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Abstract
BACKGROUND 
Gastrointestinal stromal tumors (GIST) are prevalent neoplasm originating from 
the gastrointestinal mesenchyme. Approximately 50% of GIST patients experience 
tumor recurrence within 5 years. Thus, there is a pressing need to accurately 
evaluate risk stratification preoperatively.

AIM 
To assess the application of a deep learning model (DLM) combined with 
computed tomography features for predicting risk stratification of GISTs.

METHODS 
Preoperative contrast-enhanced computed tomography (CECT) images of 551 
GIST patients were retrospectively analyzed. All image features were indepen-
dently analyzed by two radiologists. Quantitative parameters were statistically 
analyzed to identify significant predictors of high-risk malignancy. Patients were 
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randomly assigned to the training (n = 386) and validation cohorts (n = 165). A DLM and a combined DLM were 
established for predicting the GIST risk stratification using convolutional neural network and subsequently 
evaluated in the validation cohort.

RESULTS 
Among the analyzed CECT image features, tumor size, ulceration, and enlarged feeding vessels were identified as 
significant risk predictors (P < 0.05). In DLM, the overall area under the receiver operating characteristic curve 
(AUROC) was 0.88, with the accuracy (ACC) and AUROCs for each stratification being 87% and 0.96 for low-risk, 
79% and 0.74 for intermediate-risk, and 84% and 0.90 for high-risk, respectively. The overall ACC and AUROC 
were 84% and 0.94 in the combined model. The ACC and AUROCs for each risk stratification were 92% and 0.97 
for low-risk, 87% and 0.83 for intermediate-risk, and 90% and 0.96 for high-risk, respectively. Differences in 
AUROCs for each risk stratification between the two models were significant (P < 0.05).

CONCLUSION 
A combined DLM with satisfactory performance for preoperatively predicting GIST stratifications was developed 
using routine computed tomography data, demonstrating superiority compared to DLM.

Key Words: Gastrointestinal stromal tumors; Deep learning; Risk stratification; Tomography, X-ray computed; Prognosis
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Core Tip: The deep learning model (DLM) was validated to accurately predict the risk classification of gastrointestinal 
stromal tumors. The combined DLM outperformed DLM in predicting risk stratification. The combined model has potential 
to guide and facilitate clinical decision-making.
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INTRODUCTION
As is well documented, gastrointestinal stromal tumors (GIST) are prevalent tumors originating from the gastrointestinal 
mesenchyme. Approximately 50% of GIST patients experience tumor recurrence within 5 years, and surgical intervention 
alone is inadequate for achieving an optimal prognosis[1,2]. Earlier studies established that 85% of GISTs are associated 
with receptor tyrosine kinase (c-kit) mutations, and 3%–5% are linked to platelet derived growth factor receptor alpha 
gene mutation[1,3-5]. The mutation type determines response to imatinib[6-8]. Considering the lack of effective conven-
tional chemotherapy drugs, and the activity of Imatinib, adjuvant Imatinib may be a potential treatment option for 
patients with GIST[1,5,9]. A study assessing the efficacy of long-term imatinib treatment in advanced GIST patients 
documented a median overall survival exceeding four years[10]. Moreover, considering the recurrence and metastasis 
rate of intermediate- and high-risk GISTs after surgery, targeted drug therapy can improve the prognosis of GISTs[11,12]. 
Therefore, there is an urgent need to accurately evaluate risk stratification prior to surgery to obtain valuable information 
for evaluating the necessity of surgery and adjuvant treatment.

At present, the risk stratification of GISTs is based on histologic (mitotic index) and imaging characteristics (including 
tumor size and site) of the lesion as outlined in the National Institutes of Health (NIH) consensus classification system
[13]. However, it is challenging to determine the mitotic index without histological examination. Indeed, the malignancy 
risk of most tumors is confirmed histologically after surgery. Although, endoscopic biopsy has also been widely used 
preoperatively, its utility may be limited if the tumor sample contains large areas of necrosis or hemorrhage, yielding 
inconclusive results[14-16].

Recently, the deep learning model (DLM), composed of multi-types of self-learning units, has emerged as a promising 
technique for analyzing medical imaging data[17-20]. Notably, DLM has demonstrated efficacy in clinical applications 
such as the assessment of differentiation grades in meningioma and renal cell carcinoma, as well as in predicting the 
molecular subtypes and grades of glioma[17-19,21]. Overall, deep learning transforms medical images into high-
dimensional mineable data, offering rapid insights with high repeatability and providing a novel approach for GIST risk 
assessment[22-24]. This study aimed to establish and validate DLMs for predicting preoperative GIST risk stratification 
based on routine post-contrast computed tomography (CT) and clinical data.
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MATERIALS AND METHODS
Characteristics of patients
This study was approved by our institutional ethics committee. All the patients signed the informed consent form before 
examinations. From January 2012 to December 2022, 606 patients with GISTs were initially enrolled in this retrospective 
study. A total of 55 patients were subsequently excluded for the following reasons: (1) Lack of preoperative contrast-
enhanced CT images (n = 19); (2) Suboptimal CT image quality (n = 9); (3) Preoperative therapy or experienced metastasis 
to other sites (n = 25); and (4) Absence of required pathologic data (n = 2). Finally, a total of 551 patients were included in 
this study (256 men and 295 women; mean age 60.3 ± 9.8 years). The study population flow chart is illustrated in Figure 1.

All patients underwent complete surgical resection. GIST risk classification was based on National Comprehensive 
Cancer Network (NCCN) guidelines[15]. According to risk categories, patients in this study were classified into the high-
risk (high risk), intermediate-risk (intermediate risk), and low-risk (very low and low risk) groups.

CT image acquisition
All patients underwent abdominal contrast-enhanced CT examination covering the whole tumor. After a non-contrast CT 
scan (Scanner: Philips Iqon, GE Healthcare Discovery CT750 HD or SIEMENS 64-MDCT) with a thickness of 1.0-1.5 mm, 
three-phase contrast-enhanced scans were performed, with 90 to 100 mL iodine contrast medium (Ultravist 370, Bayer 
Schering Pharma, Germany) intravenously injected at a rate of 2.5 to 3.0 mL/s.

Clinical and CT image feature analysis
All CT images were independently analyzed by two radiologists with 3 and 13 years of experience in abdominal 
radiology. In cases of disagreement, the radiologist with 13 years of experience reviewed the images to reach a consensus. 
Clinical information, image features and pathologic characteristics, including gender, age, tumor location, growth pattern 
(exophytic, endoluminal, mixed), tumor size (measured as the maximum diameter of the largest tumor section), tumor 
morphology (round or oval shape was considered regular, and lobulated or other irregular shapes were categorized as 
irregular), necrosis, ulceration, internal hemorrhagic foci, calcification, lymph node status, presence of enlarged feeding 
vessels, tumor boundary (clear or blurred), the pattern and degree of tumor enhancement during the venous phase and 
the range of tumor enhancement across the three phases, were derived from CT images and medical records. For CT 
value measurements of each tumor, regions of interest (ROIs) were delineated to cover tumor parenchyma while 
avoiding areas with evidence of cystic, necrotic or hemorrhagic changes at the level of the largest solid tumor regions and 
their adjacent upper and lower levels during the plain phase, arterial phase, venous phase and delay phase, respectively. 
The ROIs for CT value measurements were consistently sized using the copy and paste function across the different 
phases of images. Next, the average of three measurements was calculated. According to the difference between the 
venous phase and plain CT, the enhancement degree was defined as mild (CT value difference ≤ 20 HU), moderate (CT 
value difference between 20 HU and 40 HU), and obvious enhancement (CT value difference > 40 Hu). According to 
differences between the CT values of the venous and arterial phases, the enhancement pattern was defined as continuous 
(CT value difference ≥ 0) and attenuation (CT value difference < 0). The enhancement tumor range was calculated during 
the arterial phase (ER1 = arterial phase CT value-precontrast CT value), venous phase (ER2 = venous phase CT value- 
precontrast phase CT value), and delay phase (ER3 = delay phase CT value - precontrast scan CT value).

Image segmentation
All the CT images were exported in Joint Photographic Experts Group format. Then, two radiologists with extensive 
experience in abdominal imaging diagnosis (3 years and 13 years, respectively) participated in the segmentation of the 
entire tumor. One radiologist manually delineated the ROIs of the entire tumor layer by layer on venous phase CT 
images. The segmented images were subsequently confirmed by the other radiologist. Both radiologists were blinded to 
the pathological reports for risk stratification. Based on recommendations from previous literature[21], ImageJ (NIH, 
Bethesda, MD) was employed to apply an adaptive contrast filter to images. Besides, CT- segmented images were 
randomly selected from 20 patients, and the Dice similarity coefficient (DSC) was used to evaluate the inter-reader 
consistency in image segmentation. Detailed information of image preprocessing can be found in the Supplementary 
material 1.

The DLM construction
The DLM was constructed in two steps: Tumor features and tumor classification were initially extracted from CT images 
to generate the DLM, followed by the establishment of the combined model for tumor classification by integrating subject 
clinical-imaging features after statistical analysis. Figure 2 displays the detailed framework of this process. In the current 
study, a stratified random split was utilized at the patient level to randomly divide all patients into a training cohort and 
a validation cohort in a 7:3 ratio.

The 3D residual network (ResNet) was used to train our image dataset and establish the DLM. The 3D-ResNet is a 
three-dimensional convolutional neural network model based on the ResNet architecture. It is an extension of ResNet in 
two-dimensional image classification tasks used to process three-dimensional volume data. Besides, it accepts 3D 
volumetric data as input, positioning it as a powerful model for learning volume datasets. Furthermore, it can be adjusted 
according to the task complexity and dataset characteristics with variable depth. It can enhance the network depth by 
increasing the number of stacked layers of residual blocks, thereby optimizing the model's expressive ability. During the 
training phase, 3D-Resnet was used to extract and learn deep tumor features related to GIST risk stratification from each 
patient's CT images.

https://f6publishing.blob.core.windows.net/ee99715f-698d-492e-8d47-8dd4e991d979/98356-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/ee99715f-698d-492e-8d47-8dd4e991d979/98356-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/ee99715f-698d-492e-8d47-8dd4e991d979/98356-supplementary-material.pdf
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Figure 1 Study population flowchart. CT: Computed tomography; GIST: Gastrointestinal stromal tumors.

Figure 2 Overall gastrointestinal stromal tumor risk stratification framework. CT: Computed tomography; MLP: Multilayer perceptron; GAP: Global 
average pooling.

Multilayer perceptron (MLP) was employed for tumor risk stratification by combining imaging features and clinical 
data. It is a universal function approximator based on feedforward artificial neural networks that can learn and represent 
nonlinear relationships through multiple fully connected hidden layers and an output layer, making it suitable for 
various machine learning tasks. In the current model, a batch normalization (BN) layer was introduced following each 
linear layer in MLP to accelerate the convergence rate of the neural network, reduce the dependence of the model on the 
initial parameters, and improve the robustness of the model. The BN layer normalized each mini-batch data to stabilize 
the input of the neural network, thus improving the convergence rate and generalizability of the model. Figure 3 shows 
the feature extraction process. In the present study, the subject clinical-image data features of patients were concatenated 
with imaging features extracted by the 3D ResNet, and their feature vectors were inputted into the MLP to establish the 
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Figure 3 Schematic diagram of feature extraction process. BN: Batch normalization; RELU: Rectified linear unit.

combined DLM for tumor risk stratification.

Training details
In this study, the network architecture was implemented using the Pytorch framework and trained on NVIDIA GPU to 
accelerate training speed. Additionally, the transfer learning method was adopted, leveraging pre-training weights to 
improve model performance. Detailed information of model training process can be found in the Supplementary 
materials 2.

Statistical analysis
Statistical analysis was performed using the software SPSS version 22.0 (SPSS Inc., Chicago, IL, United States) and 
MedCalc version 22.002 (MedCalc Software Ltd, Ostend, Belgium). A P value of < 0.05 was considered statistically 
significant.

The interobserver agreement of measurements between the two radiologists was evaluated using the interclass 
correlation coefficient (ICC). The χ2 test, independent two-sample t-test, one-way analysis of variance and Bonferroni tests 
were used to evaluate the significance of correlations between various clinical- imaging features and pathological GIST 
risk classifications from surgical resection specimens. Ordinary logistic regression was performed to identify significant 
predictive factors for relapse[25,26].

To assess the performance of DLM and combined DLM, five different indicators, namely area under the receiver 
operating characteristic curve (AUROC), F1 score (F1), accuracy (ACC), sensitivity (SEN), and specificity (SPE), were 
used. AUROC was calculated along with its 95%CI.

RESULTS
Clinical-imaging characteristics
ICC analysis showed a good concordance of measurements between the two radiologists (tumor size, ICC = 0.985; CT 
value in the plain phase, ICC = 0.812; CT value in the arterial phase, ICC = 0.906; CT value in the venous phase, ICC = 
0.921; CT value in the delay phase, ICC = 0.848). Among the analyzed CECT image features, tumor size, tumor 
morphology, tumor location, growth pattern, necrosis, ulceration, calcification, lymph node status, presence of enlarged 
feeding vessels, tumor enhancement pattern during the venous phase, and the range of tumor enhancement across the 
three phases were found to be significantly associated with GIST risk categories (P < 0.05). The distribution of these 
features in the risk categories and the results of the χ2 test are listed in Table 1. Meanwhile, ordinary logistic regression 
analysis identified tumor size, ulceration, and the presence of enlarged feeding vessels as statistically significant 
predictors (P < 0.05, Table 2).

Diagnostic performance of the DLM
All patients were randomly associated into two independent cohorts, namely a training cohort (386 patients: 176 males, 
mean age, 60.2 ± 9.8 years; 210 females, mean age, 59.9 ± 10.2 years) and a validation cohort (165 patients: 80 males, mean 

https://f6publishing.blob.core.windows.net/ee99715f-698d-492e-8d47-8dd4e991d979/98356-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/ee99715f-698d-492e-8d47-8dd4e991d979/98356-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/ee99715f-698d-492e-8d47-8dd4e991d979/98356-supplementary-material.pdf
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Table 1 Distribution of the analyzed clinical-imaging features across pathologic risk categories, mean ± SD

Pathologic risk categories
CECT features

High (n = 213) Moderated (n = 143) Low (n = 195)
P value

Male 107 60 89Gender

Female 106 83 106

0.296

Gastric 139 136 171Location

Non-gastric 74 7 24

0.000

Regular 54 94 170Morphology

Irregular 159 49 25

0.000

Endoluminal 35 54 93

Mixed 51 22 28

Growth pattern

Exophytic 127 67 74

0.000

Mild (≤ 20 HU) 30 20 20

Moderate (20-40 HU) 101 74 90

Degree of contrast enhancement in the venous phase

Obvious (≥ 40 HU) 82 49 85

0.424

Continuous 198 142 193Contrast enhancement pattern during the venous phase

Attenuation 15 1 2

0.000

Present 22 16 21Calcification 

Absent 191 127 174

0.967

Present 155 65 33Necrosis 

Absent 58 78 162

0.000

Present 53 23 8Ulceration 

Absent 160 120 187

0.000

Present 183 60 14Enlarged feeding vessels

Absent 30 83 181

0.000

Present 19 1 1Lymph nodes

Absent 194 142 194

0.000

Age 59.44 ± 10.41 61.39 ± 9.83 60.37 ± 9.13 0.183

Size 9.03 ± 4.42 4.90 ± 1.89 2.77 ± 1.20 0.000

Range of tumor enhancement during the arterial phase 18.83 ± 17.81 14.24 ± 11.53 18.45 ± 17.47 0.004

Range of tumor enhancement during the venous phase 41.59 ± 25.73 38.97 ± 18.96 45.22 ± 25.70 0.038

Range of tumor enhancement during the delay phase 42.73 ± 18.89 43.72 ± 17.97 47.97 ± 20.27 0.016

CECT: Contrast-enhanced computed tomography.

age, 59.8 ± 9.9 years; 85 females, mean age, 60.0 ± 10.1 years). There were 136 (35.2%) cases of low-risk GISTs, 101 (26.2%) 
cases of intermediate-risk GISTs, and 149 (38.6%) cases of high-risk GISTs in the training cohort. In contrast, the 
validation cohort comprised 59 (35.8%) cases of low-risk GISTs, 42 (25.5%) cases of intermediate-risk GISTs, and 64 
(38.8%) cases of high-risk GISTs.

The DSC value showed a good concordance of image segmentation between the two radiologists (DSC = 99.96%). The 
results for the different algorithms are detailed in Table 3. The model constructed using 3D-ResNet with 34 Layers 
demonstrated the optimal performance, with an ACC of 75%, a SEN of 72%, a SPE of 87%, and a F1 score of 72%. The 
overall AUROC for DLM was 0.88 (0.83, 0.93). The ROCs are depicted in Figure 4A. In DLM, the ACC and AUROCs for 
each stratification were 87% (144/165) and 0.96 (0.94, 0.98) for low-risk GISTs, 79% (131/165) and 0.74 (0.67, 0.81) for 
intermediate-risk GISTs, and 84% (138/165) and 0.90 (0.85, 0.95) for high-risk GISTs, respectively. The results for the 
validation cohorts were visualized as confusion matrices to compare the GIST risk stratification predicted by DLM 
against the pathological risk stratification (Figure 5A).
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Table 2 Logistic regression analysis of risk classification based on clinical-imaging feature

95%CI
P value

Lower bound Upper bound

Size 0.000 -0.763 -0.473

Range of tumor enhancement during the arterial phase  
0.131

 
-0.035

 
0.005

Range of tumor enhancement during the venous phase  
0.220

 
-0.007

 
0.032

Range of tumor enhancement during the delay phase  
0.858

 
-0.021

 
0.017

Morphology 0.602 -0.387 0.608

Location 0.074 -0.063 1.386

Ulceration 0.004 -1.622 -0.300

Enlarged feeding vessels 0.000 -2.134 -1.094

Growth pattern 0.224 -0.833 0.328

Contrast enhancement during the venous phase  
0.428

 
-2.266

 
1.384

Necrosis 0.236 -0.195 0,793

Lymph nodes 0.890 -1.934 1.678

Table 3 Different algorithms for predicting gastrointestinal stromal tumor risk classification

Different method Accuracy (%) Sensitivity (%) Specificity (%) F1 score (%)

3DCNN 60 51 68 52

3DResnet_50 66 58 71 59

3DResnet_18 71 66 76 67

3DResnet_34 75 72 87 72

Combined model 
(3DResnet + MLP)

84 83 92 83

3DCNN: Three-dimensional convolutional neural network; 3DResnet: Three-dimensional residual network; MLP: Multilayer perceptron.

The combined DLM achieved satisfactory performance in assessing GIST risk stratification. The overall ACC and 
AUROC were 84% (139/165) and 0.94 (0.93, 0.95) for the combined model. The ROCs are delineated in Figure 4B. The 
ACC and AUROCs for each tumor risk stratification were 92% (152/165) and 0.97 (0.96, 0.98) for low-risk GISTs, 87% 
(143/165) and 0.83 (0.78, 0.88) for intermediate-risk GISTs, and 90% (148/165) and 0.96 (0.94, 0.98) for high-risk GISTs, 
respectively. The results for the validation cohorts were visualized as confusion matrices to compare the GIST risk strati-
fication predicted by the combined model against pathological risk stratification (Figure 5B).

The ACC, SEN, SPE, F1 score and AUROCs for each tumor risk stratification across different models are summarized 
in Table 4. Importantly, differences in AUROCs between DLM and the combined model were significant (P < 0.001).

DISCUSSION
In this retrospective research, a DLM and a combined DLM were constructed. Notably, the latter (AUROC = 0.94) outper-
formed the former (AUROC = 0.88) in assessing GIST grading.

According to the modified NIH criteria and NCCN guidelines, the need of adjuvant treatment for GIST patients and 
the duration of treatment are associated with the risk stratification of GISTs[8,15,27,28]. Combining adjuvant treatment 
such as Imatinib before and after surgery may extend the recurrence free survival and overall survival of intermediate 
and high-risk GIST patients[1,5,29]. Therefore, an accurate preoperative categorization of risk classification, especially in 
high-risk GISTs, can provide valuable information for evaluating the necessity of surgical resection and adjuvant 
treatments[30-32]. In this study, two models were developed to predict preoperative GIST risk stratification: DLM and 
combined DLM. To the best of our knowledge, studies that combined clinical-imaging features and convolutional neural 
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Table 4 Accuracy, sensitivity, specificity, F1 score and areas under the receiver operating characteristic curves for each tumor risk 
stratification, n (%)/95%CI

Accuracy (n = 165) Sensitivity Specificity F1 score (%) AUROC

High 138 (84); (78-90) 81 (52/64); (76-86) 85 (86/101); (78-91) 79 0.90 (85-95)

Moderate 131 (79); (71-87) 50 (21/42); (25-74) 89 (110/123); (82-96) 55 0.74 (67-81)

Low 144 (87); (81-93) 86 (51/59); (81-91) 88 (93/106); (83-94) 83 0.96 (94-98)

DLM

Overall 75 72 87 72 0.88 (83-93)

High 148 (90); (86-94) 88 (56/64); (83-93) 91 (92/101); (83-98) 87 0.96 (94-98)

Moderate 143 (87); (83-92) 69 (29/42); (66-71) 93 (114/123); (86-98) 72 0.83 (78-88)

Low 152 (92); (85-96) 92 (54/59); (89-93) 92 (98/106); (86-97) 89 0.97 (96-98)

Combined model

Overall 84 83 92 83 0.94 (93-95)

DLM: Deep learning model; AUROC: Areas under the receiver operating characteristic curve.

Figure 4 Receiver operating characteristic curves for the deep learning model and combined model. A: Receiver operating characteristic curve 
(ROC) for the deep learning model in the validation cohort; B: ROC curve for the combined model in the validation cohort. ROC: Receiver operating characteristic; 
AUC: Area under the curve.

network models to establish a combined model for predicting GIST risk stratification and distinguishing between 
different categorizations of risk classification (high-risk, intermediate-risk and low-risk GISTs) are scarce.

Analysis of clinical-imaging features revealed that tumor size, morphology, location, growth pattern, the presence of 
necrosis, ulceration, calcification, lymph nodes, and enlarged feeding vessels, as well as the tumor enhancement pattern 
during the venous phase and the range of tumor enhancement, were significantly associated with pathologic GIST risk 
categories. Logistic regression analysis subsequently identified tumor size, the presence of ulcers, and enlarged feeding 
vessels as predictors of pathologic risk categories, consistent with the results of previous studies[25,26,33]. Zhou et al[34] 
reported that tumors with large sizes (> 10 cm) and enlarged feeding vessels were more likely to be a high -risk GISTs
[34]. Moreover, mucosal destruction promotes the formation of ulcers due to the influence of gastric acid[35]. The NCCN 
guideline recommend patients with GISTs larger than 2 cm to undergo surgical resection[28], while according to Ni-
shida’s[36] report, small GIST tumors may also be invasive and linked to a poor prognosis. Therefore, evaluating the risk 
stratification of GISTs exclusively based on tumor size could be insufficient. Other imaging features were also subjectively 
assessed and heavily relied on the experience of observers. While the degree of contrast enhancement is typically 
considered a characteristic of tumor biological activity, it showed no significant association with pathologic risk strati-
fication as a predictive factor in our study, in line with the results of previous articles[26,33].

The results of our study unveiled that the DLM could accurately predict GIST risk classifications, with an AUROC of 
0.88 in the validation cohort. However, the performance of the combined DLM was relatively higher (AUROC = 0.94), 
attributable to the combination of DLM with clinical-imaging features increasing the ability to assess the GIST risk classi-
fication. Overall, our study offers a novel method for optimizing the preoperative assessment of GIST risk stratification 
based on CT images, moving beyond dependence on postoperative specimens. Zhou et al[34] documented that the 
AUROC of the multinomial logistic regression model with subjective CT image features for GIST risk stratification was 
0.806. At the same time, Wang et al[22] divided patients with GISTs into the high malignant potential group (intermediate 
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Figure 5 Confusion matrix for the deep learning model and combined model for gastrointestinal stromal tumors risk stratification. A: 
Confusion matrix for the deep learning model; B: Confusion matrix for the combined model.

risk and high risk) and the low malignancy potential group (very low risk and low risk) and described that the area under 
the curve (AUC) of the combined model (clinical features and the radiomics) was significantly higher in the validation 
group (0.913 vs 0.792, P = 0.019) compared to the clinical model. Importantly, Kang et al[37] concluded that the DLM 
(AUROCs; testing, 0.89; external validation, 0.85) outperformed the radiomics model in terms of GIST risk classification. 
In this study, the DLM and the combined DLM had an AUROC of 0.88 and 0.94 for distinguishing between the three 
types of GIST risk classifications (high-risk, intermediate-risk and low-risk) in the validation cohort. Indeed, the 
combined model outperformed DLM, with ACCs and AUROCs of 92% and 0.97 for low-risk GISTs, 87% and 0.83 for 
intermediate-risk GISTs, and 90% and 0.96 for high-risk GISTs, respectively. Notably, the AUROCs for different risk 
stratifications in the combined model were significantly superior to those of the DLM. These results collectively indicated 
that the combined DLM had superior predictive capabilities, especially for low- and high-risk GISTs.

However, the results for the intermediate-risk class were relatively unsatisfactory, with an accuracy of 87% and an 
AUROC of 0.83. This may be ascribed to imbalanced sample sizes. Specifically, there were only 143 cases of intermediate-
risk GISTs in this study, which was lower than those of non-intermediate-risk GISTs (408 cases). This may result in 
relatively fewer features being extracted from intermediate-risk GISTs compared to machine learning algorithms, thereby 
introducing model bias. Nevertheless, compared to DLM (AUC = 0.74), the combined model (AUC = 0.83) demonstrated 
advantages in predicting intermediate-risk GISTs.

Of note, deep learning is a subfield of artificial intelligence that performs tasks by analyzing relationships between 
existing data points[38-40]. In recent years, image analysis based on deep learning algorithm has been increasingly 
applied to tumor diagnosis, grading, staging, prediction, and treatment evaluation. Zhu et al[41] concluded that the DLM 
outperformed in assessing the risk of screening-detected breast cancer. Similarly, Doppalapudi et al[42] pointed out that 
the accuracy of lung cancer classification predicted by DLM was 71.18%, while that of traditional machine learning 
models was merely 61.12%, indicating that DLM displayed superior performance for predicting lung cancer subtypes. A 
study investigating glioma showed that DLM achieved high performance in predicting molecular subtypes and grades, 
with an isocitrate dehydrogenase-AUC of 0.90, an 1p/19q co-deletion AUC of 0.85, and a grade AUC of 0.81 (grade II/
III/IV)[17]. Wang et al[43] developed the convolutional neural network models with varying layers, achieving AUROCs 
above 0.8 for differentiating high-risk gastric GISTs from intermediate-risk and very low/low-risk gastric GISTs in the 
validation dataset. In the present study, the DLM based on the 3D-ResNet method increased the network depth by 
increasing the number of stacked layers of residual blocks, thereby improving the model's expressive ability. In addition, 
the clinical data of patients were concatenated with the imaging features extracted by the 3D- ResNet and then 
incorporated their feature vectors into the MLP for risk classification. As anticipated, the results uncovered that the DLM 
based on the 3D-ResNet method combined with clinical-imaging features could accurately predict GIST risk classific-
ations.

Nevertheless, this study has several limitations that cannot be overlooked. Firstly, this was a retrospective study based 
on a limited sample size, resulting in an imbalance in the data for risk stratification. Therefore, an ideal DLM should be 
constructed with a larger training set containing datasets from multiple-centers to balance the data for different risk 
stratifications. Further prospective studies with external validation cohorts are warranted to validate our results. 
Secondly, the DLM developed in our study required manual segmentation of tumors on CT images remains a semi-
automatic model. Thirdly, radiomics features were used for the risk stratification of GISTs in previous studies[22,32,39,44,
45]. Therefore, future studies can compare the performance of radiomics models with DLM.
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CONCLUSION
In summary, a high-performance combined DLM for preoperative prediction of the GIST risk stratification was 
developed and validated in this study. Noteworthily, this model has the potential to guide and facilitate clinical decision-
making for GIST patients.
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