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Background: There may be potential associations between various pathogens, antibody immune 
responses, and breast cancer (BC), but the specific mechanisms and causal relationships remain 
unclear. Methods: First, multiple Mendelian randomization (MR) methods were used for univariable 
MR analysis to explore potential causal relationships between 34 antibody immune responses (related 
to 12 pathogens), 46 antibody immune responses (related to 13 pathogens), antibody responses 
post-COVID-19 vaccination, 731 immune cell types, and various BC subtypes (including overall BC, 
ER-positive, ER-negative, Luminal A, Luminal B, Luminal B HER2-negative, HER2-positive, and 
triple-negative BC). The primary results were then subjected to reverse MR analysis, heterogeneity 
testing using Cochran’s Q, and horizontal pleiotropy testing. Robust findings were further used to 
design mediation pathways involving antibody immune responses, immune cells, and BC. After 
adjusting the effect estimates using multivariable MR (MVMR), a two-step mediation analysis was 
conducted to explore mediation pathways and mediation proportions. Finally, linkage disequilibrium 
score regression (LDSC) was applied to analyze the genetic correlation between phenotypes along 
mediation pathways, and cross-phenotype association analysis (CPASSOC) was performed to identify 
pleiotropic SNPs among three phenotypes along these pathways. Bayesian colocalization tests were 
conducted on pleiotropic SNPs using the multiple-trait-coloc (moloc). Results: We identified potential 
causal relationships between 15 antibody immune responses to 8 pathogens (Hepatitis B virus, 
Herpes Simplex Virus 2, Human Herpesvirus 6, Polyomavirus 2, BK polyomavirus, Cytomegalovirus, 
Helicobacter pylori, Chlamydia trachomatis), 250 immune cell phenotypes, and various BC subtypes. 
MVMR-adjusted mediation analysis revealed four potential mediation pathways. LDSC results showed 
no significant genetic correlation between phenotypes pairwise. CPASSOC analysis identified two 
potential mediation pathways with common pleiotropic SNPs (rs12121677, rs281378, rs2894250). 
However, none of these SNPs passed the Bayesian colocalization test by moloc. These results excluded 
horizontal pleiotropy, stabilizing MR analysis results. Conclusion: This study utilized MR methods 
to analyze potential causal relationships between various antibody immune responses, immune cell 
types, and BC subtypes, identifying four potential regulatory mediation pathways. The findings of 
this study offer potential targets and research directions for virus-related and immunotherapy-related 
studies, providing a certain level of theoretical support. However, limitations such as GWAS sample 
size constraints and unclear specific pathophysiological mechanisms need further improvement and 
validation in future studies.
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Breast cancer (BC) is one of the most common malignant tumors among women, and its incidence is gradually 
increasing1. Many studies have observed potential associations between various pathogen infections and 
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BC, but the underlying mechanisms and causal relationships remain largely unexplored and require further 
clarification2–5.

Various pathogens, including viruses, bacteria, and parasites, have been reported to have carcinogenic 
effects6. Additionally, some microorganisms can exert anti-cancer effects by inducing immune responses7. 
For instance, Epstein Barr virus (EBV) has been reported to be associated with the risk of various cancers, 
including lymphomas, nasopharyngeal carcinoma, and gastric cancer3. The infection rate of EBV in BC cases 
is significantly higher compared to non-BC controls3. Moreover, other viruses, such as human cytomegalovirus 
(HCMV), mouse mammary tumor virus (MMTV), and human papillomavirus (HPV), have been reported 
to be associated with an increased risk of BC2,3,8. In some cancer patients, spontaneous regression of tumors 
has been observed following viral infection9. This suggests that certain viruses possess anti-cancer activity. 
Consequently, oncolytic virus (OV) therapy has become a focal point in tumor immunotherapy. Some studies 
have reported that specific antibodies can recognize tumor-associated antigens and activate immune cells to 
inhibit tumor growth10. Conversely, certain antibodies can promote tumor development and immune escape 
through immunosuppressive pathways10. Although these phenomena have been observed in related research, 
the exact role of these pathogen immune responses in BC development, and their interaction with the immune 
system, requires further investigation.

BC can be classified into subtypes based on molecular phenotypes: Luminal A, Luminal B, HER2-enriched-
like, and Triple-negative (TNBC)11. The biological behaviors exhibited by different subtypes also vary11. 
Therefore, the relationship between immune responses to different pathogens and different BC subtypes may 
not be uniform. Exploring the relationship between antibody immune responses and BC subtypes may provide 
valuable insights into the immune mechanisms of BC and further identify potential targets for immunotherapy.

Mendelian randomization (MR) provides a reliable method for inferring causal relationships. MR uses 
genetic variations as instrumental variables (IVs) to estimate the effects of exposures (e.g., immune responses 
and immune cells) on outcomes (e.g., BC)12. This method can reduce confounding factors such as social and 
economic environments, effectively minimizing bias in causal estimates and strengthening causal inference12. 
This study used bidirectional MR analysis to explore the potential causal relationships between various antibody 
immune responses, immune cells, and various BC subtypes. Multivariable MR (MVMR) and mediation analysis 
were conducted to investigate the mediating role of immune cells in the relationship between antibody immune 
responses and BC. Additionally, global genetic correlation analysis and SNP-level analysis were performed to 
explore genetic correlations between pathogen antibody immune responses, immune cells, and BC. This study 
aims to provide valuable insights into the immune mechanisms of BC and identify new potential targets for 
immunotherapeutic interventions.

Methods
Study design
We obtained data on 34 antibody immune responses, 46 antibody immune responses, antibody responses 
post-COVID-19 vaccination, and 731 immune cells from four studies in the GWAS Catalog13. Data on BC 
and its subtypes were obtained from the Breast Cancer Association Consortium (BCAC). First, two-sample 
bidirectional MR analysis was used to investigate potential causal relationships between antibody immunity, 
immune cells, and BC. Then, multivariable MR (MVMR) and mediation analyses were conducted to explore the 
mediating role and proportion of antibody immune responses between immune cells and BC. Next, based on the 
three phenotypes identified in the potential mediation pathways, linkage disequilibrium (LD) score regression 
(LDSC) was used to estimate the heritability of each phenotype and the genetic correlations between pairs of 
phenotypes. Cross-phenotype association analysis (CPASSOC) was then performed to identify key pleiotropic 
SNPs that may influence all three phenotypes simultaneously. Finally, Bayesian colocalization analysis using the 
multiple-trait colocalization method (moloc) was conducted to determine whether the identified pleiotropic 
SNPs could affect all three phenotypes concurrently. The study design followed the STROBE-MR guidelines, 
with the workflow detailed in Fig. 1.

Data sources
GWAS data on 34 antibody immune responses
The data on 34 antibody immune responses were obtained from the French Milieu Intérieur cohort14. This 
cohort included 1,000 healthy individuals divided into five age groups (20–29, 30–39, 40–49, 50–59, and 60–70 
years), with 200 participants in each age group, balanced by sex. Sample quality control was performed using 
methods such as sample integrity, genotype consistency, and contamination detection. The study included 12 
pathogens, resulting in 34 phenotypes. These phenotypes included total IgA, IgE, IgG, and IgM levels, as well as 
antibody levels and serostatus for common pathogens (e.g., cytomegalovirus, Epstein-Barr virus, etc.; for details, 
see Supplementary Table 1).

GWAS data on 46 antibody immune responses
The data on 46 antibody immune responses were obtained from the UK Biobank, including 8,735 individuals15. 
The study excluded low-quality genotype data, adjusted for sex and age, and used principal component analysis 
to adjust for population stratification. A total of 13 pathogens were analyzed, resulting in 46 phenotypes. These 
phenotypes included 15 serostatus phenotypes and 31 quantitative antibody measurement phenotypes (e.g., 
herpes simplex virus, human herpesvirus 6 and 7, etc.; for details, see Supplementary Table 1).

GWAS data on antibody responses post-COVID-19 vaccination
The data on antibody responses post-COVID-19 vaccination were obtained from the UK Biobank, including data 
from the 200 K self-test antibody study and the 60 K Coronavirus infection study16, totaling 54,066 individuals. 
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The study excluded low-quality genotype data, adjusted for sex and age, and used principal component analysis 
to adjust for population stratification. The final analysis included two phenotypes: IgG serostatus after the first 
and second doses of the COVID-19 vaccine (detailed information in Supplementary Table 1).

GWAS data on 731 immune cells
Data on 731 immune cells were obtained from the SardiNIA cohort in Sardinia, Italy17. The cohort includes 
3,757 individuals aged 18 to 102 years, with a roughly balanced gender ratio. The study analyzed 731 immune 
phenotypes after adjusting for covariates such as age and sex. These phenotypes cover multiple subpopulations 
of immune cells, including T cells, B cells, dendritic cells, and monocytes. The data include absolute cell counts 
(n = 118), median fluorescence intensity indicating surface antigen levels (n = 389), morphological parameters 
(n = 32), and relative cell counts (n = 192) (for details, see Supplementary Table 1).

GWAS data on breast cancer risk
The study by Zhang et al.18 included data on overall BC (Overall), and five subtypes (Luminal A, Luminal B, 
Luminal B HER2-negative, HER2-positive, and Triple-negative). Additionally, ER-positive and ER-negative BC 
data were obtained from the study by Michailidou et al.19. The data were from European individuals, retaining 
SNPs with a minor allele frequency (MAF) greater than 0.01, and excluding missing or duplicate reference 
SNP IDs (rsid). All original GWAS studies obtained ethical approval and informed consent from the relevant 
institutions, as detailed in the original studies. Therefore, no additional ethical approval was required for this 
study. Moreover, there was no sample overlap between the exposure and outcome data used in this study.

Fig. 1. Flowchart of this study.
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SNP selection
SNPs as IVs must satisfy three core assumptions: (1) SNPs are associated with exposure factors20; (2) SNPs are 
not associated with confounding factors; (3) SNPs are not associated with outcomes (see Fig. 1).

To ensure an adequate number of IVs for each phenotype, we selected SNPs associated with antibody immune 
responses and immune cells at a threshold of P < 1e-5, based on previous studies21,22. During the selection 
process, we referred to the whole-genome information from the 1000 Genomes Project23, setting LD parameters 
at r2 < 0.001 and selecting the SNP with the smallest P-value within a 10,000 kb range as the independent IV. To 
avoid potential bias from weak IVs, only IVs with an F-statistic > 10 were retained for subsequent analysis24,25. 
Palindromic variants were removed using the harmonized method. Phenotypes with fewer than three IVs were 
excluded from sensitivity analysis to ensure sufficient IV numbers26.

Statistical analysis
MR analysis
Four MR methods were used to estimate the association between exposure and outcome: inverse-variance 
weighted (IVW), MR-Egger, weighted median (WM), and Bayesian weighted MR (BWMR). The IVW method 
assumes that all IVs are independent and lack horizontal pleiotropy27. The MR-Egger method allows for invalid 
IVs, providing more reasonable causal effect estimates in the presence of pleiotropic effects28. When some 
IVs (< 50%) exhibit directional horizontal pleiotropy, the WM method can provide robust estimates29. The 
BWMR method enhances causal inference robustness by considering the uncertainty of weak effects due to 
polygenicity30. The IVW method, due to its high statistical power, was selected as the primary analysis method31. 
MR-Egger, WM, and BWMR were used as supplementary analyses. Positive results were considered when the 
estimates from the four methods were consistent and the IVW method was significant (PIVW <0.05)32.

Finally, the results of IVW were adjusted for the false discovery rate (FDR)33. Significant associations were 
considered when FDR < 0.1; suggestive associations were considered when FDR > 0.1 and PIVW<0.05.

Reverse MR analysis
To further explore whether BC has a reverse causal effect on identified gut microbiota, reverse MR analysis was 
conducted when PIVW < 0.05 in forward MR analysis. In reverse MR analysis, BC was considered an exposure, 
and its associated SNPs as IVs, with gut microbiota and blood metabolites as outcomes. The analysis process was 
similar to forward MR analysis.

Sensitivity analysis
To ensure the robustness of the results, Cochran’s Q statistic was first used to test for heterogeneity34. When 
heterogeneity was significant (PHeterogeneity <0.05), a random-effects IVW method was adopted; when 
heterogeneity was not significant (PHeterogeneity >0.05), a fixed-effects IVW method was used. MR Egger 
regression intercept and MR PRESSO global test were then used to assess horizontal pleiotropy35,36. When 
pleiotropy existed (PPleiotropy <0.05), the result was excluded. Finally, the statistical power was estimated using 
the mRnd method37.

MVMR analysis and mediation analysis
Considering the potential association between antibody immune responses and immune cells, multivariable 
analysis and mediation analysis were conducted to identify potential regulatory pathways. Univariable MR 
methods were first used to assess the direct causal relationships between antibody immune responses, immune 
cells, and BC, and obtain corresponding effect values β, where β1 is the effect value of antibody immune responses 
on BC, β2 is the effect value of antibody immune responses on immune cells, and β3 is the effect value of immune 
cells on BC. In previous sections of the study, antibody responses and immune cell types were determined 
based on the condition of PIVW < 0.05. Subsequently, additional univariable MR analyses were performed with 
antibody immune responses as exposures and immune cell types as outcomes. When all three results met the 
condition of PIVW < 0.05, MVMR was conducted using the IVW method, with immune cells and antibody 
immune responses as exposures, to obtain the effect value β4 of immune cells on BC. After MVMR adjustment, 
the mediation effect was calculated using the coefficient product method (mediation effect = β2 × β4). The direct 
effect was calculated by subtracting the mediation effect from the total effect, and the mediation proportion was 
quantified [mediation proportion = (mediation effect/total effect) × 100%]. The Delta method and mediation 
effect were used to estimate the standard error of the mediation proportion. Potential mediation pathways were 
identified at a 90% CI standard.

Genetic correlation analysis
LDSC was used to estimate heritability and analyze genetic correlation between phenotypes on mediation 
pathways38. Pre-calculated LD scores from the 1000 Genomes Project were used to estimate SNP heritability in 
HapMap 3 SNPs. Pairwise genetic correlations (rg) between different phenotypes were further estimated, with 
rg ranging from − 1 to 1, representing negative and positive correlations, respectively.

CPASSOC analysis
Genetic correlation analysis cannot detect SNP effects on phenotypes. CPASSOC analysis was performed on 
exposure, mediation, and outcome phenotypes to explore whether there were pleiotropic SNPs simultaneously 
affecting these phenotypes in potential mediation pathways. CPASSOC detected common genetic loci through 
joint analysis of multiple phenotype GWAS data39. CPASSOC provides SHom and SHet methods; SHom is 
similar to a fixed-effect meta-analysis method for consistent effects, while SHet al.lows for effect heterogeneity 
between phenotypes, with robust statistical power in the presence of heterogeneity. In CPASSOC, PSHet<5e-8 
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was considered a SNP significantly associated with two phenotypes. The most relevant independent SNP in a 
10,000 kb region for two traits was obtained using PLINK, referencing 1000 Genomes Phase 3 (EUR) data (–
clump-p1 5e-8, –clump-p2 1e-5, –clump-r2 0.001, –clump-kb 10000)40,41. SNPs with PSHet < 5e-8 and PSingle−trait 
<0.05 in each phenotype were considered pleiotropic SNPs.

Bayesian multiple-trait colocalization analysis
Multiple-trait-coloc (moloc) was used for colocalization analysis of three phenotypes within a 1000 kb region 
for identified pleiotropic SNPs. Moloc, based on a Bayesian statistical framework, quantifies evidence of shared 
causal variants in a specific region from GWAS summary data42. When colocalizing three traits, possible 
hypotheses include: H1: phenotypes 1 and 2 share a causal variant, phenotype 3 has an independent causal 
variant; H2: phenotypes 1 and 3 share a causal variant, phenotype 2 has an independent causal variant; H3: 
phenotypes 2 and 3 share a causal variant, phenotype 1 has an independent causal variant; H4: phenotypes 
1, 2, and 3 each have independent causal variants; H5: phenotypes 1, 2, and 3 share a causal variant. Each 
hypothesis represents a different shared causal variant scenario. Moloc calculates posterior probability (PPA) for 
each hypothesis within the Bayesian framework, quantifying evidence of multiple phenotypes sharing a causal 
variant in a specific region. This study focused on the H5 hypothesis, considered valid when PPA > 0.8.

All statistical analyses and visualizations were performed using R (4.3.1) and R packages such as 
“TwoSampleMR”, “MR-PRESSO”, “MendelianRandomization”, “mRnd”, “moloc”, “ggplot2”.

Results
Causal analysis of 34 antibody immune responses and BC
After excluding phenotypes without sufficient IVs, univariable MR analysis identified five potential causal 
relationships between 34 antibody immune responses and BC under PIVW<0.05 (PIVW<0.05, FDR > 0.1, 
Supplementary Table 2). The F-statistics range for IVs in MR analysis was 19.7-4659.8. After excluding one 
non-robust result based on inconsistent effect direction or horizontal pleiotropy (P < 0.05), potential causal 
associations between four antibody immune responses to two pathogens [Hepatitis B virus (HBV), Helicobacter 
pylori (HP)] and total IgA levels with BC and its subtypes were identified (Fig. 2). For example, BC (ER-negative) 
had potential causal relationships with Anti-hepatitis B virus surface antigen (HBs) IgG seropositivity [OR (95% 
CI): 0.961 (0.933–0.990), PIVW=0.009] and IgA levels [OR (95% CI): 1.196. (1.023–1.398), PIVW=0.025].

Reverse MR analysis showed a relationship between BC (Luminal B) and Anti-helicobacter pylori IgG levels 
[OR (95% CI): 0.891 (0.802–0.990), PIVW=0.032] (Supplementary Table 3).

Causal analysis of 46 antibody immune responses and BC
After excluding phenotypes without sufficient IVs, univariable MR analysis identified 17 potential causal 
relationships between 46 antibody immune responses and BC under PIVW<0.05 (PIVW<0.05, FDR > 0.1, 
Supplementary Table 4). The F-statistics range for IVs in MR analysis was 19.5-343.2. After excluding six 
non-robust results based on inconsistent effect direction or horizontal pleiotropy (P < 0.05), potential causal 

Fig. 2. Results of MR analysis showing potential causal relationships between 34 antibody immune responses 
and various breast cancer subtypes (PIVW<0.05, with red indicating risk factors and blue indicating protective 
factors in the forest plot).
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associations between 11 antibody immune responses to seven pathogens [Herpes Simplex Virus (HSV) 2, 
Human Herpesvirus 6 (HHV) IE1B, Chlamydia trachomatis, Polyomavirus 2, BK polyomavirus, Helicobacter 
pylori, Cytomegalovirus (CMV)] and BC and its subtypes were identified (Fig. 3). Among these, three antibody 
immune responses were associated with more than one BC subtype (Fig.  3). For example, Anti-human 
herpesvirus 6 IE1B IgG seropositivity was potentially causally related to BC (Overall) [OR (95% CI): 1.021 
(1.003–1.039), PIVW=0.023] and BC (Luminal A) [OR (95% CI): 1.044 (1.018–1.070), PIVW<0.001].

Reverse MR analysis showed a relationship between BC (Overall) and Chlamydia trachomatis momp A 
antibody levels [OR (95% CI): 1.137 (1.004–1.287), PIVW=0.042] (Supplementary Table 5).

Causal analysis of antibody responses post-COVID-19 vaccination and BC
Univariable MR analysis did not identify any potential causal relationships between antibody responses post-
COVID-19 vaccination and different BC subtypes under PIVW<0.05 (Supplementary Table 6).

Causal analysis of 731 immune cells and BC
After excluding phenotypes without sufficient IVs, univariable MR analysis identified 321 potential causal 
relationships between 731 immune cells and BC under PIVW<0.05 (PIVW<0.05, FDR > 0.1, Fig. 4, Supplementary 
Table 7). The F-statistics range for IVs in MR analysis was 100.0-994.0. After excluding 71 non-robust results 
based on inconsistent effect direction or horizontal pleiotropy (P < 0.05), potential causal associations between 
250 immune cell phenotypes and BC and its subtypes were identified. Among these, 48 immune cell phenotypes 
were associated with more than one BC subtype (Supplementary Table 8). For example, CD3 on CD28 + CD4-
CD8- T cells had potential causal relationships with BC (Overall) [OR (95% CI): 0.953 (0.927–0.98), P < 0.001], 
BC (ER-positive) [OR (95% CI): 0.935 (0.904–0.967), PIVW<0.001], and BC (Luminal A) [OR (95% CI): 0.942 
(0.909–0.976), PIVW=0.001].

Reverse MR analysis under PIVW<0.05 identified bidirectional causal relationships between seven immune 
cells and BC. For example, BC (Luminal B Her2-negative) was related to CD62L- monocyte [OR (95% CI): 1.112 
(1.029–1.203), PIVW=0.007] (Supplementary Table 9).

Power calculations for all univariable MR analyses are provided in Supplementary Table 10.

MVMR analysis and mediation analysis
Mediation analysis was conducted to further explore potential pathways between antibody immune responses, 
immune cells, and BC. Antibody immune responses were considered exposures, immune cells as mediators, and 
BC and its subtypes as outcomes. Under PIVW<0.05, 20 potential mediation pathways were identified, with BC 
[Overall (n = 5), ER-negative (n = 3), Luminal A (n = 2), Luminal B (n = 5), HER2-positive (n = 2), and TNBC 
(n = 3) (Supplementary Table 11)]. After adjusting effect values using MVMR-IVW, one potential mediation 
pathway related to BC was identified under P < 0.05. To identify more potential pathways, the P-value threshold 
was relaxed to 0.1, resulting in four potential mediation pathways related to BC (Fig. 5).

Genetic correlation analysis
LDSC was used to estimate heritability and analyze genetic correlation between phenotypes on the four identified 
potential mediation pathways. After excluding results with negative heritability due to sample size limitations, 
Anti-hepatitis B virus surface antigen (HBs) IgG seropositivity had the highest heritability estimate, H2 = 0.41 

Fig. 3. Results of MR analysis showing potential causal relationships between 46 antibody immune responses 
and various breast cancer subtypes (PIVW <0.05; the exposure is the same for rows 3 and 4, rows 5 and 6, and 
rows 7 and 8).
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(Supplementary Table 12). The heritability estimates for Luminal B, ER-negative, and HER2-positive were 0.23, 
0.07, and 0.09, respectively. Genetic correlation analysis showed no significant genetic correlation between 
phenotypes under P < 0.05, considering sample size limitations (Supplementary Table 13).

CPASSOC and colocalization analysis
CPASSOC analysis identified three potential pleiotropic SNPs (Fig. 6, Supplementary Table 14). Two potential 
pleiotropic SNPs (rs281378, rs2894250) were identified on the mediation pathway from Anti-polyomavirus 2 
IgG seropositivity to CD80 on myeloid dendritic cells to BC (Luminal B, Fiugure6A, Fiugure6B). One potential 
pleiotropic SNP (rs12121677) were identified on the mediation pathway from Anti-hepatitis B virus surface 
antigen (HBs) IgG seropositivity to CD25 on CD24 + CD27 + B cells to BC (ER-negative) (Fig. 6C).

However, none of these pleiotropic SNPs passed the Bayesian colocalization test (PPA < 0.75), indicating the 
absence of pleiotropic SNPs within 1000 kb affecting the three phenotypes.

Fig. 4. Results of MR analysis showing potential causal relationships between 731 immune cells and various 
breast cancer subtypes (PIVW <0.05). The circular heatmap was generated using the “ComplexHeatmap” R 
package.
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Discussion
This study used the largest and most comprehensive BC GWAS summary data currently available to explore 
potential causal relationships between various pathogen antibody immune responses, immune cell types, and 
BC subtypes through MR analysis, mediation analysis, and genetic correlation analysis. A total of 15 antibody 
immune responses to 8 pathogens (6 viruses, 1 bacterium, 1 Chlamydia) and 250 immune cell phenotypes were 
identified as potentially causally related to various BC subtypes. Reverse MR analysis revealed bidirectional 
causal relationships between BC and three antibody immune responses and seven immune cells. After adjusting 
effect values through MVMR, four mediation pathways related to BC were identified. These findings provide 
new insights and directions for clinical and experimental research on the immune system and BC, offering a 
theoretical basis for the regulatory pathways of pathogen antibody response-immune cell-BC axis.

In this study, when pathogen antibody immune responses were considered exposures, potential causal 
associations between antibody responses to six viruses and BC were identified. The results showed that HBV was 
related to increased risk of BC (Luminal A) and decreased risk of BC (ER-negative), though caution is needed 
as the result for BC (Luminal A) was at the margin of significance. Luminal A is an ER-positive, progesterone 
receptor-positive BC. Studies have reported that long-term HBV infection may indirectly affect BC occurrence 
by elevating estrogen levels in the body  43. This might be how HBV influences BC. Furthermore, the study 
found that HSV2 antibody immune response might reduce the risk of BC (Overall). Related studies have shown 
that oHSV2 constructed with HSV2 exhibits strong anti-tumor activity and stable biological properties44,45. The 
oncolytic virus FusOn-H2, derived from HSV-2, induces a robust T-cell response against both primary and 
metastatic breast tumors in a murine BC model46. This suggests that oHSV2 may be an effective treatment for 
BC. Whether HHV-6 has direct carcinogenic ability is unclear47. It may indirectly promote tumor growth by 
collaborating with other viruses or as an opportunistic virus in an immunodeficient environment47. Additionally, 
it may contribute to tumor progression by suppressing the host’s immune system48. The study results showed 
that Anti HHV-6 IE1B IgG seropositivity was positively related to increased BC (Overall) risk. Studies have 
reported an association between Polyomaviruses infection and BC risk49. The JC polyomavirus has been 
detected in some breast cancers50. It can integrate into the genomic DNA of eukaryotic cells and target signaling 
pathways such as p53, β-catenin, IRS, Rb, TGF-β1, PI3K/Akt, and AMPK, ultimately leading to the development 
of breast cancer51.The study results showed that Anti-polyomavirus 2 IgG seropositivity was positively related to 
increased risk of BC (Luminal B, Luminal B HER2-negative), and Anti-BK polyomavirus IgG seropositivity was 
negatively related to decreased risk of BC (HER2-positive). Multiple studies have reported associations between 
CMV infection and BC development52,53, possibly through regulating inflammation markers and activating 
immunity53. pp28 is a protein encoded by the human cytomegalovirus (HCMV) UL99 gene, important in the 
virus’s assembly, transport, and maturation process54. Previous studies have reported differences in immune 
levels among individuals against the same pathogen14. Higher pp28 antibody levels represent stronger immune 
responses and immunity against the pathogen. The study results showed a negative association between CMV 
pp28 antibody levels and TNBC.

Studies have found significant associations between past Chlamydia infections and BC mortality55. 
Furthermore, studies have reported a potential association between Chlamydia trachomatis infection and an 
increased risk of breast cancer, particularly in women with elevated levels of IL-1256. In this study, Chlamydia 
trachomatis pGP3 antibody levels were negatively related to Luminal B risk, and Chlamydia trachomatis momp A 
antibody levels were negatively related to BC (Overall, Luminal A) risk. This result suggests that a strong immune 
response to Chlamydia trachomatis may reduce the risk of breast cancer in the context of infection. However, 
reverse MR analysis indicated a positive correlation between BC (Overall) and Chlamydia trachomatis MOMP 
A antibody, implying an increased risk of multiple Chlamydia trachomatis infections in BC patients. Therefore, 
forward and reverse MR results partially explain the association between BC and Chlamydia trachomatis. For 
HP antibody immune responses, the results showed that HP was related to decreased risk of BC (Luminal B) and 
increased risk of BC (HER2-positive). UREA antibody levels indicate chronic Helicobacter pylori infection57. 
Studies have reported that CagA-positive HP might reduce estradiol levels leading to osteoporosis58. Estradiol 
is a risk factor for ER-positive BC59. Multiple studies have also reported that HP infection can enhance HER-2 
protein expression60,61, suggesting HP may influence the risk of HER-2 positive BC through unknown pathways. 

Fig. 5. Analysis of four potential mediatory pathways from antibody immune responses to immune cell types 
to breast cancer. The exposure data in rows 1 and 2 are from 34 antibody immune responses, while the data in 
rows 3 and 4 are from 46 antibody immune responses.
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Furthermore, studies have reported that Helicobacter hepaticus interacts with myeloid-derived suppressor cells 
to promote BC development62,63. Additionally, HP HopH protein can reduce VEGF expression and tumor size 
in BC mouse models, indicating HP also has potential in BC treatment64. These study results suggest potential 
associations between HP and BC, partially explaining the biological rationale of the MR results.

The above results suggest differences in immune responses to various pathogens among individuals. These 
differences have varying associations with different BC types, necessitating more detailed research to explore the 
relationship between pathogens and various BC types. For COVID-19 vaccination phenotypes, only antibody 
responses post-vaccination can be represented, not exposure to the COVID-19 virus. Therefore, no evidence was 
found for an association between COVID-19 vaccination and BC risk. This study used antibody immune status 
(positive) to represent lifetime exposure to pathogens. Related antibody levels represent the strength of immune 
responses to pathogens, but may be influenced by confounding factors such as vaccination. Therefore, the results 
of this part of the study should be interpreted with caution.

To explore potential mediation pathways and mechanisms between pathogen immune responses and BC, 
univariable MR analysis was first conducted on 731 immune cells, identifying 250 immune cell phenotypes 
potentially causally related to different BC types. After adjusting effect values using MVMR, CD25 on 

Fig. 6. Moloc colocalization diagram of three pleiotropic SNPs (rs2894250, rs281378, rs12121677) identified 
by CPASSOC analysis. (A) rs2894250 and (B) rs281378 showing the relationship between anti-polyomavirus 
2 IgG seropositivity, CD80 expression on myeloid dendritic cells, and Luminal B; (C) rs12121677 illustrating 
the association between anti-hepatitis B virus surface antigen (HBs) IgG seropositivity, CD25 expression on 
CD24 + CD27 + B cells, and ER-negative.
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CD24 + CD27 + B cells, CD25 on IgD + CD38- unswitched memory B cells, CD80 on myeloid dendritic cells 
(mDC), and CD4-CD8- T cells were identified as potential mediators. CD25 + B cells play important roles in 
normal immune responses, responding to interleukin (IL)-265. CD25 + B cells have stronger antigen-presenting 
and cytokine-producing abilities compared to CD25- B cells65,66. mDCs are important antigen-presenting cells 
that participate in initiating and regulating immune responses by activating T cells67. Knockdown of CD80 
and CD86 in mDCs alters Th1/Th2 cytokine production, indicating CD80 and CD86 in mDCs have cytokine-
regulating functions68. CD4-CD8- T cells, known as double-negative T cells, do not express CD4 or CD8 
molecules, can secrete cytokines, and directly contact cells to regulate the functions of other immune cells, 
playing important roles in controlling inflammation and anti-tumor responses69. The study results suggest that 
antibody responses to pathogens may influence the expression of these immune cell phenotypes, ultimately 
leading to BC. This implies that regulating antibody levels may influence the expression of different immune 
cells, potentially preventing BC. However, it should be noted that the P-value threshold was relaxed to identify 
more potential mediation pathways, which may lead to Type I errors. Therefore, the results should be interpreted 
with caution.

SNPs’ effects on multiple phenotypes can be divided into horizontal pleiotropy and vertical pleiotropy70. 
Pleiotropic SNPs can simultaneously affect multiple phenotypes, potentially serving as therapeutic targets. 
After identifying four potential mediation pathways, LDSC analysis was conducted at the global level and 
CPASSOC and moloc colocalization analyses were conducted at the SNP level to explore whether pleiotropic 
associations existed. CPASSOC analysis identified three potential pleiotropic SNPs. Although these SNPs did not 
pass the Bayesian colocalization test, indicating that these SNPs are unlikely to simultaneously affect the three 
phenotypes within 1000 kb, the analysis results excluded horizontal pleiotropy, strengthening the credibility of 
causal inference.

The main strengths of this study include the innovative use of bidirectional MR methods, mediation analysis, 
and genetic correlation analysis. These methods provided genetic evidence for potential causal relationships 
between antibody immune responses and BC and revealed possible mediation pathways. MR methods have 
multiple advantages: first, they follow Mendelian principles, ensuring random allele distribution in offspring, 
effectively reducing bias from confounding factors such as reverse causality and environmental factors. Second, 
the BC GWAS data used in this study include the largest sample size of European populations, providing 
generalizability. However, limitations of MR analysis should be noted. MR results only represent genetic 
causal relationships, while exposure-outcome effects often depend on multiple factors, including genetic, 
environmental, social, and economic factors. Therefore, the specific effect sizes obtained in this study do not 
equate to actual effect sizes. Second, MR results represent lifelong exposure effects, unable to explain intervention 
effects at specific ages or times. Thus, results should be interpreted cautiously. However, MR analysis introduces 
triangulation evidence through a genetic perspective, contributing significantly to advancing related fields.

This study has several limitations that warrant consideration. First, at the whole-genome level (P < 5e-8), 
some phenotypes did not have sufficient IVs for analysis. Based on previous experience, a P-value threshold 
of < 1e-5 was used to select IVs. To avoid bias from weak IVs due to the relaxed threshold, only IVs with 
F > 10 were retained. Second, the study primarily explored associations between antibody immune responses, 
immune cell types, and BC without delving into underlying pathophysiological mechanisms. Moreover, many 
genetic variants’ specific biological functions remain unclear, potentially influencing final results through 
unknown pleiotropy. Furthermore, while multiple pathogens were included in this study, many potential causal 
relationships between pathogen types and BC remain unexplored. Additionally, due to data availability and 
original study sample size, the statistical power of MR analysis might be insufficient, and sex- and age-stratified 
analyses were not conducted. The two-sample MR methods assume linear relationships between exposure 
and outcome, unable to analyze nonlinear associations directly. The GWAS summary data used in this study 
included only European participants, potentially limiting the generalizability of results to other populations. 
While correcting for multiple testing reduces Type I error probability, it increases Type II error possibility71. 
In this study, multiple BC subtypes were tested, and a strict significance threshold might be too conservative, 
potentially missing important causal relationships72. As a result, we prioritized results with PIVW <0.05, despite 
applying FDR adjustments. Therefore, when interpreting these findings, the possibility of false positives must be 
carefully considered. Some results showed confidence intervals close to 1, which may be due to smaller sample 
sizes, necessitating cautious interpretation of these specific findings. Given these limitations, translating current 
research findings into clinical practice requires further in-depth research and validation, including studies with 
larger and more diverse populations, sex- and age-stratified analyses, exploration of nonlinear relationships, 
investigation of biological mechanisms, examination of a broader range of pathogen-BC relationships, and 
validation through alternative methodologies and replication studies.

Conclusion
This study explored the relationships between various antibody immune responses, immune cell types, and BC 
subtypes, identifying potential causal relationships between pathogen antibody immune responses, immune 
cell types, and BC subtypes. The study further investigated potential regulatory mechanisms and mediation 
pathways of antibody immune responses-immune phenotypes-BC, providing possible directions for identifying 
immune targets. However, the specific mechanisms by which antibody immune responses and immune cells 
influence BC and their interactions require further in-depth research.

Scientific Reports |        (2024) 14:28579 10| https://doi.org/10.1038/s41598-024-79521-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Data availability
The GWAS data on antibody immune responses and 731 types of immune cells can be accessed using PMID in 
the GWAS Catalog (https://www.ebi.ac.uk/gwas/, accessed on June 1, 2024). The GWAS data for breast cancer 
can be obtained from the BCAC website (https://bcac.ccge.medschl.cam.ac.uk/, accessed on July 10, 2023).
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