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Abstract: Early identification of high-risk individuals through the analysis of

their unique disease trajectories has a strong potential to support efficient preven-

tion and clinical management across a range of chronic conditions. In this paper

we present a novel approach for dynamic modeling of the evolution of chronic dis-

ease risks over time, incorporating individual genetic predispositions. Our approach

uses a hierarchical Bayesian topic model including Gaussian Processes to capture

age effects. It accounts for genetic predisposition through a time-warping function

and topic-dependent genetic scores, enabling both simultaneous learning and up-

dated predictions of complex comorbidity patterns, inclusive of genomic and non-

genomic effects. We systematically compare to previous approaches and provide de-

tailed simulations at https://bookdown.org/sarahmurbut/dynamic_ehr/ and

https://surbut.shinyapps.io/dynamic_ehr.

Genetic Modeling, Disease Progression, Precision Medicine, Bayesian Inference, Gaussian
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Processes

Impact Statement

Our model significantly advances healthcare for aging populations by facilitating the early iden-

tification of high-risk individuals through the analysis of their unique disease trajectories within

complex comorbidity patterns. Existing models are limited in their capacity to manage diverse co-

morbidity patterns, particularly those that are time-dependent. We introduce an approach leveraging

Bayesian hierarchical modeling to concurrently learn population-level patterns and provide updated

real-time predictions across 350 diseases, thereby uncovering and forecasting intricate comorbidity

patterns. This methodology paves the way for preventive measures and targeted interventions that

enhance health outcomes, mitigate late-stage disease burdens, and foster healthier aging. Further-

more, our model incorporates genetic influences via a genetic predisposition parameter to estimate

the lifetime risk of specific diseases and disorders, alongside a time-warping function to facilitate

personalized predictions of disease trajectories.

1 Introduction

Understanding the evolution of an individual’s disease risk across their lifespan is crucial to

advancing personalized medicine. This insight is essential for developing therapeutics tailored to

individual patients rather than their diagnosed conditions. Current predictive models, which depend

on static health states, often fail to capture the complexities of individual disease progression,

particularly among aging populations, intricate disease interactions, and genetic influences. Recent

methodologies ([1], [2]) have sought to analyze more sophisticated data types to identify unique

disease patterns within extensive healthcare systems. These methodologies use data from large

populations to discern diverse patterns of comorbidity, providing insight into the unique trajectories

of complex diseases. Nevertheless, these approaches are not without limitations: firstly, temporal

analysis of disease patterns typically captures population-level trajectories, overlooking individuals

who progress through diseases at varying rates due to underlying genetic factors. Secondly, these

methods often aim to classify patterns at the population level rather than provide predictive insights.
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Lastly, even the most advanced approaches tend to aggregate an individual’s health conditions across

all accumulated diagnoses, failing to offer a time-dependent, individual-level profile that may evolve

with new diagnoses and treatments. For example, prior research [3] has demonstrated that patients

within the top 5% of genetic risk for myocardial infarction experience events nearly a decade earlier

than the general population and follow an accelerated pathway through associated comorbidities,

for which existing population-based methods offer minimal predictive capability. Our findings

reveal significant disparities in disease progression; individuals in the top 5% of genetic risk for

myocardial infarction encounter events nearly a decade earlier than those at lower risk (median

age of onset 53.7 [53.1-53.9] vs 62.6 years [61.4-63.1]). Our model dynamically updates and

predicts accurate diagnoses 79.5% more frequently than existing topic-modeling approaches [1].

The dynamic approach adjusts disease profiles by at least 11.7% annually for 50% of the individuals

in the UK Biobank and All of Us cohorts, and 65.4% experience a change greater than 10% in

comorbidity profiles. Simulation results corroborate the model’s superior accuracy [51.4-41%],

precision [50.9 vs 39.9%], and recall [48.4 vs 39.2%] compared to fixed-weight approaches.

This study introduces the Aladyn model, highlighting its potential for incorporating genetic

factors into the analysis of disease progression. We present evidence for the model’s functionalities,

utilizing estimated loadings derived from extant dynamic topic models as a foundational basis. Our

primary emphasis is on the innovative method of dynamically updating individual weights, which

sets our approach apart from existing methodologies.

2 Methodological Motivation

2.1 Overview

The principal aim of this study is to model temporal variations in disease probabilities across

various comorbidity profiles, incorporating underlying genetic factors while considering several

essential attributes. Although there are numerous clustering frameworks for electronic healthcare

data ([1], [4], [2]), they face challenges in deriving shared biological interpretations, inadequately

capture individual-level deviations from population trends, and fail to address temporal variations.

Certain frameworks within topic modeling can approximately address this challenge, as documents
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Figure 1: Differences in age of onset for prevalent conditions. As a motivating example, we

demonstrate the variation in the age of onset for a variety of common conditions within classically

defined categories: this figure illustrates the range of onset ages for common conditions in the UK

Biobank, N=421,707, age range 28-81.

typically contain multiple topics characterized by specific distributions over words [5]. In this study,

these genetically informed signatures of shared disease are termed topics. Our research builds upon

the foundational principles of dynamic topic models ([6]) and hierarchical Dirichlet processes [7].

However, we introduce a fundamental paradigm shift by a) extending the dimensionality of both

topic weights and disease loadings to the individual level, and b) dynamically updating both topics

and loadings with accumulated information. Our methodological innovation is motivated mainly

by three empirical trends described next.

1. The likelihood of disease manifestation within a defined comorbidity profile, referred to here

as a topic, demonstrates temporal variability. Different diseases under the same comorbidity

topic or underlying pathological process may have varying ages of onset. For example,

coronary artery disease may appear at an intermediate age, whereas heart failure may manifest

at more advanced ages, indicating the progression of the underlying disease process. Each

disease within a given topic has a specific distribution that indicates its occurrence propensity,

and a temporal parameter that denotes its rate of change over time (Figure 1).

2. The variability in disease onset is substantial and is not adequately represented by traditional

modeling methodologies. We observe that, even within a certain topic or profile, both the

age of onset and the progression rate of diseases differ based on an individual’s genetic

composition and other contributory factors (Figure 2). Instead of associating these factors
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Figure 2: Individualized timing within population-dictated disease chronology. We demonstrate

individuals heavily weighted on the cardiovascular topic with similarly ordered but chronologically

distinct ages of onset for common cardiovascular conditions. We demonstrate the distribution in

age of onset for common conditions, and how early onset individuals are poorly captured. We

demonstrate justification for the use of genetics in estimating the warped times.

post hoc, we incorporate them concurrently.

3. The heterogeneity of profiles contributing to an individual’s disease etiology exhibits tem-

poral variability across the lifespan. These fluctuations are observed in alignment with both

population-wide and individual-specific trends. Individual-specific trends are influenced by

a complex interplay of genetic and non-genetic factors.

Jointly modeling both observed diagnoses and underlying genetics according to these unique

time-dependent processes constitutes a novel approach. The integration of innovative diagnostic

data to refine the prevalence of underlying genetic themes shows significant potential to improve

predictive accuracy and enable novel discoveries. In this article, we first outline a novel framework

for describing the evolution of genetically informed disease topics. We discuss the modeling of

these comorbidity profiles over time, the incorporation of individual- and population-level trends,
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the dynamic adjustment of individual time scales within a given topic, and the updating of an

individual’s profile over time. We introduce a paradigm shift in disease modeling in the following

ways:

1. Individual-Level Time Warping: Accounting for differences in disease onset and progres-

sion speeds via a genetics-driven time warping function.

2. Genetic Integration: Polygenic risk scores (PRS) directly influence initial disease risk and

a genetic predilection parameter that determines an individual’s trajectory adaptability, re-

flecting underlying genetic influence.

3. Dynamic Topic Weights: Bayesian updating of topic weights with each new diagnosis

ensures our predictions always reflect the latest health information.

2.2 Connections With Topic Modeling in Natural Language Processing

Within the field of natural language processing, a ’topic’ [8] is defined as a pattern of semantically

related terms that frequently co-occur within a corpus of documents. For instance, a ’sports’ topic

may include terms such as ’football,’ ’basketball,’ and ’soccer,’ whereas an ’education’ topic might

be characterized by terms such as ’class,’ ’campus,’ ’teacher,’ and ’student.’ In a similar vein,

this study conceptualizes an individual’s diagnostic history as document text, where a ’topic’

signifies a cluster of interrelated diseases that commonly co-occur within patient histories. For

example, a cardiovascular topic is exemplified by a high prevalence of Myocardial Infarction and

hypertension diagnoses, supplemented by additional associations with hypertension. Conversely,

an endocrine topic may be primarily typified by Diabetes Mellitus and Thyroid disorders. Despite

these distinctions, both topics exhibit shared associations with hypertension and hyperlipidemia,

potentially due to differing etiological factors. The evolution and composition of each topic are not

always evident and can be enhanced through unsupervised learning. However, traditional topic-

modeling methodologies fail to adequately address the dynamic progression of diseases within a

patient’s medical history. For instance, coronary artery disease may manifest at an intermediate

age, while heart failure occurs predominantly at more advanced ages, reflecting the progression

of the underlying pathological processes. This progression can vary in speed due to both genomic
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𝐷 Number of possible diagnoses, indexed by 𝑑

𝑀 Number of individual patients, indexed by 𝑖

𝑁𝑖 Total number of diagnoses per patient

𝑇 Number of possible time points, indexed by 𝑡

𝑤𝑖𝑑𝑡 Observed diagnosis indicator for disease 𝑑 patient 𝑖

𝐾 Number of postulated topics (comorbidity profiles) indexed by 𝑘

𝑧𝑖𝑑𝑡 Latent (i.e. unobserved) index of the topic for diagnosis 𝑑 in patient 𝑖 at time 𝑡

Table 1: Notation for observed data and latent disease topics.

and non-genomic factors. This study introduces an age-dependent topic modeling framework to

capture the varying onset of diseases throughout life. While traditional topic modeling delineates

the population-level comorbidity profile, the likelihood of developing specific diseases and their

onset can exhibit substantial variability among individuals. This study incorporates both genetic and

non-genetic determinants to tailor the disease risk trajectory for individual prediction and pattern

discovery, both within and among topics. Genetic factors enter the model in two primary ways: First,

an individual with a high genetic predisposition for a particular topic is more likely to demonstrate

that topic, although their age-dependent incidence function follows population-level patterns. That

is, if cardiovascular disease is uncommon in the population at a young age, an individual with a

high predisposition to cardiovascular disease may have a higher than average weighting on this

topic, even though their weight of the overarching topic is allocated to alternative topics. Second,

the rate of progression of a disease conditional on the membership of a topic can vary by genetic

class within a topic.

3 Generative Model

3.1 Population-Level Topic Vocabularies Over Diseases

We first define a model for all diseases invariant to chronic or acute conditions in which a diagnosis

may reoccur. In our model, each topic 𝑘 has an associated vocabulary distribution over diseases.

This vocabulary distribution evolves over time and is modeled using a Gaussian Process (GP).
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Specifically, for each topic 𝑘 and each disease 𝑑, we define the parameters 𝜂𝑘𝑑𝑡 that describe the

log-odds of disease 𝑑 occurring within topic 𝑘 at time 𝑡.

The evolution of 𝜂𝑘𝑑𝑡 over time 𝑡 is given by the Gaussian Process:

𝜂𝑘𝑑𝑡 ∼ GP(𝜇𝑘𝑑 (𝑡), Σ𝜂) (1)

where 𝜇𝑘𝑑 (𝑡) is the mean function (Figure S6), and Σ𝜂 is the covariance matrix that captures the

correlation over time. The mean function 𝜇𝑘𝑑 (𝑡) can take various forms, such as linear trends,

logistic growth, exponential decay, Gaussian peaks, polynomial trends, or sinusoidal patterns,

depending on the expected behavior of the disease 𝑑 within the topic 𝑘 .

Given that most diseases exhibit peak activity within a limited number of topics (sparse data

rows), we enforce the restriction that diseases remain active only in a small number of topics (Figure

S2). This constraint ensures identifiability [8].

The covariance matrix Σ𝜂 is constructed using a covariance function, typically a squared

exponential kernel, which ensures that the probability of the disease changes smoothly over time

so that the topic-specific probability of a disease is more closely correlated with nearby times.

To map from the log-odds scale to the probability scale, we apply the softmax function to 𝜂𝑘𝑑𝑡 :

𝛽𝑘𝑑𝑡 =
exp(𝜂𝑘𝑑𝑡)∑𝐷

𝑑′=1 exp(𝜂𝑘𝑑′𝑡)
,

where 𝛽𝑘𝑑𝑡 represents the probability of disease 𝑑 within the topic 𝑘 at time 𝑡.

3.2 Population-Level Topic Weights

The population-level topic weights describe how the prevalence of each topic 𝑘 changes over time

at the population level. These weights are represented by the parameters 𝛼𝑘𝑡 for each topic 𝑘 at

time 𝑡. Similarly to the disease vocabularies, the topic weights are also modeled using a Gaussian

process:

𝛼𝑘𝑡 ∼ GP(𝜇𝑘 (𝑡), Σ𝛼), (2)

where 𝜇𝑘 (𝑡) is the mean function that describes the expected prevalence of topic 𝑘 over time, and

Σ𝛼 is the covariance matrix for topic weights.
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3.3 Genetic Novelty: Warping for Topic-specific Disease Probabilities

A critical feature of our model is that genetics influences disease progression in two ways because

we observe variation in age of disease onset for a disease even within a given topic. Secondly, we

wish to improve our estimation of individual topic predilection by considering genomic predilection

to disease topics. There are two critical parameters allowing for the joint incorporation of genetics

into our model:

• Time warping parameters 𝜌’s

• Genetic predilection parameters 𝛾’s.

Individual genetic factors influence how each person’s disease probabilities within topics evolve

over time. This is modeled through the genetic warping parameter 𝜌𝑖,𝑘 for each individual 𝑖 and

topic 𝑘 . The warping function 𝑡′ = 𝑊 (𝑡, 𝜌𝑖,𝑘 ) transforms the original time index 𝑡 into a new time

index 𝑡′, effectively modulating the speed at which individual 𝑖 progresses through the disease

probabilities of topic 𝑘 . For instance, for an individual with a genetic warping index of 2 for topic

𝑘 , the disease probabilities which are supposed to occur at age 60 occur at age 36, and those at

age 50 occur at age 25. Critically, this is still taken from the population-level topic probabilities, so

there is learning across the population.

3.4 Disease Probability within Topics: Genetics-dependent Warping of Time

For each individual, as above, the warping coefficient 𝜌𝑖𝑘 governs the time scale at which the disease

activity operates. Recall that we wish to map the chronologic age for every individual to the warped

time, such that the appropriate population level probability values at the relevant warped time are

applied to every individual’s chronologic time, so that at age 25, we would retrieve the population

from age 50 for example.

For each individual 𝑖, topic 𝑘 , and time 𝑡:

𝑡′𝑖𝑘 = max(1, 𝜏(𝑡, 𝜌𝑖𝑘 , 𝑇))

where:

𝜏(𝑡, 𝜌𝑖𝑘 , 𝑇) =
( 𝑡
𝑇

) 1
𝜌𝑖𝑘 × 𝑇
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Figure 3: Warping. Here we demonstrate how an individual of low genetic risk will have disease

probabilities ascertained from younger ages at present time, and those of high genetic risk will

have probabilities of later times pushed forward. We demonstrate this behavior from our model fit

on three chosen diseases.

• 𝑇 is the maximum time (e.g., age 100).

• 𝜌𝑖𝑘 is the warping coefficient for individual 𝑖 and topic 𝑘 , influenced by the genetic scores:

𝜌𝑖𝑘 = w𝑇g𝑖 .

This is a positive number.

• w is a vector of weights to be learned for each genetic score.

Calendar time 𝑡 will translate into warped time 𝑡′ thus retrieving the appropriate population-level

value. We use this to determine the index of the probability which is drawn for a given individual.

𝛽′𝑘𝑑𝑡 (𝑖) = 𝛽𝑘𝑑𝑡′𝑖𝑘

This allows for individual-specific variations in the progression of disease probabilities within

each topic by pulling the probability from the population-level at the warped time index.
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Figure 4: Gaussian Process for Topic Weights influenced by population and individual level

trajectory. Here we demonstrate the population level trajectory and the individual predilection for

a given topic.

3.5 Genetic Predilection for Topic Weights

Genetics also influences an individual’s predilection for certain topics, which is represented by

an adjustment to the population-level mean function of the topic weights. Each individual 𝑖 has a

genetic predilection score 𝛾𝑖𝑘 for topic 𝑘 . This score adjusts the population-level mean function

𝜇𝑘 (𝑡) to create an individual-specific mean function:

𝜇𝑖𝑘 (𝑡) = 𝜇𝑘 (𝑡) + 𝛾𝑖𝑘 (3)

Individual-specific topic weights 𝛼𝑖𝑘𝑡 are then sampled from a Gaussian process with this

adjusted mean function:

𝛼𝑖𝑘𝑡 ∼ GP(𝜇𝑖𝑘 (𝑡), Σ𝛼). (4)

To obtain valid probability distributions for topic proportions at each time point, we apply the

softmax function to individual-specific topic weights 𝛼𝑖𝑘𝑡 . This ensures that the topic proportions

sum to one at each time point:

𝜃𝑖𝑘𝑡 =
exp(𝛼𝑖𝑘𝑡)∑𝐾
𝑘 ′=1 exp(𝛼𝑖𝑘𝑡)
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Figure 5: Plate Diagram Modifying Flow. Here we illustrate the flow of our generating model. In

brief, our process is governed by two population level parameters, the evolution of topic weights

(𝛼) and disease loadings (𝜂). Both arise from topic or disease specific Gaussian process with topic

or disease level mean and covariance parameters. The covariance pattern arises from a Gaussian

kernel in which adjacent times share probability more closely. Genetics acts in two fundamental

ways to influence individual changes: The topic weights for every individual are driven by both

the population mean and the individual predilection for a given topic, 𝛾𝑖𝑘 . The scale at which

an individual progresses through a topic specific disease is governed by a ’warping coefficient’,

𝜌𝑖𝑘 . Both topic weights and disease loadings are softmax normalized at each stage to generate a

proper probability distribution. Then, at each time point, a latent indicator is chosen according to

an individual’s time-specific probability over topics, 𝜃𝑖𝑘 . This latent indicator then designates the

vector of time specific disease probabilities 𝛽𝑖𝑘𝑡′ , which will govern the choice of observed diagnosis.

The 𝛽𝑖𝑘𝑡 is generated according to the topic’s population-specific vector of disease probabilities for

the time governed by the individual’s warping parameter.

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2024. ; https://doi.org/10.1101/2024.09.29.24314557doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.29.24314557
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.6 Summary of Generating Model

In summary, the hierarchical structure for the generative process for each individual 𝑖 over time

𝑡 can be summarized as follows. We also offer a modified plate diagram describing the evolution

(Figure 5).

1. For each topic 𝑘 and each disease 𝑑, the disease vocabulary evolves over time according to a

Gaussian Process (GP):

𝜂𝑘𝑑 ∼ GP(𝜇𝑘𝑑 , Σ2
𝜂)

2. The topic proportions also evolve over time via a GP:

𝛼𝑘 ∼ GP(𝜇𝑘 , Σ2
𝛼)

3. For each individual 𝑖, the GP from which the topic proportions 𝛼𝑖𝑘 are drawn varies depending

on the genetic ’predilection’ 𝛾𝑖𝑘 :

𝜇𝑖𝑘 = 𝜇𝑘 + 𝛾𝑖𝑘

𝛼𝑖𝑘 ∼ GP(𝜇𝑖𝑘 , Σ2
𝛼𝑘
)

4. The disease vocabulary is adjusted for each individual’s ’warped’ time scale 𝜌𝑖𝑘 :

𝜂′𝑘𝑑𝑡 (𝑡) (𝜌𝑖𝑘 ) = 𝜂𝑘𝑑𝑡′𝑖𝑘

5. The probability of disease 𝑑 within topic 𝑘 at individual-specific ’warped’ time 𝑡′𝜌𝑖 is given

by the softmax function over the natural parameter 𝜂:

𝛽′𝑘𝑑𝑡 (𝑖) =
exp(𝜂𝑘𝑑𝑡′

𝑖𝑘
)∑

𝑑′ exp(𝜂𝑘𝑑𝑡′
𝑖𝑘
)

6. Similarly, the topic proportions for individual 𝑖 at time 𝑡 are given by the softmax function

over 𝛼:

𝜃𝑖𝑘𝑡 =
exp(𝛼𝑖𝑘𝑡)∑
𝑘 ′ exp(𝛼𝑖𝑘 ′𝑡)

7. For each diagnosis 𝑛 for individual 𝑖 at time 𝑡, the topic is chosen according to the multinomial

distribution based on 𝜃:

𝑧𝑖𝑛𝑡 ∼ Mult(𝜃𝑖,·,𝑡)

8. The observed disease 𝑤 for each diagnosis 𝑛 is given by:

𝑤𝑖𝑛𝑡 |𝑧𝑖𝑛𝑡 , 𝛽·,𝑡 ∼ Categorical(𝛽𝑘𝑑𝑡′
𝑖𝑘
)
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3.7 Simulating Diagnoses

The process of simulating diagnoses for each individual 𝑖 at each time point 𝑡 involves several steps:

1. Simulate Diagnoses Based on Time: For each time point 𝑡 from 1 to 𝑇 , we calculate the

expected number of diagnoses 𝜆𝑖𝑡 using a Poisson distribution scaled by time in which we

expect a greater number of diagnoses at later time points:

𝜆𝑖𝑡 =
𝜒 · 𝑡
𝑇

We then sample the number of diagnoses 𝑁𝑖 from a Poisson distribution with mean 𝜆𝑖𝑡 .

2. Sample Diagnoses and Topics: For each diagnosis 𝑛 from 1 to 𝑁𝑖:

• Sample a topic 𝑘 from the individual-specific topic proportions 𝜃𝑖𝑘𝑡 .

• Use the time-warping function to adjust the time index for the sampled topic.

• Sample a disease 𝑑 from the topic-specific disease probabilities 𝛽𝑘𝑑𝑡′ at the warped time

index.

4 Likelihood

4.1 Overview

Our model is trained on data consisting of observed diagnoses by individual and time. The likelihood

of the observed data can be derived by considering the probability of observing the diagnoses given

the latent variables, which include the topic weights (𝜃), topic loadings (𝛽), genetic warping

parameters (𝜌), and genetic predilection parameters (𝛾). The likelihood is the joint probability of

the observed diagnoses given the latent variables. For each individual 𝑖, time 𝑡, and diagnosis 𝑛 for

𝑀 individuals:

L =

𝑀∏
𝑖=1

𝑇∏
𝑡=1

𝑁𝑖 (𝑡)∏
𝑛=1

𝑃(𝑤𝑖𝑛𝑡 | 𝜃𝑖𝑘𝑡 , 𝛽𝑘𝑑𝑡 , 𝜌𝑖,𝑘 , 𝛾𝑖𝑘 ).
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Observed Variables

𝑤𝑖𝑛𝑡 Observed diagnosis for individual 𝑖 at diagnosis 𝑛 and time 𝑡

Latent Variables

𝜃𝑖𝑘𝑡 Individual-specific topic proportions at time 𝑡

𝛽𝑘𝑑𝑡 Topic-specific disease probabilities at time 𝑡

𝜌𝑖,𝑘 Genetic warping parameters for individual 𝑖 and topic 𝑘

𝛾𝑖𝑘 Genetic predilection parameters for individual 𝑖 and topic 𝑘

𝑧𝑖𝑛𝑡 Latent topic assignment for each diagnosis 𝑤𝑖𝑛𝑡

Table 2: Observed and Latent Variables

4.2 Likelihood Function

Breaking it down further, we can express the likelihood as follows.

4.2.1 Topic Assignment

The probability of assigning a topic 𝑧𝑖𝑛𝑡 given the topic proportions 𝜃𝑖𝑘𝑡 :

𝑃(𝑧𝑖𝑛𝑡 = 𝑘 | 𝜃𝑖𝑘𝑡 , 𝛾𝑖𝑘 ) = 𝜃𝑖𝑘𝑡

4.2.2 Genetic Warping (𝜌)

The warping parameter 𝜌𝑖,𝑘 affects the time index used in the disease probabilities 𝛽. We can

express this as:

𝑃(𝑤𝑖𝑛𝑡 |𝑧𝑖𝑛𝑡 = 𝑘, 𝛽𝑘𝑑𝑡 , 𝜌𝑖,𝑘 ) = 𝛽𝑘𝑑 (𝑊 (𝑡,𝜌𝑖,𝑘)) (5)

Where 𝑊 (𝑡, 𝜌𝑖,𝑘 ) is the warping function that transforms the original time 𝑡 based on the

individual’s genetic warping parameter.

4.2.3 Genetic Predilection (𝛾)

The genetic predilection parameter 𝛾𝑖𝑘 influences the individual-specific topic proportions 𝜃𝑖𝑘𝑡 . We

can incorporate this into the likelihood as:
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𝑃(𝑧𝑖𝑛𝑡 = 𝑘 |𝜃𝑖𝑘𝑡 , 𝛾𝑖𝑘 ) = 𝜃𝑖𝑘𝑡 = softmax(𝛼𝑖𝑘𝑡 + 𝛾𝑖𝑘 ) (6)

Where 𝛼𝑖𝑘𝑡 is the population-level topic weight and 𝛾𝑖𝑘 is the individual’s genetic predilection

for topic 𝑘 .

4.2.4 Diagnosis Probability

Incorporating both genetic parameters, we can express the full likelihood for an individual 𝑖 as:

L𝑖 =
∏
𝑡

∏
𝑛

(∑︁
𝑘

softmax(𝛼𝑖𝑘𝑡 + 𝛾𝑖𝑘 ) · 𝛽𝑘𝑑 (𝑊 (𝑡,𝜌𝑖,𝑘))

)
(7)

This formulation shows how both the topic selection and disease probabilities are influenced by

the individual’s genetic parameters.

The probability of observing a diagnosis 𝑤𝑖𝑛𝑡 given the topic assignment 𝑧𝑖𝑛𝑡 and the topic-

specific disease probabilities 𝛽𝑘𝑑𝑡 . This involves the genetic warping function to obtain the appro-

priate 𝛽 at the warped time index:

𝑃(𝑤𝑖𝑛𝑡 | 𝑧𝑖𝑛𝑡 = 𝑘, 𝛽𝑘𝑑𝑡 , 𝜌𝑖,𝑘 ) = 𝛽𝑘𝑑𝑊 (𝑡 ,𝜌𝑖,𝑘 ) .

Putting it all together, the joint likelihood for an individual 𝑖 can be written as:

L𝑖 =
𝑇∏
𝑡=1

𝑁𝑖 (𝑡)∏
𝑛=1

(
𝐾∑︁
𝑘=1

𝜃𝑖𝑘𝑡𝛽𝑘𝑑𝑊 (𝑡 ,𝜌𝑖,𝑘 )

)
,

and the overall likelihood for the entire dataset is then the product over all individuals:

L =

𝑀∏
𝑖=1
L𝑖 =

𝑀∏
𝑖=1

𝑇∏
𝑡=1

𝑁𝑖 (𝑡)∏
𝑛=1

(
𝐾∑︁
𝑘=1

𝜃𝑖𝑘𝑡𝛽𝑘𝑑𝑊 (𝑡 ,𝜌𝑖,𝑘 )

)
.

5 Posterior Updates for Bayesian Inference

The model specification just described can be used to implement Bayesian inference and evaluate

posterior distributions of all the latent variables and unknown parameters. As this is computationally

very challenging for high-dimensional real-life EHR data, we implement here a practical approxi-

mation that leverages estimates developed in previous work to estimate population parameters, and

allows us to focus on novel aspect of time dependencies and warping.
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5.1 Updating individual topic probabilities

Considering individual patients, an important step clinically is the evaluation of the posterior

probability that patient 𝑖’s diagnosis 𝑤𝑖𝑛𝑡 at time 𝑡 is manifesting as a result of the action of topic

𝑘 , based on their previous history of diagnoses. Using Bayes’ rule, this posterior probability is

updated as follows:

𝑃(𝑧𝑖𝑛𝑡 = 𝑘 | 𝑤𝑖𝑛𝑡 , 𝜃𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, 𝛾𝑑 , 𝛽𝑑) ∼ 𝛽𝑘𝑑𝑡 · 𝑃(𝑧𝑖𝑛𝑡 = 𝑘𝜃𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, 𝛾𝑑).

where 𝜃𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 = (𝜃𝑖·1, . . . , 𝜃𝑖·𝑡−1). Also we assume that𝑤𝑖𝑛𝑡 is the sole diagnosis at time 𝑡 for patient

𝑖. Multiple diagnosis updates follow the same logic, not spelled out here for brevity. This allows

us to use the new diagnoses at any point in time to compute dynamic updates of an individuals’

disease probability.

5.2 Parameter Estimation

In practice, we apply a novel algorithm to update the posterior distribution over topic weights for a

given set of diagnoses:

1. Initialization of 𝜃𝑖𝑘 (𝑡):

We first initialize the estimated 𝜃𝑖𝑘 (𝑡) at time 𝑡 = 1 : 3 by drawing from a Dirichlet distribution:

𝜃𝑖𝑘 (1 : 3) ∼ Dirichlet(𝛼, 𝐾)

where 𝛼 is chosen to be greater than 1 to ensure relatively uniform values across the 𝐾 topics.

2. Predicted GP Mean:

The predicted GP mean, 𝜇𝑘𝑖, is initialized using the estimated 𝜃𝑖𝑘 (𝑡) values at time 𝑡 = 1 : 3.

The population predicted mean is also set to this value.

3. Gaussian Process Fit from time point 4 to T:

A Gaussian Process (GP) is fit using the estimated 𝜃𝑖𝑘 (𝑡) at time points 𝑡 = 1 : 3 to predict

𝜃𝑖𝑘 (𝑡) at time 𝑡 = 4, for both the individual and the population.

4. Subsequent Time Points:

For each subsequent time point 𝑡, a Gaussian Process is fit to the estimated 𝜃𝑖𝑘 (𝑡) at time
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points 𝑡 = 1 : (𝑡 −1). This fit is treated as the prior prediction for 𝜃𝑖𝑘 (𝑡). The GP is fit for both

the population (i.e., GP on 𝐸 (𝜃𝑖𝑘 (1 : 𝑇 − 1))) and the individual (i.e., GP on 𝜃𝑖𝑘 (1 : 𝑇 − 1)).

5. Adjusted GP Mean:

The adjusted GP mean at time 𝑡 is obtained by a weighted average of the population GP mean

and the individual GP mean.

6. Likelihood of New Diagnoses:

For patients with new diagnoses at time 𝑡, the likelihood of the diagnoses is calculated as:

𝑃(𝑧𝑡 |𝑤) =
∏
𝑑

𝑃(𝛽𝑘𝑑 |𝑍 = 𝑘)

where 𝛽𝑘𝑑 represents the disease-specific parameters given the topic 𝑘 .

7. Combination of Prior Prediction and Likelihood:

The prior prediction is combined with the likelihood by adding the log of the adjusted GP

mean and log-likelihood, then exponentiating the result to obtain the final estimate for 𝜃𝑖𝑘 (𝑡):

estimate𝜃𝑖𝑘 (𝑡) = exp .

Additional Parameters in detailed methods:
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5.3 Algorithm for Posterior Updates for 𝜃

Algorithm 1 Posterior Updates for 𝜃 Given 𝛽 and Observed Diagnoses
1: Input: Previous GP predictions of 𝜃, genetic warping parameters 𝜌𝑖,𝑘 , genetic predilection

parameters 𝛾𝑖𝑘 , observed diagnoses 𝐷, disease probabilities 𝛽

2: Output: Updated 𝜃

3: for each time point 𝑡 do

4: Update population GP means 𝜇𝑘𝑡
5: 𝜇𝑘𝑡 ← fit gp(1 : (𝑡 − 1),mean(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇ℎ𝑒𝑡𝑎[:, :, 1 : (𝑡 − 1)]), 𝜎)

6: for each individual 𝑖 do

7: Update individual GP means 𝜇𝑖𝑘𝑡
8: 𝜇𝑖𝑘𝑡 ← fit gp(1 : (𝑡 − 1), 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇ℎ𝑒𝑡𝑎[𝑖, :, 1 : (𝑡 − 1)], 𝜎)

9: Compute individual weight 𝑤𝑖

10: 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑔𝑝 𝑚𝑒𝑎𝑛[𝑖, :, 𝑡] ← 𝑤𝑖 · 𝜇𝑖𝑘𝑡 + (1 − 𝑤𝑖) · 𝜇𝑘𝑡
11: Retrieve current diagnoses data for individual 𝑖

12: 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 𝑖𝑛𝑑𝑖𝑐𝑒𝑠← map diagnoses(𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠 𝑐𝑜𝑑𝑒𝑠, 𝑙𝑖𝑠𝑡 𝑜 𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑠)

13: Compute likelihood

14: 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ←∏(𝛽[𝑊 (𝑡, 𝜌𝑖,𝑘 ), 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 𝑖𝑛𝑑𝑖𝑐𝑒𝑠])
15: Update log proportions

16: 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑙𝑜𝑔 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠← log(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + log(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑔𝑝 𝑚𝑒𝑎𝑛[𝑖, :, 𝑡])

17: Normalize

18: 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠← exp(𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑙𝑜𝑔 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠)/∑(exp(𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑙𝑜𝑔 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠))

19: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇ℎ𝑒𝑡𝑎[𝑖, :, 𝑡] ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠

20: end for

21: end for
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5.4 Algorithm for Posterior Updates for 𝛽 Given 𝜃

Algorithm 2 Posterior Updates for 𝛽 Given 𝜃
1: Input: Fixed 𝜃, genetic warping parameters 𝜌𝑖,𝑘 , observed diagnoses 𝐷

2: Output: Updated 𝛽

3: Initialize diagnosis counts and count array with zeros

4: for each individual 𝑖 do

5: for each topic 𝑘 do

6: for each time point 𝑡 do

7: Compute original time index og time = 𝑊 (𝑡, 𝜌𝑖,𝑘 )

8: Retrieve diagnoses at time 𝑡 for individual 𝑖

9: Update diagnosis counts and count array for each diagnosis

10: end for

11: end for

12: end for

13: Compute 𝛽 as the normalized counts

14: for each topic 𝑘 do

15: for each time point 𝑡 do

16: Normalize 𝛽𝑘𝑑𝑡 using the softmax function

17: end for

18: end for

5.4.1 Data

Our primary analyses are in the UK Biobank and AllofUs data sets.

UK Biobank The UK Biobank has collected detailed health and genetic data from approximately

500,000 participants aged 40 to 69 years, recruited between 2006 and 2010. Here, we assemble EHR

data for 421,707 participants with at least one EHR diagnosis recorded between the ages of 28 and

81 from 1981 forward [9], [10]. The HESIN EHR data includes coded clinical events, consultations,

diagnoses, procedures, and laboratory tests, using coding systems such as READ2, CTV-3, BNF
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and DM + D. Furthermore, hospital inpatient data, which covers admissions, diagnoses, procedures,

and discharge information, is available for the entire cohort and is coded using ICD-9, ICD-10,

OPCS-3, and OPCS-4. The UK Biobank also links to national death and cancer registries to provide

comprehensive health outcomes data.

All of Us The All of Us Research Program is a diverse biomedical dataset from the United States.

Currently, more than 460,000 participants have consented to share their electronic health records

(EHR), with approximately 55% of these records already integrated into the program data set [11].

We used data from 239,200 people who contributed both EHR and genomic information [12]. The

EHR data in All of Us include information from various health domains such as conditions, pro-

cedures, drugs, and measurements, which are standardized using vocabularies such as SNOMED,

LOINC, and ICD codes. Here we use ICD10 codes harmonized to the 349 codes used in the UK

Biobank.

6 Results

6.1 Model Assessment: Updated Patient Weights

In this section, we evaluate our model fit in comparison to a time-fixed weight approach, which

estimates weights only once based on available information. We first demonstrate the comparison

between the true weights of the topic and the estimated weights at the population level.

We demonstrate the improvement in predicted theta using our approach to a fixed weight (𝜃)

approach.

6.2 Performance Metrics

To evaluate the performance of our predictive model, we calculate the following metrics: accuracy,

precision, recall, and F1-score. These metrics are defined as follows:

Accuracy Accuracy is the ratio of correctly predicted diagnoses to the total number of true

diagnoses. It is given by:

Accuracy =
True Positives

Total True Diagnoses
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Deviations from True Time Varying Topic Weights Θ𝑖𝑘𝑡	
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Figure 6: Delta. Over 100 time points, we demonstrate the deviations between an approach that uses

a flat estimate of 𝜃𝑖𝑘 as 1/K (agnostic), an approach that uses the initiation value of 𝜃𝑖𝑘 (initiation),

an approach ’ATM’ that uses the average 𝜃𝑖𝑘 over all time points ([1]) and two versions of Aladyn.
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Precision Precision is the ratio of correctly predicted diagnoses to the total number of predicted

diagnoses. It is given by:

Precision =
True Positives

True Positives + False Positives

Recall Recall, also known as sensitivity or true positive rate, is the ratio of correctly predicted

diagnoses to the total number of actual true diagnoses. It is given by:

Recall =
True Positives

True Positives + False Negatives

F1-Score The F1-Score is the harmonic mean of precision and recall. It provides a balance

between precision and recall and is given by:

F1-Score = 2 · Precision · Recall
Precision + Recall

In simulations, we find that the accuracy, precision, and recall are superior with Aladyn as

opposed to a fixed weight approach when comparing to true topic identifiers and using simulated

diagnoses:

Figure 7: Performance Assessment. We demonstrate the Accuracy, Precision, Recall and F1 score

of simulations using Aladyn and a fixed weight approach. Terms defined in text.
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Figure 8: Time Varying Weights. Here we demonstrate the actual age of diagnoses for a sample

patient in the UK Biobank. We demonstrate the fit using Aladyn, and using a traditional fixed weight

approach according to ATM ([1]).

6.3 Disease Loadings and Time Varying Weights

We demonstrate the clarity of estimated 𝛽 for known topics ??. In brief, as in the algorithm above,

we map all simulated disease counts to the unwarped time for an individual, and weight by the

expected topic time varying contribution of each individual. We note that this differs fundamentally

from existing approaches which only estimate weight once.

Subsequently, we evaluated the results derived from the application of time-varying weights

to actual diagnoses (Figure 8). Several key distinctions are observed from existing methodologies.

In particular, Aladyn exhibits the proficiency to identify population-level trajectories even amidst

sparse population-level data. With the advent of new diagnoses, Aladyn refines the previously

estimated weights by incorporating these new diagnoses with the topics that most effectively

enhance the likelihood of the specific diagnoses. The ’memory’ of prior diagnoses is sustained

through the Gaussian process.

Furthermore, we can see that 65.4% of the population has a shift of more than 10% and 50% of

the time, the shift is greater than 11.5% (Figure S7).

6.4 Biological Meaning of Topic Weights

Our findings substantiate the identified warping, as temporal variations in weight reveal that indi-

viduals within the top and bottom 20% of the polygenic risk exhibit earlier (later) predictions of
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Figure 9: Marginal Probability. Here we show that the marginal probability of disease is shifted

for those with varying levels of genetic risk.

disease onset under our model. Furthermore, we show that individuals with true high genetic risk

are highly enriched in topic weights for the expected topics when we use a cardinal polygenic risk

score (PRS) as the target PRS from which to assess enrichment.

6.5 Improved Accuracy and Flexibility

Here we show the variation in topic weights when compared with a model that uses time-fixed

weights. We first ask, for each condition diagnosed in real data, what proportion of the time did our

model Aladyn assign to the diagnosis a time-weighted marginal probability greater than 10%, how

often did the competing ATM (age dependent topic model, [1]) do so. Furthermore, we compare

the nominal percentage assigned for real diagnoses.

To facilitate exploration of a dynamic time-varying model’s, we have developed and interactive

web application available at https://surbut.shinyapps.io/forapp/. This tool allows users

to visualize the important diseases for each topic in the UK Biobank, All of US https://surbut.
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Model Accuracy Proportion Correct Delta

ATM 0.01 0.21 2.60

Aladyn 0.15 0.79 NA

Table 3: Comparison of Model Accuracy and Probability of True Disease Proportion Correct

is the proportion of Time Model Assigns True Disease Higher Probability. Delta is the difference

in probability assigned by Aladyn vs ATM

shinyapps.io/aouapp/ and Mass General Brigham Biobank https://surbut.shinyapps.

io/mgb_topic/.

Furthermore, we have created an app at https://surbut.shinyapps.io/dynamic_ehr/

that allows users to simulate warping, time-varying weights, and unique trajectories in real-time,

providing an intuitive understanding of the Aladyn model’s functionality.

7 Limitations and Future Work

While the Aladyn model demonstrates promising outcomes, it is crucial to recognize its current

limitations and potential areas for future enhancement. Model Implementation: The present itera-

tion of Aladyn utilizes estimated loadings derived from extant dynamic topic models (i.e., [1, 6]).

Individualized risk assessment is feasible by using externally estimated parameters and functions

pertinent to the general population, with a focus on modeling individual variation. Nevertheless,

further research would be beneficial to fully implement the model’s proprietary Bayesian learning

of these loadings. The incorporation of multiple Gaussian processes and Bayesian updates within

the model necessitates significant computational resources. Optimizing these algorithms for large-

scale datasets remains an ongoing challenge. Although the data demonstrate superior performance

relative to an existing age-dependent topic model, additional validation is recommended against

a broader spectrum of state-of-the-art methodologies. Despite utilizing data from both the UK

Biobank and All of Us, further evaluation on diverse populations is required to ensure the model’s

wide-ranging applicability. First, there is a need to develop more efficient computational methods

to handle larger datasets. This reflects on the computational challenges associated with the model

and aims at improving its performance and scalability. Second, the plan includes conducting com-
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prehensive comparisons with other leading disease progression models. This involves evaluating

the performance of the Aladyn model against other models to identify strengths and weaknesses.

In addition, there will be investigations into how well the model performs across a broader range

of populations and disease types, ensuring its applicability and robustness in various scenarios.

These efforts are aimed at addressing current limitations and expanding the model’s usability and

accuracy.

8 Discussion

This modeling paradigm integrates population trends with individual genetic variations, elucidating

commonalities and divergences in disease progression. The described generative model is governed

by two population-level parameters: the evolution of topic weights (𝛼) and disease loadings (𝜂).

These parameters are inferred from topic- or disease-specific Gaussian processes characterized by

their respective mean and covariance structures. The covariance pattern is modulated by a Gaussian

kernel, ensuring that temporally adjacent points exhibit higher correlation. Crucially, genetic factors

modulate individual variations through topic weights, influenced by both the population mean and

individual predisposition (𝛾𝑖𝑘 ), and the progression scale of a topic-specific disease, regulated by a

’warping coefficient’ (𝜌𝑖𝑘 ). Topic weights and disease loadings undergo softmax normalization to

ensure they form a valid probability distribution. At each time point, a latent indicator is selected

based on an individual’s time-specific topic probabilities (𝜃𝑖𝑘 ), which subsequently determines the

vector of time-specific disease probabilities (𝛽𝑖𝑘𝑡′) that dictates the observed diagnostic outcome.

The diagnostic outcome is generated in accordance with the topic’s population-specific vector of

disease probabilities, modulated by the individual’s warping parameter. By leveraging Gaussian

processes and Bayesian updates, the model provides dynamic, personalized disease predictions.

We demonstrate that the integration of genetic data with hierarchical models facilitates the amalga-

mation of population-level learning with individual-level prediction, thereby enhancing predictive

accuracy and enabling the discovery of novel topics. We provide the results of the implementation

on the dynamic topic model loadings ([6] in the UKB in supplementary figures 17-26).

The ethical implications of using genetic data for disease prediction are significant and warrant

careful consideration. While Aladyn offers powerful predictive capabilities, it’s crucial to ensure
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that its implementation respects patient privacy, avoids genetic discrimination, and considers the

psychological impact of early disease predictions. Future work should include collaborations with

bioethicists to develop guidelines for the responsible use of such models in clinical settings. To

promote transparency and facilitate further research, we have made the simulation code for Aladyn

available on GitHub https://surbut.github.io/dynamic_ehr. We encourage the scientific

community to explore, validate, and build upon our work.
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Supplementary Materials for

Aladyn Individual: Bayesian Hierarchical Dynamic Genetic

Modeling of Comorbidity Progression

This PDF file includes:

Materials and Methods

Figures S1 to S3

Tables S1 to S4
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Materials and Methods

8.1 Updating Genetic Parameters

The genetic parameters 𝜌 and 𝛾 are updated using Bayesian inference as follows:

8.1.1 Updating 𝜌

The posterior distribution of 𝜌 given the observed data 𝐷 can be expressed as:

𝑃(𝜌 |𝐷) ∝ 𝑃(𝐷 |𝜌) · 𝑃(𝜌) (8)

Where 𝑃(𝐷 |𝜌) is the likelihood of the data given 𝜌, and 𝑃(𝜌) is the prior distribution of 𝜌.

We can use a Metropolis-Hastings algorithm to sample from this posterior:

Algorithm 3 Metropolis-Hastings for updating 𝜌
1: Propose a new 𝜌∗ from a proposal distribution 𝑞(𝜌∗ |𝜌)

2: Calculate the acceptance ratio:

3: 𝛼 = min
(
1, 𝑃(𝐷 |𝜌

∗)·𝑃(𝜌∗)·𝑞(𝜌 |𝜌∗)
𝑃(𝐷 |𝜌)·𝑃(𝜌)·𝑞(𝜌∗ |𝜌)

)
4: Accept 𝜌∗ with probability 𝛼

8.1.2 Updating 𝛾

Similarly, for 𝛾:

𝑃(𝛾 |𝐷) ∝ 𝑃(𝐷 |𝛾) · 𝑃(𝛾) (9)

We can use a similar Metropolis-Hastings algorithm or, if conjugate priors are used, closed-form

updates may be available.

8.1.3 Joint Update

In practice, we may want to update 𝜌 and 𝛾 jointly to account for their potential correlation:

𝑃(𝜌, 𝛾 |𝐷) ∝ 𝑃(𝐷 |𝜌, 𝛾) · 𝑃(𝜌, 𝛾) (10)

This can be done using a multivariate proposal distribution in the Metropolis-Hastings algorithm.
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8.2 Convergence and Practical Considerations

Several practical considerations should be taken into account when implementing these updates:

• Monitor convergence using multiple chains and Gelman-Rubin statistics:

𝑅̂ =

√︄
𝑉̂

𝑊
(11)

where 𝑉̂ is the between-chain variance and𝑊 is the within-chain variance.

• Consider adaptive MCMC methods to improve mixing and convergence speed. For example,

the adaptive Metropolis algorithm haario2001adaptive can be used to automatically tune the

proposal distribution.

• Computational trade-offs and potential parallelization strategies should be considered. For

instance, updates for different individuals can be parallelized, as can the likelihood calcula-

tions for different topics.

These considerations ensure robust and efficient inference of the genetic parameters within our

model.

9 Supplementary Figures
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Figure S1: Age of Onset Captured by Warped Disease Probabilities. Age of diagnosis for

coronary artery disease, tracking closely with underlying genetic risk. We overlay the warped time

predicted disease probability of those in the top and bottom deciles of polygenic risk for coronary

artery disease. In panel at right, we demonstrate the probability of disease (𝛽𝑖𝑘𝑡′) for individuals in

each genetic category.
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Figure S2: Topic Specificity. In both real data and simulations, we recognize that diseases tend to

be sparse in the number of topics on which they are loaded.
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Figure S3: Estimating Disease Loadings. Here we demonstrate the approach for estimating

disease loadings using counts of disease occurrences mapped to unwarped times. Lower right,

we demonstrate the marginal probabilities of each disease, the estimated counts, and the first

occurrence. Average Marginal probabilities defined as average(𝜃𝑖,,𝑡 × 𝛽𝑘,,𝑡) where 𝛽 represents the

unscaled (population level) disease probabilities across time.

Figure S4: Genetically Enriched Individuals Show Earlier Onset Disease. Here we show that

the marginal probability of disease is earlier for those with high genetic risk. We use a canonical

PRS for each topic.
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Figure S5: Topic-specific Disease Probability. We plot the probabilities of all 10 simulated

diseases over time within a given topic, conditional on the time scale of a chosen patient. In B, we

demonstrate the trajectory of one chosen disease across all topics. This is simulated data in which

the diseases are simulated to be topic-specific so that each disease is minimally loaded on a few

topics.

Figure S6: Sample Mean. Here we demonstrate several mean functions that govern the process

of disease evolution. These are meant to reflect a sampling of biological processes and are learned

from the model.
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Figure S7: Change in Topic Weights Over Time. Here we consider the difference in estimated

topic weight under a model with time-varying topic weights in comparison to the time-fixed

approach ([1]). Results by topic do not reveal systematic differences. NRI = Neoplastic Respira-

tory, CVD = Cardiovascular, FGND = Female genitourinary, MGND= male genitourinary, CER=

Circulatory, UGI=Upper Gastrointestinal, LGI=Lower Gastrointestinal, SRD=Sense respiratory

depression, MDS = Musculoskeletal, ARP: Arthropathy.

0.05

0.10

0.15

0.20

0.25

Time1 Time2 Time3 Time4 Time5 Time6 Time7 Time8 Time9 Time10 Time11
Time Slice

P
ro

ba
bi

lit
y

Disease
Anal and rectal conditions Anal and rectal polyp Benign neoplasm of colon Diverticulosis Hemorrhage of gastrointestinal tract

Hemorrhage of rectum and anus Hemorrhoids Inguinal hernia Other peripheral nerve disorders Sebaceous cyst

Top 10 Diseases for Signature 1 Over Time

Figure S8: Top 10 diseases for topic 1 in the UK Biobank
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Disease
Asthma Chronic sinusitis Essential hypertension Hypothyroidism NOS Irritable Bowel Syndrome

Other diseases of the teeth and supporting structures Other disorders of eyelids Other upper respiratory disease Septal Deviations/Turbinate Hypertrophy Varicose veins of lower extremity

Top 10 Diseases for Signature 2 Over Time

Figure S9: Top 10 diseases for topic 2

in the UK Biobank
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Disease
Angina pectoris Atrial fibrillation and flutter Coronary atherosclerosis Essential hypertension Heart failure NOS

Hypercholesterolemia Hyperlipidemia Myocardial infarction Other chronic ischemic heart disease, unspecified Type 2 diabetes

Top 10 Diseases for Signature 3 Over Time

Figure S10: Top 10 diseases for topic 3 in the UK Biobank
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Benign neoplasm of other parts of digestive system Diaphragmatic hernia Duodenitis Esophagitis, GERD and related diseases Gastritis and duodenitis

GERD Other anemias Other non−epithelial cancer of skin Other specified gastritis Reflux esophagitis

Top 10 Diseases for Signature 4 Over Time

Figure S11: Top 10 diseases for topic 4 in the UK Biobank
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Cholelithiasis Endometriosis Excessive or frequent menstruation Other anemias Ovarian cyst

Peritoneal adhesions (postoperative) (postinfection) Polyp of corpus uteri Postmenopausal bleeding Urinary tract infection Uterine leiomyoma

Top 10 Diseases for Signature 5 Over Time

Figure S12: Top 10 diseases for topic 5 in the UK Biobank
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Disease
Alcohol−related disorders Anxiety disorder Cataract Constipation Disorder of skin and subcutaneous tissue NOS

Essential hypertension Major depressive disorder Malignant neoplasm of female breast Senile cataract Tobacco use disorder

Top 10 Diseases for Signature 6 Over Time

Figure S13: Top 10 diseases for topic 6 in the UK Biobank
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Disease
Acute renal failure Cellulitis and abscess of arm/hand Osteoarthrosis, localized, primary Osteoporosis NOS Other diseases of respiratory system, NEC

Other disorders of soft tissues Pain in limb Pneumococcal pneumonia Pneumonia Rheumatoid arthritis

Top 10 Diseases for Signature 7 Over Time

Figure S14: Top 10 diseases for topic 7 in the UK Biobank
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Disease
Arthropathy NOS Cancer of prostate Essential hypertension Hyperplasia of prostate Internal derangement of knee

Lipoma of skin and subcutaneous tissue Obesity Other disorders of bladder Umbilical hernia Urethral stricture (not specified as infectious)

Top 10 Diseases for Signature 8 Over Time

Figure S15: Top 10 diseases for topic 8 in the UK Biobank
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Abdominal pain Arthropathy NOS Back pain Degeneration of intervertebral disc Other and unspecified disc disorder

Pain in joint Spinal stenosis Spondylosis and allied disorders Spondylosis without myelopathy Thoracic or lumbosacral neuritis or radiculitis, unspecified

Top 10 Diseases for Signature 9 Over Time

Figure S16: Top 10 diseases for topic 9 in the UK Biobank
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Disease
Acute appendicitis Benign neoplasm of skin Enthesopathy Essential hypertension Hearing loss

Noninfectious gastroenteritis Peripheral enthesopathies and allied syndromes Prolapse of vaginal walls Urinary incontinence Uterine/Uterovaginal prolapse

Top 10 Diseases for Signature 10 Over Time

Figure S17: Top 10 diseases for topic 10 in the UK Biobank
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