with ACC engaged and those without ACC
engaged, regardless of differences in vehicle models, drivers, or trip/
driving conditions. To account for differences in ACC usage and dis-
tance covered at various speeds, the researchers adjusted the fuel
consumption benefits based on utilization rate and local distance
traveled at each speed. The raw delta fuel consumption benefit was
then weighted by the proportion of driving done at that speed interval
relative to the total driving distance, resulting in a weighted adjusted
average.

The method was deemed effective and the approach validated
given the limited potential biases, the limited number of vehicle
models and drivers involved in the study, and the extended period of
data collection.

In our current study, we use a larger dataset collected from a fleet
of 157 vehicles equipped with either traditional ACC or Super Cruise
technology, noting that the longitudinal control system is identical
between the two.Our extensive dataset includes 40,356 trips, covering
1,094,215 kilometers and 16,389 hours of driving by 95 different dri-
vers. The data collection efforts are ongoing, but the results in this
analysis cover the periodof July 1, 2021, to September 1, 2022.With this
richer dataset and larger fleet, we obtainedmore accurate “real-world”
estimates of ACC benefits.

However, to accurately isolate the true effect of ACC on energy
consumption and mitigate potential biases in our findings, we have
relied on a statistical approach with carefully controlled variables. This
refined method enhances our ability to discern and quantify the
energy-saving potential of ACC technology across a variety of real-
world driving conditions.
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Data collection and management
In collaboration with GM through a Cooperative Research and Devel-
opment Agreement (CRADA),we collected a large-scale dataset of real-
world driving data, as described above. The dataset includes over 60
different signals at 1-Hz resolution, such as powertrain data (e.g.,
engine, fuel, transmission, thermal, etc.), automated driving assistance
data (e.g., ACC, lane-keeping, gap settings, etc.), sensor data (e.g.,
relative lon/lat distance/speedwith the vehicle ahead, time to collision,
lane occupations, etc.), andGPSdata. To efficiently handle andprocess
this massive dataset, we developed a data management framework for
ingesting, processing, andmanaging the data.We receivedweekly data
streams from GM, processed the trips, generated summary-level
quality assurance/quality control (QA/QC) reports, identified outliers,
and cleaned the data.

We augmented the data by performingmapmatching using HERE
Maps API to extract road information (e.g., speed limits, traffic pat-
terns, traffic signs, grade, etc.). We leveraged a VIN decoder to obtain
vehicle model and trim-level information, and used an internal vehicle
information database20 to extract detailed vehicle specifications (e.g.,
vehiclemass,maximumengine power, frontal area,wheel details, etc.),
andwe integrateddriver logs to identify thedriver during each trip and
the times at which drivers switched vehicles.

After ingestion, the processed and cleaned data allowed us to
perform thorough analysis at different granularity levels.

Data overview and distribution
Figure 5 shows the distribution of some selected variables that provide
high-level information about the data. The distribution of trip dis-
tances is highly skewed—most trips are short ( < 200 km), with an
average distance of around 25 km, and few trips are long-range. The

mean trip speed is approximately 50 km/h, with an average travel time
of 22 minutes. The overall fleet-level fuel consumption is around 15 L/
100 km (15.7 mpg). Fuel consumption values can vary depending on
factors such as trip distance, time of year (e.g., short trips during cold
seasons can result in extremely high fuel consumption), and vehicle
type and model. The fuel consumption is determined using the “fuel
injected rolling count” signal which is calculated in the vehicle’s Engine
Control Module (ECM) and broadcast over the vehicle’s internal CAN
network. The CAN network is monitored by an on-board data recorder
that logs all signals continuously while driving.

Supplementary Table 2 provides a summary of the various vehi-
cles included in the data. Each unique make/model/series may have
multiple trim variants with different engine technologies and some-
times different fuel types (primarily gasoline and diesel). We used EPA
Tier 3 87AKI certification fuel values for any fuel lower heating value
and fuel density conversions to ensure consistent fuel comparisons. As
the table shows, the fleet contains a few electric vehicles. The dataset
also shows a relatively high use of automated driving technologies,
with more than 35% of trips involving ACC usage. We do not believe
that drivers were specifically instructed to use the automated features
in their vehicles; instead, it is likely a result of their natural inclination
to explore and try new technologies. Drivers typically used one vehicle
type/model for extended periods, although multiple drivers may have
used similar vehicles. A driver-vehicle matrix shows that drivers
occasionally switch to different vehicle models throughout the year.
The driver log enables us to track such events.

Map-matching GPS coordinates to road attribute data on HERE
maps revealed that most trips are high functional class driving, typi-
cally consisting of local, short journeys with occasional highway usage.
Trips generally include fewer than 10 traffic lights and a few stop signs.
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Fig. 5 | Fleet-level distribution of key trip-level data. A Trip Distances, (B)
Average Trip Speeds, (C) Travel Times, and (D) Fuel Consumption. These histo-
grams provide a comprehensive overview of the dataset, illustrating the range
and distribution of the variables analyzed in this study. Trip Distances show most

trips under 50 km with an average of 24.8 km, Average Trip Speeds peak around
125 km/h with an average of 49.4 km/h, Travel Times are mostly under 50 minutes
with an average of 22.5min, Fuel Consumption ismostly below30L/100kmwith an
average of 14.7 L/100 km but some extreme outlier trips.
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Elevation changes during these trips are minimal, with delta elevation
ranging between −200 m and 200 m. Vehicles used in this study have
been equipped with GPS antennas that report elevation as well as lat/
long coordinates. Given the potential for noisy GPS signals, these
elevation data were cross-referenced with our map-matched elevation
data from HERE maps to identify and eliminate potential anom-
alies.These are used to calculate elevation delta between different
points in a route. That is, in a given trip or segment, the elevation delta
is simply the difference in elevation between the two end points.
Figure 6 provides a map view of the areas in the United States where
the majority of trips occurred. As shown, most trips are concentrated
in the southeast Michigan region, with some cross-country trips also
taking place. As noted before, trips span a period of over a year of data
collection; as a result, weather and ambient temperature levels span
the range of conditions experienced in the lower 48 states in a typical
calendar year. It was a priority to capture awide range of temperatures
and weather conditions in the data set, as weather can affect ACC
engagement probability in two main ways. First, drivers may engage
ACC at different rates depending onweather conditions - somemaybe
more comfortable controlling the vehicle themselves in rainy/snowy
conditions, while others with lower confidence or less driving experi-
encemayfind the assistanceof ACC tobehelpful in inclementweather.
Secondly, GM’s ACC system cannot be engaged when the forward
camera is obstructed, so system operation may be inhibited during
severe precipitation events.

Finally, an in-depth analysis of driver and trip aggressiveness
(which resulted in its own manuscript21) considered factors such as
acceleration energy, jerk energy, and trip-level standard deviation

metrics to gain a better understanding of trip and driver profiles in
relation to the percentage of ACC utilization during trips. These
exploratory and descriptive analyses provided valuable insights and
informed the subsequent statistical design to accurately model
the fleet.

Vehicle characteristics
It is important to acknowledge that all vehicles in the study were
produced by GeneralMotors.While this is a limitation of the study, we
do not expect that the inclusion of vehicles from other manufacturers
would substantively change the results of the study, for a few reasons.
First, although each automotive manufacturer has its own control
algorithms for longitudinal and lateral control in cruise, we do not
expect major differences in behavior because the high-level goals of
these cruise systems are identical. The vehicles are programmed to
maintain a single set speed unless traffic ahead requires them to slow
down. While a vehicle is present ahead, driven vehicles are pro-
grammed to maintain a specified gap distance. Classical controls
techniques (e.g., PI control) are employed nearly universally for
maintaining open-road cruise speed and gap distance to the vehicle
ahead. With regards to lateral control, some regions have unique
regulations related to automatic lateral control thatmayon the surface
imply differentiated cruise control performance between regions.
However, in practice, the strategy for complying with UN Regulation
79 is likely identical acrossmajor automakers - vehicles remain under a
prescribed lateral acceleration threshold by detecting upcoming
curves in the roadway and slowing down in advance where necessary.
Lastly, General Motors produces a wide variety of vehicles with

Fig. 6 | Spatial distribution of recorded trips. Most trips are concentrated in the south-east Michigan area, with some cross-country trips.Map data is available
under the Open Database License(© OpenStreetMap).
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different engine sizes, transmission types, masses and body styles. The
full breadth of the GM portfolio (including performance cars, sedans,
crossovers, pickup trucks and full-size SUVs) was leveraged in this
study, which approximates the composition of vehicles on North
American roadways very well.

Modeling techniques
The linearmixed-effectmodel was selected as the preferred technique
for our analysis, as it is particularly suited to situations where the data
have a nested structure, with observations grouped by certain factors.
We accounted for the hierarchical structure of the data by considering
random effects for vehicle type (VehicleType) and driver identification
(DriverID), which are modeled as a representation of the variability
associated with the grouping factors. Our model included eight fixed
effects to be the variables of interest: inverse trip average vehicle
speed in min/km (veh_spd_meanI), adaptive cruise control engage-
ment (ACC_engaged_cat) as a binary variable, trip maximum vehicle
speed in km/h (veh_spd_max), inverse trip distance covered in 1/km
(dist_covered_kmI), trip-level vehicle acceleration energy in m2/s3

(veh_accel_nrg), trip elevation change in meters (elev_delta), trip
average ambient temperature in degrees Celsius (amb_temp), and trip
average engine temperature in degrees Celsius (eng_temp). These
variables were included as covariates to control for their potential
influence on fuel consumption while covariate transformations are
meant to preserve a linear structure and ensure normality of model
residuals.

The choice of a linearmixed effectmodel for this study allowed us
to isolate the treatment effect of ACC engagement on fuel consump-
tion as well as other covariates while controlling for the potential
influence of VehicleType and DriverID in a cross-factored way. Note
that, per our exploratory analysis, all variables included in this model
exhibit fairly linear relationships with fuel – provided certain covariate
transformation and under multiple controls. Normality of residuals
and other model diagnostics revealed good model fit and no model
assumption violation. Equation (3) represents the linear mixed effect
model for the study:

FuelConsi � N μ,σ2� �
μ=αj½i�, k½i� +β1, k½i� × veh spd meanI

+ β2, k½i� ×ACC engaged cat TRUE

+ β3 × veh spd max + β4 × dist covered kmI

+ β5 × veh accel nrg + β6 × elev delta

+ β7 × amb temp+β8 × eng temp

αj � N μαj
,σ2

αj

� �
, forDriverID j = 1, . . . , J
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β2k

0
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1
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μβ2k
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1
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ð3Þ

The first line, FuelConsi � N μ,σ2
� �

, indicates that the fuel consump-
tion (FuelConsi) for each observation i is modeled as a normally dis-
tributed random variable with mean μ and variance σ2.

The next few lines describe the fixed-effects part of the model:
a. αj[i],k[i] represents the intercept term for each observation i,

accounting for both the random effects of DriverID j and Vehicle-
Type k.

b. β1k[i](veh_spd_meanI) captures the effect of the inverse average
vehicle speed with the coefficient β1k[i] specific to the VehicleType k.

c. β2k[i](ACC_engaged_catTRUE) represents the treatment effect of
engaging ACC, with the coefficient β2k[i] specific to the VehicleType k.

d. β3ðveh spd maxÞ, β4(dist_covered_kmI), β5(veh_accel_nrg),
β6(elev_delta), β7(amb_temp), and β8(eng_temp) represent the effects

of maximum vehicle speed, distance covered, vehicle acceleration
energy, elevation change, ambient temperature, and engine tempera-
ture, respectively, with their corresponding fixed coefficients.

The line αj � Nðμαj
,σ2

αj
Þ describes the random effects for DriverID

j. The intercept term αj follows a normal distributionwithmeanμαj
and

variance σ2
αj
.

The remaining lines describe the random effects for VehicleType
k. Themodel includes randomeffects for the intercept term αk and the
two fixed-effect coefficients β1k and β2k. These random effects follow a
multivariate normal distribution with means μαk

, μβ1k
, and μβ2k

, and a

covariance matrix that captures the variances (σ2
αk
, σ2

β1k
, and σ2

β2k
) and

correlations (ραkβ1k
, ραkβ2k

, and ρβ1kβ2k
) among these random effects.

Macroscopic trip-level analysis
This section presents amacroscopic-level analysis that investigates the
fuel consumption (FC) outcomes at the trip level while focusing on the
impact of ACC engagement. We approached this as a study of coun-
terfactuals, considering the potential outcomes of FC with ACC
engaged and with ACC disengaged. To estimate the causal effect of
ACC engagement on FC, we use the concept of average treatment
effect (ATE).

The ATE is the average difference in outcomebetween the treated
group (ACC engaged) and the control group (ACC disengaged) in a
hypothetical situation in which we can control for all potential con-
founding factors. In our study, the treatment is the ACC engagement,
and the ATE represents the average effect of ACC engagement on fuel
consumption.

The fundamental challenge in estimating the ATE is that we
observe only one state of ACC engagement at a given time in each trip,
i.e., either ACC is engaged or it is disengaged, not both at once. In a
hypothetical scenario, where each trip could be observed under
identical conditions with both ACC states, we could directly compute
the ATE. However, since this is not the case, we must rely on large
samples to compute the ATE by comparing sample means, assuming
that the samplemeandifferences generate anunbiased estimate of the
ATE:

ATE =
1
N

X
i

τi

=
1
N

X
i

Y ið1Þ � Y ið0Þ
� � ð4Þ

This is equivalent in Expectation to the following:

ATE =
1
N

X
i

Y ið1Þ �
1
N

X
i

Y ið0Þ ð5Þ

Where τi is an individual trip i treatment effect, and Yi(1), Yi(0) are
respectively the potential outcomes of trip iwhen ACC is engaged and
counterfactually not engaged and where ACC engagement is defined
as ACC being turned on at least once, regardless of the duration or
frequency of its use during the trip. This equivalence is valid only if
every trip has an equal chance of engaging ACC.

In our dataset, trips do not have equal probabilities of engaging
ACC, leading to group-level biases. Ideally, random ACC assignment
would result in a true ATE estimate, as the differences between trips
would balance out, eliminating these biases. In our case, vehicles with
ACC engaged typically exhibit better FC outcomes due to different
driving profiles (e.g., longer trips, higher average speeds). The bias
originates fromthe fact that, because of the kinds of trips inwhichACC
is engaged, the mean FC for vehicles that engaged ACC, had they not
engaged it, would differ from the mean FC for vehicles that did not
engage ACC. This omitted variable bias can be addressed by introdu-
cing control variables that account for differences between trips,
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allowing for an apples-to-apples comparison and equalizing the two
groups.

Without randomACC engagement, treatment and control groups
are not random subsets of all trips. Engaging ACC is systematically
related to reduced FC outcomes for reasons other than ACC itself. Our
estimate of the ATE, the expected difference between trips with ACC
ON and trips with ACC OFF, is equal to the ATE among trips with ACC
ON (if it can be observed) plus the mean difference between trips that
engaged ACC if they hadn’t, and the mean of the group that did not
engage ACC. This difference is typically zero if randomization is pre-
sent. This is best presented by the following equation:

E½Y ið1ÞjGi = 1� �E½Y ið0ÞjGi =0�
=E½Y ið1Þ � Y ið0ÞjGi = 1�

+ E½Y ið0ÞjGi = 1� �E½Y ið0ÞjGi =0�Þ
� � ð6Þ

where Gi = 1 represents the group of trips in the data that actually
engaged ACC, while potential outcomes Yi can be hypothetical. The
first line is the expected difference between the ACC ON group and
ACC OFF group, the second line is the ATE for the ACC ON group, and
the last line represents the mean among the group that did engage
ACC if they hadn’t engaged ACC, which is different from the mean of
the group that actually did not engage ACC. This last line captures the
selection bias and would be nullified if Gi = 0 and Gi = 1 are similar. It is
imperative to equalize the two groups in order to eliminate this
bias term.

Because we want to study variation in ACC that is independent of
FC, and because ACC engagement is not random among all trips, we
need to equalize the trips by identifying variables that explain FC
variation and that are related to ACC engagement likelihood. This
process will help us to control for confounding factors and accurately
estimate the impact of ACC on fuel consumption in real-world driving
conditions.

Statistical techniques for counterfactual analysis
In the following discussion, we leverage causal inference methods to
estimate the effect of ACC on energy consumption. This approach
involves identifying natural experiments in the data, such as trips
where ACC was used versus others where ACC was not used. By
comparing the fuel consumption of ACC-engaged trips to non-ACC
trips, we could estimate the causal effect of ACC on energy
consumption.

In our study, we consider two primary methodologies to analyze
the impact of ACC on energy consumption: a controlled variable sta-
tistical model via regression and a propensity score matching (PSM).
While PSM offers a more focused comparison by matching similar
trips, there is complexity and sparsity in accurately matching and
balancing trips. Conversely, regression analysis, less affected by these
limitations, provides more comprehensive and applicable results, and
thus, our findings will predominantly feature insights derived from the
latter. In a multivariate approach (see section 2) we control for
potential confounding factors that influence fuel consumption, such
as trip distance, vehicle speed, driving conditions, vehicle type, and
driver behavior, etc. (see section 5). We estimate the causal effects of
the treatment (ACC engagement) on the outcome variable (fuel con-
sumption) while controlling for these factors in order to isolate the
effect of ACC engagement.

Compared to the previously used methodology, this approach
(typically employed in observational studies) not only leads to a more
accurate estimate of the true ACC impact on energy consumption, but
also offers flexibility in terms of the functional forms and interactions
between the selected variables, allowing for the exploration of more
complex relationships between the treatment, the control variables,
and the outcome.

Controlled factors
We carefully designed a set of variables to control in order to achieve
near group equality and normalize trips with and without ACC

Fig. 7 | Trip-average fuel consumption vs. speed, separated by ACC (adaptive cruise control) engagement modes.
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engagement for comparison. This was achieved by learning the partial
effects that each of the controlled variables has on fuel consumption
and subtracting them to isolate the ACC effect. That is, we were trying
to account for the effect of variables that we think have an impact on
trip-level fuel consumption, learn that effect from the data and from
themany examples, and remove their individual effects to isolate ACC
impact.

Given the nature of this observational data, this variable selection
endeavor boiled down to asking one fundamental question: What are
the variables that explain FC variation that also could cause ACC to be
engaged at the same time? That is, to understand the effects of ACCon
FC, we have to think about not only the variables that cause FC varia-
tion but all the variables that cause ACC to be engaged. For example,
Fig. 7 shows that average trip-level speed is a strong predictor of FC,
but also is a source of bias for ACC engagement as ACC is engaged at
higher average trip speed (66 km/h vs 42 km/h). Higher average speed
leads to lower FC, as noted before. In fact, the figure shows a 1/x
relationship, that is, fuel consumption over speed is a non-linear
function. To model this relationship correctly within our linear model
framework, we employed a covariate transformation by including an
inverse speed term in the model to linearize the relationship. This
approach preserves the linearity regression assumption and allows us
to account for the non-linear nature of the fuel consumption-speed
relationship.

The remaining selected variables are the results of careful data
analysis. Primary factors such as the vehicle type and the driver ID are
included, as well as first-order effects such as a speed and trip-level
acceleration energy, defined as follows:

1
T

XT
i = 1

dvi
dti

� 	2

dti ð7Þ

Note that acceleration energy is calculated at the trip level, whereT is a
given trip length, vi is the speed at timestamp i, ti is the time signature
at timestamp i, and someunit conversions are applied to providem2/s3

unit values. We present the rest of the variables in Table 3 along with
their descriptions.

It is important to note that the electrical power consumption of
the control modules and sensors required for Super Cruise remains
constant whether the system is engaged or not. The control module is
designed to stay active and continuously process real-time sensor
inputs, ensuring readiness for immediate engagement. Therefore, the
difference in electrical power consumption between the engaged and
disengaged states of Super Cruise is zero. Consequently, the energy
consumption associated with the Super Cruise system is implicitly
included in the fuel consumption data analyzed in this study and not
controlled for.

Data availability
The data that support the findings of this study are not publicly
available due to privacy and confidentiality concerns. The dataset

includes personally identifiable information (PII) in the form of GPS
data, which traces the driving patterns of GM employees, including
their commutes to and from home. As such, sharing the data publicly
compromises the privacy of the individuals involved. Researchers
interested in the dataset for collaborative projects or further analysis
may contact the corresponding author to discuss potential data
sharing under specific agreements that ensure the protection of priv-
acy and confidentiality. Any data sharing would require approval and
agreement from General Motors (GM) and would be contingent upon
compliance with applicable privacy regulations and institutional
guidelines.

Code availability
Thedata used in this studywas collected byGeneralMotors using their
proprietary data collection systems. Details on the specific software
versions and technologies used for data collection are managed and
maintained by GM. Additionally, the custom code and algorithms used
for data processing and analysis and visualizationweredevelopedwith
Python 3.10, R 4.4.1 and Tableau 2024.1.5 software. Interested parties
may contact the corresponding author for further information or
potential collaboration, subject to approval.
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