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Introduction
Mathematical modeling of growth dynamics using observa-
tional or experimental data has been a major tool in computa-
tional biology for many years. The purpose of this article is to 
introduce a new mathematical growth model capable of accu-
rately modeling biological, medical, socioeconomic, and engi-
neering data. These models can be applied to tumor growth 
(either measured as the number of cells or as the volume of a 
multicellular sphere), human and animal growth, plant growth, 
and both adult and embryonic stem cell proliferation.1-3 In 
1798, the exponential growth model was introduced by Thomas 
Robert Malthus manifesting his concept of population growth.4 
In 1838, the logistic growth model was introduced by Pierre 
Francois Verhulst by modifying the exponential growth and 
imposing a constraint based on the limited availability of 
resources.4 In 1825, Benjamin Gompertz proposed the 
Gompertz growth model which has been frequently applied to 
biomedical data.5 Around 1957, Ludwig von Bertalanffy intro-
duced a model for animal growth. In his model, he explains the 
animal growth while taking into consideration the growth of 
the animal as the result of anabolism and catabolism of body 
materials.6 The Richard growth model was introduced in 1959 
as a generalization of the logistic growth model.7 In 1981, Jon 
Schnute introduced his growth model which can represent 

logistic, Gompertz, Bertalanffy, and Richard models as its spe-
cial cases.7,8 Tumor spheroids were used to characterize the 
growth dynamics and response to different treatments.9

Mathematical modeling is a key process to describe the 
behavior of biological networks. The purpose is to build a 
model that predicts the state of a biological phenomenon as a 
function of one or more predictor variables. According to 
Ghisletta et al,10 rather than solely using linear or quadratic 
growth models, one should consider appropriate nonlinear 
alternatives.

Modeling growth dynamics of biological and clinical data, 
which include both experimental and control groups, would 
have provided invaluable information regarding disease pro-
gression and regression. It will also shed light on the study of 
biological systems from molecules to organism and the popula-
tion level.11-13

These quantitative models, alongside stem cell research, 
may possibly lead to novel treatments.14 The sigmoidal growth 
models such as logistic, Gompertz, Bertalanffy, and Richard 
have been extensively used to model self-limited population 
growth in fields such as biology, economics, sociology, fishery, 
forestry, animal science, agriculture, and medical sciences.15-20 
Initially, the rate of growth increases at the early stage and then 
gradually decreases to zero when the biomass of the organism 

The TWW Growth Model and Its Application in  
the Analysis of Quantitative Polymerase Chain  
Reaction

M Tabatabai1 , D Wilus1 , KP Singh2 and TL Wallace3

1School of Global Health, Meharry Medical College, Nashville, TN, USA. 2School of Medicine, The 
University of Texas at Tyler, Tyler, TX, USA. 3Department of Biomedical Data Science, Meharry 
Medical College, Nashville, TN, USA.

ABSTRACT: It is necessary to accurately capture the growth trajectory of fluorescence where the best fit, precision, and relative efficiency are 
essential. Having this in mind, a new family of growth functions called TWW (Tabatabai, Wilus, Wallace) was introduced. This model is capable 
of accurately analyzing quantitative polymerase chain reaction (qPCR). This new family provides a reproducible quantitation of gene copies 
and is less labor-intensive than current quantitative methods. A new cycle threshold based on TWW that does not need the assumption of equal 
reaction efficiency was introduced. The performance of TWW was compared with 3 classical models (Gompertz, logistic, and Richard) using 
qPCR data. TWW models the relationship between the cycle number and fluorescence intensity, outperforming some state-of-the-art models in 
performance measures. The 3-parameter TWW model had the best model fit in 68.57% of all cases, followed by the Richard model (28.57%) 
and the logistic (2.86%). Gompertz had the worst fit in 88.57% of all cases. It had the best precision in 85.71% of all cases followed by Richard 
(14.29%). For all cases, Gompertz had the worst precision. TWW had the best relative efficiency in 54.29% of all cases, while the logistic model 
was best in 17.14% of all cases. Richard and Gompertz tied for the best relative efficiency in 14.29% of all cases. The results indicate that TWW 
is a good competitor when considering model fit, precision, and efficiency. The 3-parameter TWW model has fewer parameters when compared 
to the Richard model in analyzing qPCR data, which makes it less challenging to reach convergence.

KeyWoRdS: Quantitative polymerase chain reaction, Cy0 method, cycle threshold, the Richard growth model, Gompertz growth model, lo-
gistic growth model

ReCeIVed: November 17, 2023. ACCePTed: September 19, 2024.

TyPe: Research Article

FundInG: The author(s) disclosed receipt of the following financial support for the 
research, authorship, and/or publication of this article: The project has been supported by 
Meharry Medical College RCMI grant (NIH grant MD007586) and TN-CFAR (NIH grant 
2P30 AI110527).

deClARATIon oF ConFlICTInG InTeReSTS: The author(s) declared no potential 
conflicts of interest with respect to the research, authorship, and/or publication of this 
article.

CoRReSPondInG AuTHoR: M Tabatabai, School of Global Health, Meharry Medical 
College, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37208, USA.  Email: mtabatabai@
mmc.edu

1290126 BBI0010.1177/11779322241290126Bioinformatics and Biology InsightsTabatabai et al.
research-article2024

https://uk.sagepub.com/en-gb/journals-permissions
mailto:mtabatabai@mmc.edu
mailto:mtabatabai@mmc.edu


2 Bioinformatics and Biology Insights 

reaches its carrying capacity. The logistic growth model has a 
symmetric curve with a fixed inflection point, which is at half 
of its carrying capacity, while the Gompertz growth rate is 
asymmetric. On the contrary, the Richard growth has flexible 
point of inflection.5,7,21 The Richard equation generalizes the 
logistic and Gompertz equations.22,23 The Hill model is widely 
used in pharmacodynamics, pharmacokinetics, and pharmacol-
ogy for analyzing dose-response data.24 The pharmacologist 
normally compares samples of treated and untreated cells at 
different levels of drug concentrations. Special cases of these 
growth functions can also serve as an activation function in 
machine learning.25

In 2005, Tabatabai et al1 introduced the hyperbolastic mod-
els of types I, II, and III, in the context of developing models 
with more versatility in representing actual growth rates from 
experimental data. The models have proven to have high preci-
sion in the representation of biological growth data, with close 
approximations to experimental results. These models have 
been particularly accurate in representation of cellular growth, 
such as growth of tumor cells26 or growth of stem cells.27-29

In this article, a new growth model named TWW 
(Tabatabai, Wilus, Wallace) is introduced. This new model is 
used to analyze the well-known method of multiplying genetic 
sequences, polymerase chain reaction (PCR), which may be 
operated in a real-time calibrated mode known as quantitative 
PCR (qPCR). Quantitative polymerase chain reaction is a type 
of PCR that allows quantification of specific DNA and RNA 
targets. The qPCR method measures the intensity of stimu-
lated emission released by the fluorescence probe at each end of 
a thermal heat cycle. A qPCR cycle curve has an exponential 
phase and a plateau phase. Quantitative polymerase chain reac-
tion can amplify, detect, and quantify nucleic acids. The quan-
tification can be absolute or relative.30-32 Applications of qPCR 
include, but not limited to, the measurement and analysis of 
gene expression data, identification of the genetic building that is 
present within a set of genotyped entities, pathogen detection, the 
genomic link between disease and single-nucleotide polymor-
phism (SNP) markers and forensic sciences.33,34

The cycle threshold (Ct) is a PCR cycle which represents 
the number of cycles required for the fluorescent signal to 
cross the threshold. The Ct values are inversely related to the 
volume of nucleic acid in the sample.35 The qPCR is grounded 
on the fact that at each cycle, the number of PCR products 
doubles. The Ct value is typically defined as 5 to 10 standard 
deviations (SDs) in the noise floor and may lie in the range of 
20 to 30 PCR cycles. Ct values are related to the number of 
nucleic acid molecules in the sample as reported by the fluo-
rescence signal.

A higher Ct value may indicate a lower initial messenger 
ribonucleic acid (mRNA) molecular count. A gene which is 
highly expressed would typically have a lower Ct value needed. 
For example, a higher DNA/RNA molecular count in the ini-
tial sample would support a lower Ct value.36

Guescini et al proposed a new method called C y0
 that does 

not assume equal reaction efficiency between unknowns and 
standard curve. This method is based on the fit of the Richard 
function to 420 independent runs of PCR reaction parameters 
to obtain the best-fit estimators.35

Method
The models commonly used in literature to analyze qPCR data 
are Richard, logistic, and Gompertz. For comparative purposes, 
a 5-parameter Richard model defined as
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was used throughout this study. The fluorescence intensity at 
cycle number x  is denoted by F x( ),  and ψ λ θ γ δ, , , ,and  are 
the 5 parameters of the Richard model. The 3-parameter logis-
tic function of the form

 
F x

e x( ) =
+ −

ψ
ξ ρ1  

and the 3-parameter Gompertz model with the following 
equation
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were used throughout this article.

TWW growth model

The 3-parameter TWW growth model F x( ), which is the 
solution of the differential equation of the form
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is equal to

 F x e ArcSinh e x
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Alternatively, the growth rate equation (1) can be written as
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parameters, while −∞ < < ∞x  and ArcSinh(•)  denotes the 
inverse hyperbolic sine function.

When the parameter β > 0,  the function F x( )  grows, and 
when β < 0,  it decays. In addition, the function F x( )  will 
form the TWW cumulative distribution function with proba-
bility density function f x( )  when α = 1  and β > 0.

The point of inflection for the graph of equation (2) is 
(x xinf infF, ( ))  where
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with ln(•)  as natural logarithm.
The slope of the tangent line to the graph of F x( )  at the 

point of inflection is equal to
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which can be approximated as

 Slope = 0 3002831. αβ  

If one desires to calculate the point x  where the population 
reaches a fraction K  of its carrying capacity α , then one can 
solve the equation F x K( ) = α  for x,  with 0 1< <K .  The 
resulting solution is
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An alternative but equivalent form of the 3-parameter 
growth function F x( )  is given by

 F x e ArcSinh e x

( ) ( )( )/

= − − −
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γ δ

 (3)

and the growth rate f x( )  is
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Equation (3) is equivalent to equation (2) when θ γ δ= e /  
and β

δ
=
1 .

A third form of a 3-parameter TWW growth function 
F x( )  is

 F x e ArcSinh e x
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− ( )− +

α
β β0 1
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Equation (5) is also equivalent to equation (2) when θ β= −e 0  
and β β= 1.

The corresponding growth rate function using equation (5) 
is
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In the event that a 3-parameter TWW did not fit the data 
adequately well, we recommend that one should try the 
4-parameter TWW model of the form

 F x e ArcSinh e x

( ) = +− ( )−

α δθ β

 

where δ  represents the vertical shift for the graph of the 
TWW function.

A 5-parameter TWW model has the form

 F x e ArcSinh e x

( ) = +− ( )−

α δϕ θ β

 

where α ϕ θ β δ, , , ,and  are model parameters with 
ϕ θ> >0 0and .

In some cases of fluorescence of bacterial cultures or micro-
bial data, it may be more appropriate to use a 4- or 5-parameter 
TWW model if the 3-parameter does not fit the data ade-
quately enough.37

Multivariable TWW growth model

If the function F depends on a set of independent variables 
{ , ,..., },x x xk1 2  then the multivariable TWW growth equation 
of the form (equation (2)) can be written as
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where α β β β β, , , ,...0 1 2 k  are model parameters. One can notice 
that equation (6) is the generalization of equation (5).

For j k= 1 2, ,..., ,  the partial rate of growth with respect to 
x j  is
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Partial elasticity

The partial elasticity of growth with respect to independent 
variable x j  is denoted by E x x xx kj

( , ,..., )1 2  and is given by
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For discrete variables, the partial elasticity is calculated using

 
E x x x F x x x

F x x x
x
xx k

k

k

j

j
j
( , ,..., ) ( , ,..., )

( , ,..., )
/1 2

1 2

1 2
=
∆ ∆

 

For TWW growth model using equation (7), the partial 
elasticity is given by
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This partial elasticity approximates the percentage change 
in growth divided by percentage change in the independent 
variable x j . If the absolute value of partial elasticity is greater 
than one, then the growth is elastic; if it is less than one, it is 
inelastic; and if it is one, it is unit elastic. When there is only a 
single predictor variable, the partial elasticity is called elasticity. 
The cycle elasticity of fluorescence is a measure of sensitivity of 
fluorescence to a change in cycle number which is denoted here 
by Ex  and is equal to
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where x  represents the cycle number.
Figure 1 illustrates the growth functions as well as their respec-

tive growth rate functions for different combinations of parame-
ters. The graphs show the flexibility of the 3-parameter TWW 
growth models with respect to change in parameter values.

Figure 2 shows 3D graphs of growth and growth rate as a 
function of independent variables and a single parameter while 
holding the remaining parameters at a fixed level.

Evaluation of TWW cycle threshold ( )CTWW

For the 3-parameter TWW model, the first step in calculat-
ing CTWW  is predicting the parameters of fluorescence 
intensities F x( )  as a function of cycle number x  using 
equation (2), where α  is the maximal fluorescence intensity, 
β  is the fluorescence intensity intrinsic growth rate, and θ  
sets the fluorescent intensity displacement along the hori-
zontal axis.

The next step is to calculate the slope of the tangent line to 
the graph of the 3-parameter function F x( )  at the point of 
inflection, which results in
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and can be approximated as

 Slope = 0 3002831. αβ  

As shown in Figure 3, the cycle number CTWW  is the ordi-
nate value at the intersection of the tangent line to the graph of 
fluorescence curve F x( )  at the point of inflection. The CTWW  
for 3-parameter TWW is
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If one uses a 4-parameter TWW function, then the point of 
inflection ( , ( ))xinf infF x  has
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The CTWW  for the 4-parameter model is
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Figure 1. TWW growth and growth rate functions using different parameter values.
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The 5-parameter TWW model has its point of inflection at 
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The slope of the tangent line to the graph of the 5-param-
eter F x( )  at the point of inflection is equal to
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and the CTWW  for a 5-parameter TWW model is

Figure 2. 3D graphs of growth and growth rate functions under different conditions.

Figure 3. Shows the fluorescence intensity and the tangent line crossing 

the horizontal axis, creating the CTWW  cycle.
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Measures of f it, precision, and relative eff iciency

Using PCR data of Guescini et al35 and for each combination 
of input molecular number and amplification mix, the average 
fluorescence sample over the 12 runs was calculated. Then, the 
3-parameter TWW growth function, the 3-parameter 
Gompertz, the 3-parameter logistic, and the 5-parameter 
Richard functions were used to estimate the fluorescence 
intensity as a function of cycle number for all 4 models using 
the PROC NLIN function in SAS software version 9.4 with 
the Gauss-Newton method. To assess the fit performances of 
the 4 models, qPCR data were used to calculate Akaike infor-
mation criterion (AIC) and Bayesian information criterion 
(BIC) which have been defined as

 
AIC nln SSE
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where n is the sample size, SSE  is the sum of squares error, and 
K  is the number of model parameters.

A model with a lower AIC and BIC provides a reasonable 
fit and would be selected. For each combination of input 
molecular number and amplification mix, AIC and BIC for all 
4 models were calculated.

Additional performance measures considered are precision 
and relative efficiency metrics. For each combination of input 
molecular number and amplification mix, the precision (Pre) 
was calculated using the following equation:
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 are mean and SD for the estimated fluores-
cence, respectively. The relative efficiency (Eff ) is defined as
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where Fi  and Fi
  are true and estimated fluorescence intensi-

ties, respectively.

Results
Table 1 provides the AIC and BIC values for all 4 models. For 
68.57% of combination of input molecular number and ampli-
fication mix cases, the 3-parameter TWW model had the least 
values for AIC and BIC, indicating the best model fit among 
all models considered in this study. The Richard model was the 
best fit only in 28.57% of all cases, and the logistic was best in 
2.86% of all cases. The Gompertz was the worst fit for 88.57% 
of all cases.

Table 2 shows the computed values for precision and rela-
tive efficiencies. TWW had the best precision 85.71% of all 
cases while the Richard model had the highest precision with 
only 14.29%. For all cases, Gompertz had the worst precision 
when compared with other models. TWW had the best relative 
efficiency 54.29% of all cases, while logistic relative efficiency 
was the best in only 17.14%. Richard and Gompertz tied for 
best relative efficiency each with approximately 14.29% of all 
cases.

Table 3 shows the values of CTWW  and Cy0
.  Figures 4 to 7 

show the graphs of estimated fluorescence intensity as well as 
plots of the true fluorescence intensity values versus cycle num-
ber for different combinations of input molecular number and 
amplification mix using TWW, Gompertz, logistic, and 
Richard models.

For each combination of fluorescence intensity and input 
molecular number, the cycle elasticities of fluorescence using 
the 3-parameter TWW method have been given in Table 4. 
For instance, for the molecular number 3.14E + 7 using ampli-
fication mix of 100%, the cycle elasticity evaluated at the point 
of inflection is 5.91%. This indicates that at the point of inflec-
tion, a 1% increase in cycle number would increase the fluores-
cence intensity by 5.91%. When the cycle threshold 
CTWW is toequal 13 0094. ,  the elasticity is 7.71%, meaning that 
a 1% increase in cycle number would increase the fluorescence 
intensity by 7.71%. Figure 8 shows the graph of cycle elasticity 
of fluorescence for input molecular number of 3.14E + 7 and 
amplification mix of 100%.

Table 5 shows the mean, SD, and 95% confidence interval 
for the fluorescence intensity for all 35 combinations of ampli-
fication mix and molecular number. The minimum value for 
the mean was 7.41, which belonged to 60% amplification mix 
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Table 1. Values of AIC and BIC for TWW, Gompertz, logistic, and Richard models.

       AMPLIFICATIoN MIxED

MoLECULAR NUMBER

100% 90% 80% 70% 60%

3.14e + 7 TWW

AIC = −240.38
BIC = −234.64

AIC = −194.13
BIC = −188.39

AIC = −175.34
BIC = −169.60

AIC = −146.43
BIC = −140.69

AIC = −113.15
BIC = −107.42

Gompertz

AIC = −31.16
BIC = −25.42

AIC = −47.65
BIC = −41.92

AIC = −55.47
BIC = −49.73

AIC = −82.94
BIC = −77.20

AIC = −115.44
BIC = −109.70

logistic

AIC = −191.85
BIC = −186.12

AIC = −163.09
BIC = −157.35

AIC = −157.25
BIC = −151.52

AIC = −126.90
BIC = −121.16

AIC = −98.31
BIC = −92.58

Richard

AIC = −189.38
BIC = −179.82

AIC = −160.50
BIC = −150.94

AIC = −158.01
BIC = −148.45

AIC = −142.86
BIC = −133.30

AIC = −136.40
BIC = −126.84

3.14e + 6 TWW

AIC = −162.89
BIC = −157.15

AIC = −223.25
BIC = −217.51

AIC = −174.23
BIC = −168.50

AIC = −169.21
BIC = −163.47

AIC = −137.61
BIC = −131.88

Gompertz

AIC = −26.00
BIC = −20.26

AIC = −41.74
BIC = −36.01

AIC = −59.37
BIC = −53.63

AIC = −73.14
BIC = −67.40

AIC = −105.41
BIC = −99.68

logistic

AIC = −176.56
BIC = −170.82

AIC = −219.60
BIC = −213.87

AIC = −155.89
BIC = −150.15

AIC = −148.03
BIC = −142.30

AIC = −118.78
BIC = −113.01

Richard

AIC = −233.34
BIC = −223.78

AIC = −223.23
BIC = −214.37

AIC = −159.03
BIC = −149.46

AIC = −154.35
BIC = −144.79

AIC = −144.86
BIC = −135.30

3.14e + 5 TWW

AIC = −179.40
BIC = −173.67

AIC = −241.16
BIC = −235.42

AIC = −200.73
BIC = −194.99

AIC = −165.12
BIC = −159.38

AIC = −120.63
BIC = −114.90

Gompertz

AIC = −31.57
BIC = −25.83

AIC = −56.57
BIC = −50.82

AIC = −61.24
BIC = −55.51

AIC = −82.86
BIC = −77.12

AIC = −117.53
BIC = −111.79

logistic

AIC = −189.04
BIC = −183.31

AIC = −198.61
BIC = −192.88

AIC = −169.45
BIC = −163.72

AIC = −138.19
BIC = −132.46

AIC = −105.14
BIC = −99.41

Richard

AIC = −223.52
BIC = −213.96

AIC = −207.67
BIC = −198.11

AIC = −174.85
BIC = −165.29

AIC = −155.55
BIC = −145.99

AIC = −139.41
BIC = −129.85

3.14e + 4 TWW

AIC = −259.62
BIC = −253.89

AIC = −251.46
BIC = −245.72

AIC = −237.25
BIC = −231.51

AIC = −152.39
BIC = −146.65

AIC = −129.75
BIC = −124.02

Gompertz

AIC = −44.12
BIC = −38.39

AIC = −48.66
BIC = −42.92

AIC = −59.33
BIC = −53.59

AIC = −87.10
BIC = −81.37

AIC = −111.65
BIC = −105.92

(Continued)
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       AMPLIFICATIoN MIxED

MoLECULAR NUMBER

100% 90% 80% 70% 60%

logistic

AIC = −212.42
BIC = −206.68

AIC = −199.32
BIC = −193.58

AIC = −190.23
BIC = −184.49

AIC = −127.77
BIC = −122.03

AIC = −112.65
BIC = −106.92

Richard

AIC = −211.98
BIC = −202.42

AIC = −198.96
BIC = −189.40

AIC = −192.21
BIC = −182.67

AIC = −148.89
BIC = −139.33

AIC = −141.36
BIC = −131.80

3.14e + 3 TWW

AIC = −262.52
BIC = −256.79

AIC = −229.43
BIC = −223.69

AIC = −249.45
BIC = −243.72

AIC = −174.91
BIC = −169.18

AIC = −102.61
BIC = −96.88

Gompertz

AIC = −43.24
BIC = −37.50

AIC = −39.47
BIC = −33.73

AIC = −58.39
BIC = −52.65

AIC = −85.18
BIC = −79.44

AIC = −115.23
BIC = −109.49

logistic

AIC = −206.05
BIC = −200.31

AIC = −210.86
BIC = −205.12

AIC = −191.91
BIC = −186.17

AIC = −145.38
BIC = −139.65

AIC = −89.87
BIC = −84.14

Richard

AIC = −205.48
BIC = −195.92

AIC = −215.76
BIC = −206.20

AIC = −192.80
BIC = −183.24

AIC = −160.87
BIC = −151.31

AIC = −127.83
BIC = −118.27

3.14e + 2 TWW

AIC = −197.95
BIC = −192.22

AIC = −255.44
BIC = −249.70

AIC = −206.73
BIC = −201.00

AIC = −173.50
BIC = −167.77

AIC = −112.91
BIC = −107.17

Gompertz

AIC = −31.25
BIC = −25.52

AIC = −43.47
BIC = −37.74

AIC = −69.82
BIC = −64.08

AIC = −84.27
BIC = −78.54

AIC = −123.01
BIC = −117.27

logistic

AIC = −202.86
BIC = −197.12

AIC = −233.66
BIC = −227.92

AIC = −165.22
BIC = −159.48

AIC = −145.26
BIC = −139.52

AIC = −100.45
BIC = −94.71

Richard

AIC = −231.48
BIC = −221.92

AIC = −237.17
BIC = −227.61

AIC = −178.07
BIC = −168.51

AIC = −161.95
BIC = −152.39

AIC = −138.60
BIC = −129.04

3.14e + 1 TWW

AIC = −274.54
BIC = −268.81

AIC = −318.92
BIC = −313.18

AIC = −274.54
BIC = −268.81

AIC = −222.07
BIC = −216.33

AIC = −152.22
BIC = −146.49

Gompertz

AIC = −31.43
BIC = −25.69

AIC = −50.07
BIC = −44.34

AIC = −57.64
BIC = −51.90

AIC = −84.17
BIC = −78.44

AIC = −126.51
BIC = −120.78

logistic

AIC = −273.94
BIC = −268.21

AIC = −248.63
BIC = −242.89

AIC = −279.33
BIC = −273.59

AIC = −185.62
BIC = −179.49

AIC = −140.23
BIC = −134.49

Richard

AIC = −272.81
BIC = −263.25

AIC = −248.67
BIC = −239.09

AIC = −276.55
BIC = −266.98

AIC = −198.42
BIC = −188.86

AIC = −185.73
BIC = −176.17

Table 1. (Continued)
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Table 2. Precision and relative efficiency for TWW, Gompertz, logistic, and Richard models.

             AMPLIFICATIoN MIxED

MoLECULAR NUMBER

100% 90% 80% 70% 60%

3.14e + 7 TWW

Pre = 62.22
Eff = −0.08

Pre = 62.17
Eff = −2.62

Pre = 62.81
Eff = −1.52

Pre = 62.50
Eff = 0.99

Pre = 63.09
Eff = 5.19

Gompertz

Pre = 63.07
Eff = −11.88

Pre = 63.02
Eff = −11.88

Pre = 63.69
Eff = −12.04

Pre = 63.43
Eff = −11.77

Pre = 64.12
Eff = −11.60

logistic

Pre = 62.28
Eff = −3.42

Pre = 62.23
Eff = −4.89

Pre = 62.87
Eff = −4.14

Pre = 62.57
Eff = −2.15

Pre = 63.18
Eff = 1.40

Richard

Pre = 62.28
Eff = −4.68

Pre = 62.23
Eff = −8.31

Pre = 62.92
Eff = −8.88

Pre = 62.75
Eff = −13.24

Pre = 63.57
Eff = −21.78

3.14e + 6 TWW

Pre = 72.87
Eff = 4.61

Pre = 73.70
Eff = −14.71

Pre = 74.41
Eff = −540.72

Pre = 75.29
Eff = −7.46

Pre = 75.11
Eff = −64.61

Gompertz

Pre = 73.69
Eff = −15.45

Pre = 74.56
Eff = −15.59

Pre = 75.34
Eff = −15.67

Pre = 76.23
Eff = −15.90

Pre = 76.12
Eff = −15.60

logistic

Pre = 72.92
Eff = −5.18

Pre = 73.75
Eff = −12.26

Pre = 74.47
Eff = 232.04

Pre = 75.36
Eff = −8.40

Pre = 75.19
Eff = −36.91

Richard

Pre = 72.74
Eff = −10.93

Pre = 73.67
Eff = −33.21

Pre = 74.51
Eff =−2821.43

Pre = 75.43
Eff = −66.69

Pre = 75.45
Eff =−265.57

3.14e + 5 TWW

Pre = 84.91
Eff = −2.33

Pre = 85.90
Eff = −8.81

Pre = 86.96
Eff = 6.67

Pre = 87.40
Eff = −3.71

Pre = 87.57
Eff = −1.52

Gompertz

Pre = 85.81
Eff = −19.00

Pre = 86.90
Eff = −19.06

Pre = 87.97
Eff = −19.37

Pre = 88.45
Eff = −19.38

Pre = 88.71
Eff = −19.11

logistic

Pre = 84.97
Eff = −9.57

Pre = 85.97
Eff = −8.34

Pre = 87.03
Eff = −4.26

Pre = 87.48
Eff = −8.13

Pre = 87.67
Eff = −5.16

Richard

Pre = 84.81
Eff = −7.56

Pre = 86.02
Eff =−942.16

Pre = 87.08
Eff = −199.63

Pre = 87.64
Eff = −63.68

Pre = 88.08
Eff =−115.76

3.14e + 4 TWW

Pre = 98.24
Eff =−177.96

Pre = 99.10
Eff = −9.58

Pre = 100.36
Eff = −14.82

Pre = 100.86
Eff = 53.64

Pre = 101.12
Eff = 47.68

Gompertz

Pre = 99.34
Eff = −22.42

Pre = 100.21
Eff = −22.66

Pre = 101.48
Eff = −22.97

Pre = 102.06
Eff = −22.89

Pre = 102.38
Eff = −22.79

(Continued)
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             AMPLIFICATIoN MIxED

MoLECULAR NUMBER

100% 90% 80% 70% 60%

logistic

Pre = 98.32
Eff = −91.36

Pre = 99.18
Eff = −13.42

Pre = 100.44
Eff = −16.08

Pre = 100.96
Eff = 21.36

Pre = 101.22
Eff = 22.36

Richard

Pre = 98.34
Eff =−226.03

Pre = 99.20
Eff = 14.72

Pre = 100.48
Eff = −104.09

Pre = 101.2
Eff = −0.83

Pre = 101.65
Eff = −32.21

3.14e + 3 TWW

Pre = 113.21
Eff = −13.58

Pre = 114.14
Eff = −16.96

Pre = 115.63
Eff = 289.53

Pre = 116.09
Eff = −20.20

Pre = 117.46
Eff = −19.29

Gompertz

Pre = 114.50
Eff = −25.96

Pre = 115.38
Eff = −26.29

Pre = 116.96
Eff = −26.49

Pre = 117.48
Eff = −26.45

Pre = 119.08
Eff = −26.28

logistic

Pre = 113.31
Eff = −16.99

Pre = 114.23
Eff = −19.48

Pre = 115.73
Eff = 133.89

Pre = 116.20
Eff = −20.53

Pre = 117.61
Eff = −19.00

Richard

Pre = 113.35
Eff = −27.67

Pre = 114.12
Eff = −22.25

Pre = 115.77
Eff = 257.65

Pre = 116.43
Eff =−135.97

Pre = 118.36
Eff = −11.44

3.14e + 2 TWW

Pre = 130.63
Eff = 2.83

Pre = 132.40
Eff = −47.90

Pre = 133.02
Eff = 10.10

Pre = 135.35
Eff = −18.62

Pre = 135.44
Eff = 11.01

Gompertz

Pre = 132.12
Eff = −29.56

Pre = 133.97
Eff = −29.81

Pre = 134.71
Eff = −29.75

Pre = 137.11
Eff = −30.09

Pre = 137.42
Eff = −29.69

logistic

Pre = 130.74
Eff = −13.98

Pre = 132.52
Eff = −32.86

Pre = 133.16
Eff = −10.01

Pre = 135.51
Eff = −21.42

Pre = 135.63
Eff = −3.49

Richard

Pre = 130.53
Eff = −96.44

Pre = 132.37
Eff =−121.85

Pre = 133.31
Eff = 8.56

Pre = 135.80
Eff = −61.67

Pre = 136.51
Eff = −67.68

3.14e + 1 TWW

Pre = 155.00
Eff = −23.88

Pre = 155.78
Eff = −20.13

Pre = 157.53
Eff = −27.64

Pre = 157.81
Eff = −7.99

Pre = 160.53
Eff = −12.75

Gompertz

Pre = 157.14
Eff = −33.18

Pre = 157.92
Eff = −33.31

Pre = 159.68
Eff = −33.59

Pre = 160.05
Eff = −33.50

Pre = 163.15
Eff = −33.41

logistic

Pre = 155.19
Eff = −25.92

Pre = 155.97
Eff = −24.29

Pre = 157.72
Eff = −28.20

Pre = 158.02
Eff = −17.39

Pre = 160.81
Eff = −18.04

Richard

Pre = 155.29
Eff = 1.25

Pre = 156.09
Eff = −15.03

Pre = 157.80
Eff = 36.93

Pre = 158.39
Eff = −25.11

Pre = 162.01
Eff = −58.60

Table 2. (Continued)
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and molecular number 3.14E + 1. The maximum was 35.32, 
which was associated with 100% amplification mix and molec-
ular number 3.14 + 7.

In addition, a second set of publicly available qPCR data 
was analyzed using a 3-parameter TWW.38 The results are 
given as a supplemental material. The fluorescence readings 
used were constructed for K1/K2 amplification for the average 
of 5 runs at 6 molecular numbers ranging from 4.17E + 7 to 
4.17E + 2.

Discussion
In this article, we introduced a new 3-, 4-, and 5-parameter 
TWW growth model and applied the 3-parameter TWW 
model to analyze the qPCR data. The performance of this new 
model was then compared with Gompertz, logistic, and 
Richard models regarding model fit, precision, and efficiency. 
One advantage of the TWW model, when compared with the 
Richard model, is the capability of its 3 parameters to ade-
quately estimate parameters with high efficiency and accuracy. 
The fewer the number of parameters used, the easier conver-
gence is when using nonlinear regression fit. If the 3-parameter 
TWW model does not adequately fit the data, then one can try 
using the 4- or 5-parameter TWW model. In the analysis of 
the qPCR data used in this article, the 3-parameter TWW 
model showed a very high level of precision and relative effi-
ciency as well as model fit when compared to the other models. 

A reliable estimate of cycle threshold has an utmost impor-
tance in diagnostic testing for detection of diseases, especially 
when monitoring infectious diseases.

A lack of consensus exists on how best to perform, interpret, 
and validate qPCR experiments. The problem is exacerbated 
by a lack of sufficient experimental detail in many publications, 
which impedes a reader’s ability to evaluate critically the qual-
ity of the results presented or to repeat the experiments. 
Following these guidelines would result in better experimental 
practice, allowing more reliable and unequivocal interpretation 
of qPCR results.39,40

To minimize the risk of errors and guarantee the reliability 
of laboratory results, quality control safeguards should be put in 
place. These measures may include regular tuning and upkeep 
of laboratory facilities, strict adherence to the laboratory stand-
ard protocol and procedures, and documentation of all pro-
cesses. Following these measures will help reduce variability as 
well as increase precision, accuracy, and reliability. In addition, 
if the data quality control points toward the presence of 
outlier(s) or influential observation(s) in the data, one should 
not use the statistical method of least squares to estimate the 
model parameters. Instead, the usage of a robust nonlinear 
minimizer such as the method introduced by Tabatabai et al41 
should be used to estimate the model parameters.

Given the results shown herein, it may be feasible in a 
future study to use the CTWW  model discussed as a predictor 

Table 3. Values of CTWW  and Cy0 .

      MoLECULAR NUMBER CTWW

AMPLIFICATIoN MIxED 3.14E + 7 3.14E + 6 3.14E + 5 3.14E + 4 3.14E + 3 3.14E + 2 3.14E + 1

100% 13.0094 16.4675 22.6253 23.5800 27.1323 30.6586 34.4415

90% 13.0132 16.6750 20.2343 23.8180 27.3848 30.9522 34.5602

80% 13.1889 16.8337 20.5438 24.1314 27.6683 31.0145 34.8124

70% 13.0353 17.0964 20.6379 24.1929 27.7852 31.4055 34.8160

60% 13.1062 16.9670 20.5907 24.2137 27.8883 31.3127 30.8955

     MoLECULAR NUMBER Cy0

AMPLIFICATIoN MIxED 3.14E + 7 3.14E + 6 3.14E + 5 3.14E + 4 3.14E + 3 3.14E + 2 3.14E + 1

100% 13.0443 16.4053 19.9986 23.5293 27.0548 30.6088 34.3042

90% 13.1002 16.6658 20.2373 23.7784 27.3283 30.9217 34.4331

80% 13.2602 16.9188 20.5744 24.0867 27.6141 30.9796 34.6755

70% 13.2754 17.2086 20.6991 24.1974 27.6739 31.3350 34.6730

60% 13.5391 17.1482 20.6716 24.1851 27.8264 31.2026 34.7794
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Figure 4. TWW model fit to the PCR data at different amplification mix for all 7 input molecular numbers.

for accelerated qPCR when the method is performed primar-
ily for the purpose of a molecular titration diagnostic that is 
either a qualitative or quantitative laboratory testing process. 
The reader may consider a case where trace RNA or DNA is 
to be detected subject to set limits on the number of thermal 
cycles. Table 4 results on elasticity may provide a guide for 
optimal stopping cycle determination and laboratory 
standardization.

When applied for the purpose of amplification of molecular 
constituents and subsequent processing, such as DNA and 
mRNA production in preparation of a molecular candidate for 
nucleotide sequencing, the results suggest a feasible calibration 

and predictive capability to reach maximum yield given initial 
and final PCR target conditions. The reader may consider a 
case where a whole genome is to be sequenced or multiple 
fragments of RNA are to be sequenced for viral pandemic 
tracking.

The close agreement of the results to the model also sug-
gests a means of detecting signal and cycle losses when com-
paring to a calibrated qPCR system using the TWW growth 
model, such as when inhibitors are present in biological sam-
ples as mentioned by Guescini.35 A future work might include 
qPCR experiments for detection of various DNA/RNA of 
specific antigens of interest with controls.
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Figure 5. Gompertz model fit to the PCR data at different amplification mix for all 7 input molecular numbers.
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Figure 6. Logistic model fit to the PCR data at different amplification mix for all 7 input molecular numbers
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Figure 7. Richard model fit to the PCR data at different amplification mix for all 7 input molecular numbers.
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Table 4. Values of elasticities at the point of inflection and at cycle CTWW .

Elasticities for TWWmodel  AT INFLECTIoN PoINT (%)

       MoLECULAR NUMBER

AMPLIFICATIoN MIxED

3.14E + 7 3.14E + 6 3.14E + 5 3.14E + 4 3.14E + 3 3.14E + 2 3.14E + 1

100% 5.9142 7.7283 9.0920 9.8358 11.1669 13.0832 13.6460

90% 5.9920 7.5256 8.4833 10.0294 11.7794 12.9215 13.8733

80% 5.9356 7.2589 8.6739 10.1512 11.4720 12.3685 14.163

70% 5.6622 7.3165 8.5063 9.6916 11.0923 12.3508 13.7384

60% 5.2769 6.8838 7.9228 9.3639 10.0781 11.2238 12.3073

Elasticities for TWWmodel  AT CyCLE = CTWW  (%)

       MoLECULAR NUMBER

AMPLIFICATIoN MIxED

3.14E + 7 3.14E + 6 3.14E + 5 3.14E + 4 3.14E + 3 3.14E + 2 3.14E + 1

100% 7.7099 10.5560 12.6957 13.8624 15.9508 18.9573 19.8403

90% 7.8320 10.2380 11.7405 14.1662 16.9117 18.7037 20.1969

80% 7.4334 9.8196 12.0396 14.3573 16.4295 17.8361 20.6514

70% 7.3145 9.9099 11.7766 13.6363 15.8353 17.8082 19.9852

60% 6.7099 9.2311 10.8612 13.1221 14.2427 16.0402 17.7401

Table 5. Mean, standard deviation (SD), and 95% confidence interval (CI) for fluorescence.

              MoLECULAR NUMBER

AMPLIFICATIoN MIxED

3.14E + 7 3.14E + 6 3.14E + 5 3.14E + 4 3.14E + 3 3.14E + 2 3.14E + 1

100% 35.32 (21.99) 
[29.07, 41.57]

28.28 (20.57) 
[22.44, 34.13]

24.53 (20.80) 
[18.62, 30.44]

22.20 (21.83) 
[16.00, 28.40]

19.24 (21.81) 
[13.04, 25.44]

15.90 (20.75) 
[10.00, 21.79]

14.16 (21.98) 
[7.91, 20.40]

90% 29.93 (18.63) 
[24.64, 35.23]

26.59 (19.59) 
[21.02, 32.15]

23.09 (19.86) 
[17.45, 28.74]

21.13 (20.96) 
[15.17, 27.09]

18.07 (20.62) 
[12.21, 23.93]

14.69 (19.44) 
[9.16, 20.21]

11.89 (18.56) 
[6.62, 17.17]

80% 28.05 (17.65) 
[23.03, 33.07]

24.62 (18.34) 
[19.40, 29.83]

21.87 (19.04) 
[16.45, 27.28]

19.17 (19.26) 
[13.69, 24.64]

16.47 (19.07) 
[11.05, 21.89]

13.36 (17.81) 
[8.30, 18.42]

10.44 (16.47) 
[5.76, 15.12]

70% 24.17 (15.17) 
[19.86, 28.48]

21.92 (16.53) 
[17.22, 26.61]

19.45 (17.05) 
[14.60, 24.30]

16.88 (17.09) 
[12.03, 21.74]

14.10 (16.42) 
[9.44, 18.77]

11.86 (16.11) 
[7.28, 16.44]

9.18 (14.55) 
[5.05, 13.32]

60% 20.63 (13.12) 
[16.90, 24.36]

18.80 (14.19) 
[14.77, 22.83]

15.75 (13.88) 
[11.81, 19.70]

14.06 (14.30) 
[10.00, 18.13]

12.11 (14.34) 
[8.04, 16.19]

9.51 (12.98) 
[5.82, 13.20]

7.41 (12.01) 
[4.00, 10.82]
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Conclusions
We developed a family of 3-, 4-, and 5-parameter TWW 
growth models and compared the 3-parameter model with the 
classical models currently used in the analysis of qPCR. For the 
qPCR data that were analyzed in this article, we showed that 
the TWW model is a competitive model outperforming the 
Gompertz, logistic, and Richard models in model fit, precision, 
and relative efficiency and can be used as an alternative model 
in analyzing qPCR data. Supplementary R and Mathematica 
codes were included that would calculate the CTWW  for the 
3-parameter TWW model. An R package named “TWW” is 
publicly available to perform all necessary computations for 3-, 
4-, and 5-parameter models and give their corresponding 
CTWW .
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