Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Jan 15;482(Pt 2):259–274. doi: 10.1113/jphysiol.1995.sp020515

Cytochrome P450 mono-oxygenase-regulated signalling of Ca2+ entry in human and bovine endothelial cells.

W F Graier 1, S Simecek 1, M Sturek 1
PMCID: PMC1157726  PMID: 7536247

Abstract

1. We tested the hypothesis that agonist-stimulated Ca2+ entry, and thus formation of endothelium-derived nitric oxide (EDNO) in vascular endothelial cells, is related to activation of microsomal P450 mono-oxygenase (P450 MO) and the biosynthesis of 5,6-epoxyeicosatrienoic acid (5,6-EET). 2. Several P450 inhibitors diminished the sustained [Ca2+]i plateau response to agonist or intracellular Ca2+ store depletion with ATPase inhibitors by 31-69% (fura-2 technique). Mn2+ influx stimulated by agonists or ATPase inhibitors was prevented by P450 inhibitors. 3. Histamine- or ATPase inhibitor-stimulated formation of EDNO was strongly attenuated (50-83%) by P450 inhibitors, without any effect on EDNO formation by the Ca2+ ionophore A23187, indicating that decreased EDNO synthesis is due specifically to the inhibition of Ca2+ entry by these compounds. 4. Induction of P450 MO by beta-naphthoflavone potentiated agonist-induced Ca2+ and Mn2+ influx by 60 and 53%, respectively. Intracellular Ca2+ release remained unchanged. 5. The P450 MO product, 5,6-EET (< 156 nmol l-1), activated Ca2+/Mn2+ entry without any depletion of intracellular Ca2+ stores. The 5,6-EET-stimulated Ca2+/Mn2+ entry was not affected by P450 inhibitors. 6. As with the bradykinin-stimulated Ca2+ entry pathway, the 5,6-EET-activated Ca2+ entry pathway was permeable to Mn2+ and Ba2+, sensitive to Ni2+, La3+ and membrane depolarization, and insensitive to the removal of extracellular Na+ or the organic Ca2+ antagonist, nitrendipine. 7. In the presence of 5,6-EET, stimulation with bradykinin only transiently increased [Ca2+]i. Vice versa, 5,6-EET failed to increase [Ca2+]i further in bradykinin-stimulated cells. The sustained [Ca2+]i plateau phase induced by a co-stimulation with bradykinin and 5,6-EET was identical to that observed with bradykinin or 5,6-EET alone. 8. These results demonstrate that Ca2+ entry induced by the P450 MO product, 5,6-EET, is indistinguishable to that observed by stimulation with bradykinin. 9. All data support our hypothesis that depletion of endothelial Ca2+ stores activates microsomal P450 MO which in turn synthesizes 5,6-EET. We propose that the arachidonic acid metabolite 5,6-EET or one of its metabolites is a second messenger for activation of endothelial Ca2+ entry.

Full text

PDF
270

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham N. G., Pinto A., Mullane K. M., Levere R. D., Spokas E. Presence of cytochrome P-450-dependent monooxygenase in intimal cells of the hog aorta. Hypertension. 1985 Nov-Dec;7(6 Pt 1):899–904. doi: 10.1161/01.hyp.7.6.899. [DOI] [PubMed] [Google Scholar]
  2. Alvarez J., Montero M., Garcia-Sancho J. High affinity inhibition of Ca(2+)-dependent K+ channels by cytochrome P-450 inhibitors. J Biol Chem. 1992 Jun 15;267(17):11789–11793. [PubMed] [Google Scholar]
  3. Alvarez J., Montero M., García-Sancho J. Cytochrome P-450 may link intracellular Ca2+ stores with plasma membrane Ca2+ influx. Biochem J. 1991 Feb 15;274(Pt 1):193–197. doi: 10.1042/bj2740193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buckley B. J., Barchowsky A., Dolor R. J., Whorton A. R. Regulation of arachidonic acid release in vascular endothelium. Ca(2+)-dependent and -independent pathways. Biochem J. 1991 Dec 1;280(Pt 2):281–287. doi: 10.1042/bj2800281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Colden-Stanfield M., Schilling W. P., Ritchie A. K., Eskin S. G., Navarro L. T., Kunze D. L. Bradykinin-induced increases in cytosolic calcium and ionic currents in cultured bovine aortic endothelial cells. Circ Res. 1987 Nov;61(5):632–640. doi: 10.1161/01.res.61.5.632. [DOI] [PubMed] [Google Scholar]
  6. Fitzpatrick F. A., Murphy R. C. Cytochrome P-450 metabolism of arachidonic acid: formation and biological actions of "epoxygenase"-derived eicosanoids. Pharmacol Rev. 1988 Dec;40(4):229–241. [PubMed] [Google Scholar]
  7. Goligorsky M. S., Menton D. N., Laszlo A., Lum H. Nature of thrombin-induced sustained increase in cytosolic calcium concentration in cultured endothelial cells. J Biol Chem. 1989 Oct 5;264(28):16771–16775. [PubMed] [Google Scholar]
  8. Graier W. F., Groschner K., Schmidt K., Kukovetz W. R. SK&F 96365 inhibits histamine-induced formation of endothelium-derived relaxing factor in human endothelial cells. Biochem Biophys Res Commun. 1992 Aug 14;186(3):1539–1545. doi: 10.1016/s0006-291x(05)81582-7. [DOI] [PubMed] [Google Scholar]
  9. Graier W. F., Kukovetz W. R., Groschner K. Cyclic AMP enhances agonist-induced Ca2+ entry into endothelial cells by activation of potassium channels and membrane hyperpolarization. Biochem J. 1993 Apr 1;291(Pt 1):263–267. doi: 10.1042/bj2910263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Graier W. F., Simecek S., Bowles D. K., Sturek M. Heterogeneity of caffeine- and bradykinin-sensitive Ca2+ stores in vascular endothelial cells. Biochem J. 1994 Jun 15;300(Pt 3):637–641. doi: 10.1042/bj3000637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hu S., Kim H. S. Activation of K+ channel in vascular smooth muscles by cytochrome P450 metabolites of arachidonic acid. Eur J Pharmacol. 1993 Jan 12;230(2):215–221. doi: 10.1016/0014-2999(93)90805-r. [DOI] [PubMed] [Google Scholar]
  12. Jacob R., Merritt J. E., Hallam T. J., Rink T. J. Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells. Nature. 1988 Sep 1;335(6185):40–45. doi: 10.1038/335040a0. [DOI] [PubMed] [Google Scholar]
  13. Kuno M., Kawawaki J., Shibata T., Gotani H. Inhibitors of the arachidonic acid cascade dissociate 48/80-induced Ca2+ influx and Ca2+ release in mast cells. Am J Physiol. 1993 Apr;264(4 Pt 1):C912–C917. doi: 10.1152/ajpcell.1993.264.4.C912. [DOI] [PubMed] [Google Scholar]
  14. Kutsky P., Falck J. R., Weiss G. B., Manna S., Chacos N., Capdevila J. Effects of newly reported arachidonic acid metabolites on microsomal Ca++ binding, uptake and release. Prostaglandins. 1983 Jul;26(1):13–21. doi: 10.1016/0090-6980(83)90070-9. [DOI] [PubMed] [Google Scholar]
  15. Madhun Z. T., Goldthwait D. A., McKay D., Hopfer U., Douglas J. G. An epoxygenase metabolite of arachidonic acid mediates angiotensin II-induced rises in cytosolic calcium in rabbit proximal tubule epithelial cells. J Clin Invest. 1991 Aug;88(2):456–461. doi: 10.1172/JCI115325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mason M. J., Mayer B., Hymel L. J. Inhibition of Ca2+ transport pathways in thymic lymphocytes by econazole, miconazole, and SKF 96365. Am J Physiol. 1993 Mar;264(3 Pt 1):C654–C662. doi: 10.1152/ajpcell.1993.264.3.C654. [DOI] [PubMed] [Google Scholar]
  17. Merritt J. E., Armstrong W. P., Benham C. D., Hallam T. J., Jacob R., Jaxa-Chamiec A., Leigh B. K., McCarthy S. A., Moores K. E., Rink T. J. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J. 1990 Oct 15;271(2):515–522. doi: 10.1042/bj2710515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Montero M., Alvarez J., Garcia-Sancho J. Agonist-induced Ca2+ influx in human neutrophils is secondary to the emptying of intracellular calcium stores. Biochem J. 1991 Jul 1;277(Pt 1):73–79. doi: 10.1042/bj2770073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Montero M., Alvarez J., García-Sancho J. Control of plasma-membrane Ca2+ entry by the intracellular Ca2+ stores. Kinetic evidence for a short-lived mediator. Biochem J. 1992 Dec 1;288(Pt 2):519–525. doi: 10.1042/bj2880519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nakai K., Ward A. M., Gannon M., Rifkind A. B. Beta-naphthoflavone induction of a cytochrome P-450 arachidonic acid epoxygenase in chick embryo liver distinct from the aryl hydrocarbon hydroxylase and from phenobarbital-induced arachidonate epoxygenase. J Biol Chem. 1992 Sep 25;267(27):19503–19512. [PubMed] [Google Scholar]
  21. Parekh A. B., Terlau H., Stühmer W. Depletion of InsP3 stores activates a Ca2+ and K+ current by means of a phosphatase and a diffusible messenger. Nature. 1993 Aug 26;364(6440):814–818. doi: 10.1038/364814a0. [DOI] [PubMed] [Google Scholar]
  22. Pinto A., Abraham N. G., Mullane K. M. Cytochrome P-450-dependent monooxygenase activity and endothelial-dependent relaxations induced by arachidonic acid. J Pharmacol Exp Ther. 1986 Feb;236(2):445–451. [PubMed] [Google Scholar]
  23. Proctor K. G., Falck J. R., Capdevila J. Intestinal vasodilation by epoxyeicosatrienoic acids: arachidonic acid metabolites produced by a cytochrome P450 monooxygenase. Circ Res. 1987 Jan;60(1):50–59. doi: 10.1161/01.res.60.1.50. [DOI] [PubMed] [Google Scholar]
  24. Sargeant P., Clarkson W. D., Sage S. O., Heemskerk J. W. Calcium influx evoked by Ca2+ store depletion in human platelets is more susceptible to cytochrome P-450 inhibitors than receptor-mediated calcium entry. Cell Calcium. 1992 Oct;13(9):553–564. doi: 10.1016/0143-4160(92)90035-q. [DOI] [PubMed] [Google Scholar]
  25. Schilling W. P., Cabello O. A., Rajan L. Depletion of the inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ store in vascular endothelial cells activates the agonist-sensitive Ca(2+)-influx pathway. Biochem J. 1992 Jun 1;284(Pt 2):521–530. doi: 10.1042/bj2840521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schilling W. P., Elliott S. J. Ca2+ signaling mechanisms of vascular endothelial cells and their role in oxidant-induced endothelial cell dysfunction. Am J Physiol. 1992 Jun;262(6 Pt 2):H1617–H1630. doi: 10.1152/ajpheart.1992.262.6.H1617. [DOI] [PubMed] [Google Scholar]
  27. Snowdowne K. W., Rosenoer L., Yu E., Cashman J. R. Eicosanoids evoke the release of amylase and increase cytoplasmic calcium in rat parotid cells. Biochem Biophys Res Commun. 1989 May 30;161(1):379–384. doi: 10.1016/0006-291x(89)91608-2. [DOI] [PubMed] [Google Scholar]
  28. Snyder G., Lattanzio F., Yadagiri P., Falck J. R., Capdevila J. 5,6-Epoxyeicosatrienoic acid mobilizes Ca2+ in anterior pituitary cells. Biochem Biophys Res Commun. 1986 Sep 30;139(3):1188–1194. doi: 10.1016/s0006-291x(86)80303-5. [DOI] [PubMed] [Google Scholar]
  29. Thuringer D., Diarra A., Sauvé R. Modulation by extracellular pH of bradykinin-evoked activation of Ca(2+)-activated K+ channels in endothelial cells. Am J Physiol. 1991 Sep;261(3 Pt 2):H656–H666. doi: 10.1152/ajpheart.1991.261.3.H656. [DOI] [PubMed] [Google Scholar]
  30. Villalobos C., Fonteriz R., López M. G., García A. G., García-Sancho J. Inhibition of voltage-gated Ca2+ entry into GH3 and chromaffin cells by imidazole antimycotics and other cytochrome P450 blockers. FASEB J. 1992 Jun;6(9):2742–2747. doi: 10.1096/fasebj.6.9.1319362. [DOI] [PubMed] [Google Scholar]
  31. Vostal J. G., Jackson W. L., Shulman N. R. Cytosolic and stored calcium antagonistically control tyrosine phosphorylation of specific platelet proteins. J Biol Chem. 1991 Sep 5;266(25):16911–16916. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES