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Abstract

The regulation of vascular tone by perivascular tissues is a complex interplay of various paracrine factors. Here, we
investigate the anti-contractile effect of skeletal muscle surrounding the femoral and carotid arteries and its underlying
mechanisms. Using male and female Wistar rats, we demonstrated that serotonin, phenylephrine, and U-46619 induced a
concentration-dependent vasoconstrictor response in femoral artery rings. Interestingly, this response was diminished in
the presence of surrounding femoral skeletal muscle, irrespective of sex. No anti-contractile effect was observed when the
carotid artery was exposed to its surrounding skeletal muscle. The observed effect in the femoral artery persisted even in
the absence of endothelium and when the muscle was detached from the artery. Furthermore, the skeletal muscle
surrounding the femoral artery was able to promote an anti-contractile effect in three other vascular beds (basilar,
mesenteric, and carotid arteries). Using inhibitors of lactate dehydrogenase and the 1/4 monocarboxylate transporter, we
confirmed the involvement of lactate, as both inhibitors were able to abolish the anti-contractile effect. However, lactate did
not directly promote vasodilation; rather, it exerted its effect by activating 5 AMP-activated protein kinase (AMPK) and
neuronal nitric oxide synthase (NOS1) in the skeletal muscle. Accordingly, Nw-propyl L-arginine, a specific inhibitor of
NOS1, prevented the anti-contractile effect, as well as lactate-induced phosphorylation of NOS1 at the stimulatory serine
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site (1417) in primary skeletal muscle cells. Phosphorylation of NOS1 was reduced in the presence of Bay-3827, a selective
AMPK inhibitor. In conclusion, femoral artery-associated skeletal muscle is a potent paracrine and endocrine organ that
influences vascular tone in both sexes. Mechanistically, the anti-contractile effect involves muscle fiber type and/or its
anatomical location but not the type of artery or its related vascular endothelium. Finally, the femoral artery
anti-contractile effect is mediated by the lactate-AMPK-phospho-NOS15¢7417-NO signaling axis.
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Introduction

Maintaining adequate blood flow is essential for the function-
ing of all physiological systems in the body. Skeletal muscle
accounts for approximately 40% of total body weight and is an
organ with high metabolic demands. Therefore, the synergism
between the skeletal muscle and the cardiovascular system is
crucial for balancing the demand and supply of gases, nutrients,
and ions necessary for maintaining physiological processes.!
Physiological adjustments to meet all demands during physi-
cal exercise have been extensively studied.?* However, whether
skeletal muscle can regulate moment-to-moment blood flow
under resting conditions is unknown.

Research into the role of perivascular adipose tissue (PVAT)
has been intensely studied in recent years, emphasizing the
crucial role of this tissue in regulating vascular function and
mechanics.” Specifically, PVAT releases several vasoactive sub-
stances, including nitric oxide (NO), hydrogen peroxide (H,0,),
adiponectin, and others, promoting an anti-contractile effect in
healthy conditions.>® The anti-contractile effects of PVAT are
present in almost all vascular beds where adipose tissue sur-
rounds the vessels. However, the vasoactive factors released by
PVAT differ among the vessels and depend on the type of fat
composing the PVAT.>10

Skeletal muscle is considered a paracrine and endocrine
organ that can release cytokines, peptides, and some vasoac-
tive substances that influence the metabolism and function
of the other tissues it surrounds; these factors are known as

myokines.!12 Therefore, we questioned whether skeletal mus-
cle would exert an anti-contractile effect, similar to that of PVAT.
To approach this question, we selected two conduit arteries,
each surrounded by distinct skeletal muscle fiber types and
located in different regions: the carotid and femoral arteries.
These arteries present an insignificant amount of PVAT and
are surrounded predominantly by the sternohyoid and adductor
muscles, respectively. With that, we hypothesized that skeletal
muscle mediates an anti-contractile effect on vascular tone, and
this response would depend on the type of surrounding skeletal
muscle.

Materials and Methods
Animals

The Animal Care and Use Committee at the University of South
Carolina School of Medicine approved all animal procedures
and protocols used for animal experimentation (IACUC# 2595-
101693-041122). The procedures followed the National Institutes
of Health Guide for the Care and Use of Laboratory Animals
and Animal Research Reporting of in vivo Experiments (ARRIVE)
guidelines. Experiments were conducted on 3-mo-old male and
female Wistar rats, obtained from Charles River Laboratories.
Rats were maintained on a 12-h light cycle with ad libitum access
to water and a standard chow diet (0.3% NaCl, Harlan Teklad diet
TD 7034; Madison, WI, USA).
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Table 1. Genes and Primers Sequence

Gene Primer sequence (5'-3)

NOS1 F: GAACACGTTTGGGGTTCAGC

R: CTGAGATGATCACGGGAGGC

MyH7 F: GAGACGGACGCCATACAGAG
R: CCTCTGCTTCTTGTCCAGGG
MyH2 F: CCCTCAGAGAGAGCAGAGGT
R: TVTAGGAGCCCCAGAAGACC
MyH1 F: CGGTCGAAGTTGCATCCCTA
R: TTACAGTAGCGCCACCTTCG
MyH4 F: AGAGAGGAGCAGGAGAGTGG
R: TGTCCTCCATCTCTCCCTGG
GAPDH F: TGTTCCAGTATGACTCTACC

R: GGGAGTTGTCATATTTCTCG

Vascular Reactivity

Rats were anesthetized with 5% isoflurane (1 L/min 100% oxy-
gen), and following the loss of their righting reflex, were killed
by exsanguination. The femoral and carotid arteries, with their
respective skeletal muscles, were then removed. In the absence
or presence of their respective skeletal muscle, 2 mm rings
were mounted onto DMT wire myographs (Danish MyoTech,
Aarhus, Denmark) and kept in a Krebs solution (composition
in mM: 118 NaCl, 24.9 NaHCO3, 4.7 KCl, 1.2 MgS04.7H20, 2.5
CaCl2, 1.2 KH2PO4, 5.6 glucose, and 0.026 Na2-EDTA). As previ-
ously described,®® both arteries were normalized to their opti-
mal lumen diameter for active tension development. Arteries
were initially contracted using 120 mmol/L potassium chloride
(KCl) to test vascular smooth muscle cell integrity. Serotonin
concentration-response curves (5-HT; 1 nmol/L to 100 umol/L)
were performed in the carotid and femoral arteries. Due to
the carotid artery’s lack of anti-contractile effect, the remain-
ing mechanistic experiments were conducted only on the
femoral artery. To verify whether this anti-contractile effect
was receptor-dependent, two additional agonists were tested,
phenylephrine (Phe; 1 nmol/L to 10 umol/L) and thromboxane
A, mimic (U-46619, 0.1 nmol/L to 10 umol/L). To assess whether
the physical attachment between the artery and the muscle was
necessary for the anti-contractile effect, experiments were car-
ried out with attached or detached skeletal muscle. For detached
skeletal muscles, isolated muscles were placed and positioned
near the artery inside the DMT chamber. With that, we could
understand whether the role of the skeletal muscle was due
to contact (e.g., innervation) and/or to factors released by the
skeletal muscle (see illustration in Figure 2D). Subsequently,
to evaluate whether the carotid and femoral responses were
due to differences between the muscle type or the type of
artery, the carotid, basilar, and superior mesenteric arteries
were mounted in the presence of the femoral skeletal muscle.
Concentration-response curves were performed using the ago-
nists (Phe 1 nmol/L to 10 umol/L) or (serotonin, 5-HT; 10 pmol/L
to 1 umol/L).To begin elucidating the involved mechanism,
femoral arteries with attached skeletal muscles were incubated
for 30 min prior to their concentration response curves using the
following inhibitors: the non-specific NOS inhibitor (N¢-nitro-L-
arginine methyl ester, 100 pM), the neuronal nitric oxide syn-
thase inhibitor (N-propyl-L-arginine, 2 M), the lactate dehy-
drogenase inhibitor (GSK2837808A, 10 um), and the monocar-
boxylic acid transport inhibitor (2-Cyano-3-(4-hydroxyphenyl)-
2-propenoic acid, 1 mm) Furthermore, to evaluate the involve-
ment of potassium channels, we used specific blockers for
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the following channels: IKc, (TRAM-34 10 um), SKca (ULC1684,
100 nm), Kare (Glibencamide, 1um) and BKc, (Iberiotoxin 100 nm).

Lactate Assay

The skeletal muscles surrounding the femoral and carotid
arteries (10 mg) were removed and the lactate concentration
was measured following the manufacturer’s recommendations
(ab65331, Abcam). All samples were deproteinized with the
Deproteinizing Sample Preparation Kit-TCA (ab204708, Abcam).
The protein concentration was measured using the BCA protein
assay kit (ThermoFisher Scientific, 23227) and was used to nor-
malize the lactate values obtained.

RT q-PCR

According to the manufacturer’s instructions, total RNA was
extracted from skeletal muscle using TRIzol reagent (Invitro-
gen.; #15596026). cDNA was synthesized from 50 ng of the
total extracted RNA using the gPCR-SuperMix-UDG Kit (Bio-Rad
#1708891). Quantitative RT-qPCR was performed using the SYBR
Green PCR kit (Bio-Rad; #1708882) to amplify genes of interest
following the specific primers listed (Table 1). Cycle threshold
(Ct) values were obtained for each gene. The difference was
assigned as AACt. The fold change between the two samples
was then calculated as 2—AACt, a value directly proportional to
the copy number of complementary DNA and the initial quantity
of mRNA. The analysis of the mRNA of interest was normalized
to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the
data were expressed as the fold of change in relative to male
femoral data.

Primary Skeletal Muscle Cells

The skeletal muscles surrounding the carotid (sternohyoid) and
femoral (adductors) arteries were removed and cleaned of con-
nective and adipose tissues using sterile surgical instruments.
The muscles were cut into small segments and incubated in an
enzymatic digestion solution [collagenase II (500 U/mL), collage-
nase D (1.5 U/mL), dispase II (2.5 U/mL), and CaCl2 (2.5 mm)] for
60 min in 37°C water bath, while the tube agitated every 5 min.
Afterward, the solution was centrifuged (1100 x g for 5 min) and
resuspended in a differentiation medium (high glucose DMEM,
10% horse serum, 10% fetal bovine serum, and 1% penicillin-
streptomycin-glutamine). Cells were placed in flasks pretreated
with matrigel, and incubated at 37°C, with 5% CO,. The growth
medium was changed every 2 days, and when the plates became
confluent, the cells were transferred to larger plates. All proce-
dures followed pre-established protocols for skeletal muscle cell
isolation.’ At the third passage, the cells were placed in 6-well
plates and treated with Lactate (5 mwm), Lactate plus Bay 3827
(selective AMPK inhibitor; 5 uM), or vehicle for 1 h.

Immunofluorescence Analysis

Samples from skeletal muscles surrounding the carotid (ster-
nohyoid) and femoral (adductors) arteries were washed briefly
in ice-cold PBS and fixed in fresh 4% paraformaldehyde (Thermo
Scientific, J19943-K2) at 4°C for 24 h. Subsequently, the tissues
were immersed in 15% sucrose (S5-500, Fisher Scientific) for
12 h, followed by 30% sucrose overnight. Subsequently, the tis-
sues were frozen in Tissue-Tek® O.C.T. Compound (4583, Sakura
Finetek) and cutinto 6 um thick sections using a cryostat (HM525
NX, Thermo Fisher Scientific) maintained at —20°C.*> All primary
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antibodies for this experiment were purchased from the Devel-
opmental Studies Hybridoma Bank (University of lowa, USA),
and secondary antibodies were purchased from Invitrogen, and
Thermo Fisher Scientific. Briefly, slides were blocked and per-
meabilized for 2 h in PBS (0.01 M) containing 1% bovine serum
albumin and 0.5% Triton X-100 at room temperature. Next, slides
were incubated with primary antibodies against Laminin (2E8
mouse 1gG2a, 1:50), MHC I (BA-F8 mouse IgG2b; 1:12,5), and MHC
IIB (BF-F3 mouse IgM; 1:25) overnight at 4°C. Afterward, slides
were washed 3 times in PBS for 5 min and then incubated with
secondary antibodies for Laminin (goat anti-mouse IgG2a, Alexa
Fluor 546; 1:500); MHC I (goat anti-mouse IgG2b, Alexa Fluor 488;
1:500); MHC IIb (goat anti-mouse IgM Alexa Fluor 594; 1:500) for
90 min at room temperature. Slides were washed 3 times in PBS
for 5 min and mounted between the slide and coverslip using
Fluoroshield with DAPI mounting medium (F6057, Sigma). Image
acquisition was performed using the Leica Stellaris 5 confocal
microscope from the Instrumentation Resource Facility at the
University of South Carolina, using a 20x objective lens. Fluo-
rescence images for each immunohistochemistry marker were
obtained using the same acquisition settings (laser power and
gain) for slides/skeletal muscle from different groups.

Mitochondrial Respirometry

In another set of experiments, dissected skeletal muscle was
used to evaluate mitochondrial respiration via high-resolution
respirometry. The samples were rapidly weighed and placed in
ice-cold biopsy preservation solution (BIOPS, 2.8 mm CaK,EGTA,
7.2 mm K,EGTA, 5.8 mm ATP, 6.6 mMm MgCl,, 20 mM taurine,
15 mwM sodium phosphocreatine, 20 mwm imidazole, 0.5 mm
dithiothreitol and 50 mm MES, pH = 7.1).% Subsequently, the
muscles were permeabilized in a BIOPS solution with 25 ng/mL
of saponin at 4°C with gentle agitation for 30 min." After that,
the tissues were washed for 10 min with ice-cold MiR05 (0.5 mMm
EGTA, 3 mmM MgCl,, 60 mM potassium lactobionate, 20 mm tau-
rine, 10 mM KH,PO,4, 20 mmM HEPES, 110 mM sucrose, and 0.1%
(w/v) BSA, pH = 7.1), and quickly weighed on a precision bal-
ance, before starting the protocol. Approximately 10-15 mg was
used to measure mitochondrial respiration rates at 37°C using
high-resolution respirometry (Oroboros Oxygraph 2 K, Oroboros
Instruments, Innsbruck, Austria). Respiration due to oxidative
phosphorylation was measured using different substrates to
activate specific complexes. Initially, malate (2 mm), pyruvate
(10 mm), and glutamate (20 mm) were added together. To this
solution, ADP (5 mM, complex I activity) was added; at the
plateau of this response, succinate (10 mmMm; complex II) was
added. The maximum capacity of the electron transport system
(ETS) was assessed using the carbonyl cyanide m-chlorophenyl
hydrazone (CCCP; successive titrations of 0.2 um until maxi-
mum respiratory rates were reached). Oxygen consumption in
the uncoupled state due to complex II activity was measured by
inhibiting complex I by adding rotenone (0.1 uMm; ETS CII). Elec-
tron transport through complex III was inhibited by the addi-
tion of antimycin (2 uM) to obtain residual oxygen consumption
(ROX) levels due to oxidizing side reactions outside mitochon-
drial respiration. The O, flow obtained at each step of the proto-
col was normalized by the wet weight of the tissue sample used
for analysis and corrected for ROX.%8

Western Blotting

Samples from skeletal muscles surrounding the carotid
(sternohyoid) and femoral (adductors) arteries and skeletal

muscle cells (as described above) were homogenized and lysed
in lysis buffer (cOmplete Lysis-M, Rocher, Mannheim, Ger-
many) containing protease and phosphatase inhibitor cocktail
(cOmplete Tablets, Roche, Mannheim, Germany). Samples were
centrifuged (13000 x g for 15 min at 4°C), and supernatants
were isolated and stored at —80°C. Protein concentration was
subsequently determined using the BCA method, and then
equal quantities of protein (50 ng) were loaded into 10% and
8% polyacrylamide gels. After loading, gels were separated
by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
and transferred to 0.45-um Amersham Protran nitrocellu-
lose membranes (GE Healthcare). Antibodies used: anti-NOS1
(1:1000; Thermo Fisher Scientific #37-2800), anti-NOS1 phospho
S847 antibody (1:1000; abcam, ab16650), anti-NOS1 phospho
S1417 antibody (1:1000; abcam, ab5583), superoxide dismutase
3/extracellular (EC)-SOD antibody (1:5000, abcam, ab8318), and
superoxide dismutase 2/manganese (MnSOD) antibody (1:5000,
Cell signaling, 13 141s). Anti-GAPDH (1:10000; Abclonal, ac001)
was used as loading control antibodies. Membranes were
incubated with the matched secondary antibody (1:5000) at
room temperature for 90 min. The blots were scanned using a
Gene Gnome Bioimaging system (Syngene). Image J [National
Institutes of Health and the Laboratory for Optical and Compu-
tational Instrumentation (LOCI, University of Wisconsin)] was
used to quantify the scanned images.

Co-immunoprecipitation

Co-immunoprecipitation was performed using a modified
Thermo Scientific Pierce Kit (Thermo Fisher Scientific, Rockford,
IL, USA). Fibers from adductor skeletal muscles were lysed and
total protein was extracted via pulverization of frozen tissue fol-
lowing sonication (3x, 10 s, Setting 5) in extraction RIPA buffer
[1% v/v NP-40 in Tris-buffered saline (TBS; 50 mm Tris-HCl, pH
7.5, 150 mm NaCl)] with 0.5 mm PMSF, PIC1, PIC2, 500 nM 5 mm
NaF, and 5 mMm B-glycerophosphate (or with phosphatase and
protease inhibitors). Tissue debris was pelleted at 10000 x g
(30 min at 4°C) and protein concentration was estimated using
the BCA. Five hundred microgram of protein per 1 ug of anti-
body (NOS1 #4231, cell signaling,—concentration 200 pg/mL)
was used to form a protein complex, and allowed to immunopre-
cipitate for 24 h. Thermo Scientific Protein A/G was used to cap-
ture the antibody: protein complex for 2 h at 4°C. Immunopre-
cipitated columns were washed with extraction buffer to remove
non-specifically bound proteins, and then resuspended in 2x
SDS buffer with 350 mMm DTT, and heated at 95°C for 5 min.
An equivalent amount of rabbit IgG antibody was used as an
immunoprecipitation control. The immunoblots were developed
using AMPK antibody (1:1000, cell signaling, #2532) for 24 h at
room temperature or overnight at 4°C. Antigens were detected
using the Pierce ECL Western Blotting Substrate (Thermo Scien-
tific, IL, USA). Direct Blue staining was used as a loading control
staining method.

Data and Statistical Analysis

Sample sizes are described in the graphs, with each dot
representing an independent rat. All data are presented as
mean + SEM. Statistical analyses were performed using Graph-
Pad Prism software version 10.2.3 9. The Shapiro-Wilk test was
used to check the normality of the data. Depending on the data
distribution and experimental design, Student’s t-test, 1- or 2-
way ANOVA was used as appropriate, followed by the Tukey post



hoc test. A value of P < 0.05 was considered statistically signifi-
cant.

Results

Skeletal Muscle Surrounding the Femoral Artery
Exhibits an Anti-contractile Effect, Unlike the Carotid
Artery, and Is Independent of Sex

As expected, serotonin promotes a concentration-dependent
vasoconstrictor response in isolated femoral and carotid arter-
ies from male and female Wistar rats. Interestingly, when the
skeletal muscles surrounding the arteries were maintained to
assess contractile capacity, the serotonin-induced contraction
was reduced, but only in the femoral artery (Figure 1A-B), and
this effect was sex independent. These data suggest that skele-
tal muscle surrounding the femoral artery promotes an anti-
contractile effect. Importantly, this effect was also observed
when using an alpha-1 adrenergic agonist (Phe) and the throm-
boxane A;-mimetic (U-46619) (Figure 2A-B), indicating this anti-
contractile factor acts in a receptor-independent manner. To
investigate whether this effect depends on the endothelium,
a subgroup of femoral artery rings had their endothelium
removed. As expected, endothelium removal (—E) increased the
response to Phe in arteries absent of skeletal muscle (—Muscle).
However, the presence of muscle (+Muscle) in arteries with-
out endothelium (—E) had the same effect, suggesting that the
anti-contractile effect promoted by skeletal muscle is indepen-
dent of the endothelium (Figure 2C). In addition to testing the
effects of skeletal muscle presence, rings were mounted in
which the muscle was separated from the artery, but kept close
(detached) to evaluate whether the anti-contractile effect was
dependent on tissue connection. Similar to the attached muscle,
the detached muscle also caused decreased contraction (Figure
2D).

The Skeletal Muscle-Induced Anti-Contractile Effect Is
Vascular Bed Dependent

Since we did not observe the anti-contractile effect in skeletal
muscle surrounding the carotid artery (Figure 1C-D), we then
questioned whether the lack of response was due to the type of
artery and/or the type of skeletal muscle. To answer this ques-
tion, we mounted three arteries from distinct vascular beds,
which are surrounded by different perivascular tissues [mesen-
teric artery (white adipose tissue), basilar artery (subarachnoid
tissue), and carotid artery (skeletal muscle)], and then these
arteries were placed adjacent to the skeletal muscle that sur-
rounds femoral arteries. Of note, we used similar-sized skele-
tal muscle and the diameter of arteries. We observed that the
anti-contractile effect occurred in all arteries evaluated, includ-
ing the carotid artery, which did not show this effect in the pres-
ence of its respective muscle (Figure 2E, F, and G). Subsequently,
we then evaluated the gene expression of specific markers for
Type I (MyH7), Type Ila (MyH2), Type IIx (MyH1), and Type IIb
(MyH4) muscle fibers in skeletal muscle from the carotid and
femoral arteries. We observed that the muscle adjacent to the
femoral artery has the highest gene expression for MyH7, the
Type I fiber marker (Figure 3C). In contrast, the carotid mus-
cle showed higher expression for MyH1 and MyH4, the Type IIx
(Figure 3E) and IIb fiber markers (Figure 3F), respectively. There
were no differences between skeletal muscles for fiber marker
Ila (Figure 3D). Immunofluorescence analysis confirmed the pre-
dominance of type II fibers in the carotid artery, whereas type I
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fibers did not differ between the muscles evaluated (Figure 3A
and B). Interestingly, we did not observe any difference between
the muscles used in mitochondrial respiratory capacity (Figure
3G).

The Anti-Contractile Effect Involves
Lactate-AMPK-NOS1-NO Signaling

Previous publications have demonstrated that lactate can pro-
mote relaxation in different vascular beds.®2* Therefore, we
hypothesized that lactate released from the femoral artery
skeletal muscle would be responsible for the anti-contractile
effect. To test this hypothesis, we pre-incubated the femoral
artery rings (+Muscle) with the lactate dehydrogenase inhibitor
[GSK2837808A (GSK), Figure 4A and D] and the monocar-
boxylate transporter inhibitor [«-cyano-4-hydroxycinnamic acid
(«CCA), Figure 4B and E|. Both inhibitors abolished the anti-
contractile effect seen with the skeletal muscle on the femoral
artery in males and females (Figure 4A, B, D, and E). Subse-
quently, we performed a concentration-response curve for lac-
tate (0.1-20 mm) in isolated femoral arteries (-Muscle) contracted
with KCl or Phe. Interestingly, lactate did not promote changes in
vascular tone in the physiological ranges, and we observed a loss
of vascular tone at high concentrations (<15 mm, pH ~3; Figure
4H). These data suggest that lactate cannot promote direct dila-
tion in the femoral artery, but since its inhibitors, LDH (Figure
4A and D) and MCT1/4 (Figure 4B and E), reversed the anti-
contractile effect, we then had an alternative hypothesis that
lactate could promote its anti-contractile effects in an autocrine
way. Specifically, we hypothesized that lactate in the skele-
tal muscle activates potassium channels.?> Therefore, we used
specific potassium channel blockers including, intermediate-
conductance, calcium-activated potassium channels (TRAM-
34 10 M), calcium-activated potassium channels (ULC1684,
100 nM), an ATP-sensitive potassium channel (Glibencamide, 1
uMm) and large-conductance calcium-activated potassium chan-
nels (Iberiotoxin 100 nMm). Interestingly, none of these inhibitors
altered the anti-contractile response elicited by femoral skeletal
muscle (Table 2).

Previously, it has been shown that lactate could affect NO
production in the vascular cells.!®?° Neuronal nitric oxide syn-
thase (NOS1) is an important enzymatic source of NO in skele-
tal muscle. Therefore, the non-specific NOS inhibitor (L-NAME)
and the specific NOS1 inhibitor (L-NPA) were used to evaluate
their role in the anti-contractile effect caused by lactate. L-NPA
abolished the anti-contractile effect in arteries from both sexes
(Figure 4C and F). It is important to mention that L-NAME pro-
moted the blocking of the anti-contractile effect to the same
extent as inhibitor L-NPA (Table 2).

Subsequently, we cultured primary skeletal muscle cells to
corroborate these findings and for more mechanistic insights.
First, we confirmed that the cells originating from the surround-
ing femoral and carotid artery muscles expressed myosin heavy
chain, a specific marker of skeletal muscle cells (Figure 5A) and
NOS1 (Figure 5B). We then treated cells isolated only from the
femoral muscle with lactate (5 mm; 1 h) to evaluate NOS1 acti-
vation via changes in phosphorylation. Lactate increased NOS1
phosphorylation at Ser1417, the main post-translational modi-
fication responsible for NO release from NOS1 (Figure 5E, Suppl.
Figure S1). On the other hand, no differences were observed in
the phosphorylation at Ser847 (Figure 5D, G and Suppl. Figure
S1). No changes in the total expression of NOS1 were observed
(Figure 5D, 5E, and Suppl. Figure S1). Previous literature data
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Figure 1. Serotonin (5-HT)-induced contraction in femoral (A and B) and carotid (C and D) arteries rings with functional endothelium in the presence (+muscle) or
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Figure 4. Concentration-response curves to Phenylephrine (Phe) performed in femoral artery rings from male and female Wistar rats in the absence (—muscle) or
presence (+muscle) of the skeletal muscle, with the lactate dehydrogenase inhibitor [GSK2837808A, (GSK); A and D], and the monocarboxylic acid transport inhibitor
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in the femoral artery (—muscle) rings pre-contracted with KCI (90 mm) (H). The number of animals used in each experiment (n) is expressed in parentheses. The results
are expressed as the mean =+ SEM. Statistic: 2-way ANOVA or Student’s t-test as appropriate, *P < 0.05; **P < 0.01. Please note that in some cases, the controls [presence
or absence of muscle (—/+Muscle)] are consistent across all graphs, as the first myograph chamber was used as the control, while the other chambers were exposed
to different inhibitors. To enhance clarity for the reader, we have presented these results in separate graphs.

demonstrated that lactate activates AMPK, and this activation
is responsible for different effects such as remodeling the cel-
lular metabolic profile, and proliferation and differentiation of
cells in skeletal muscle.?®:?” Activated AMPK could be responsi-
ble for phosphorylating NOS1.2:2° We treated cells with lactate
in the presence and absence of the specific AMPK inhibitor (Bay
3827). As we had already verified in Figure 5D-E, the presence
of lactate did not change the expression of total NOS1, nor did
Bay 3827 promote any change in the total expression of NOS1

(Figure 6A-B, Suppl. Figure S2). However, the presence of Bay
3827 significantly reduced the expression of NOS15¢"4Y (Figure
6A-C, Suppl. Figure S2). To corroborate these data, we then con-
firmed the role of the lactate-AMPK-phospho-NOS15¢714Y7 gig-
naling pathway through the immunoprecipitation experiment.
For this, we immunoprecipitated NOS1 from cells treated with
vehicle or lactate, and we observed that AMPK expression was
increased in cells treated with lactate when compared to vehicle
(Figure 6D, Suppl. Figure S3).
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Table 2. The difference in the area under the curve between the
absence and presence of anti-contractile inhibitors

Blocker —Muscle +Muscle
Tram-34 + UCL 1684 —0.48 + 3.9 (4) —0.81 + 5.5(5)
Glibenclamide —3.20 £ 9.0 (4) 9.39 + 15.2 (5)
Iberiotoxin 19.9 + 10.2 (6) 6.97 + 6.3 (6)
L-NAME 25.00 + 8.3 (5) 434.65 + 15.8 (5)"
L-NPA —7.71 + 3.4 (5) 347.01 + 31.3 (5)**

=*P < 0.01 versus —Muscle.

Antioxidant Defense Is Higher in the Muscle
Surrounding the Femoral Artery

Although we have observed that lactate-NOS1-NO signaling
plays a major role in the skeletal muscle of the femoral arter-
ies, when we measured the lactate concentrations and the total
protein expression of NOS1 in skeletal muscle from both carotid
and femoral arteries for comparison purposes, these factors
were also elevated in the carotid muscle as well (Figure 7A and
B), despite no evidence of the anti-contractile effect. When we
evaluated the expression of two different superoxide dismutase
(SOD), an important enzyme for antioxidant defense, there was
a higher expression of MnSOD2 and EC-SOD3 (Figure 7C and D,
Suppl. S4-6) in the muscle lining the femoral artery when com-
pared to the carotid.

Discussion

Muscular blood flow is controlled by several central and local
mechanisms that guarantee metabolic needs are met, even
under high demand.”* Evidence indicates that even at rest,
skeletal muscle might release certain factors contributing to
vascular tone. This concept is related to skeletal muscle as an
endocrine and paracrine organ capable of secreting bioactive
substances, known as myokines, into circulation.?3! However,
this concept is still controversial, and it is still unclear whether
skeletal muscle modulates moment-to-moment vascular tone.
Specifically, it was unknown whether skeletal muscle acts as a
source of anti-contractile factors at rest, and the mechanisms by
which this phenomenon would occur. Here, we show for the first
time, that femoral artery skeletal muscle, but not the carotid,
regardless of sex, presented with the ability to antagonize the
contractile response and exert an anti-contractile effect. This
effect suggests a complex interaction between vascular and
perivascular tissues. Our data showed that local mechanisms
mediate this response due to the ex vivo nature of our experi-
ments being performed in isolated organ baths, thus removing
most of the systemic and central influences. Further, the direct
contact of skeletal muscle with the vasculature does not seem
essential for its regulatory role, as skeletal muscle detached from
the arteries did not lose its anti-contractile capacity.
Animportant observation was that the anti-contractile effect
differed between regions and/or types of skeletal muscle, but not
between types of arteries evaluated. The physiological function
and composition of each tissue or type of muscle possibly play a
vital role in these differences. Further, the differences between
the types of skeletal muscle fibers can also play a role. Here,
by using two different approaches, qPCR and immunofluores-
cence, we observed a mix in the types of fibers in the sternohyoid
and adductor, showing that these muscles are not composed of
only one type of skeletal muscle fiber. However, the proportion
of fiber types differs between the skeletal muscle surrounding

the femoral artery and the carotid artery. The skeletal muscle
surrounding the femoral artery exhibits characteristics of type
1 fibers (slow-twitch/oxidative metabolism), whereas the mus-
cle surrounding the carotid arteries presents a predominance
of type 2 (fast-twitch/glycolytic metabolism). Supporting these
findings, it has previously been demonstrated that changes in
a rat’s hindlimbs’ blood flow depend on the muscles’ fiber type
composition.3?

Skeletal muscle can release several metabolic substances
called myokines (a factor released by skeletal muscle).3%:3!
Among myokines, lactate has increasingly been explored as a
signaling molecule and driver of biochemical and physiological
processes, presenting autocrine, paracrine, and endocrine func-
tions.?® Lactate is present in both types of muscle fibers, the type
II fiber being mainly responsible for its production through the
glycolytic pathway, and type I fibers responsible for its removal
through oxidative metabolism (a process carried out in mito-
chondria). Lactate is a natural byproduct of cellular metabolism,
with skeletal muscle being the main producer. Thus, the release
and utilization of lactate occurs moment by moment, operat-
ing continuously as a myokine. Therefore, lactate has metabolic
and signaling functions, as demonstrated previously and rein-
forced in this work.®® Lactate transports across the plasma
membrane of all cells and between these different fiber types.
Lactate transport is facilitated by monocarboxylate transport
proteins (MCTs).>* In the present work, we used two different
inhibitors to verify whether lactate was involved in the femoral
artery skeletal muscle-induced anti-contraction. Specifically, we
used the LDH inhibitor, which converts pyruvate into lactate,
and the MCT1/4 blocker. Regardless of the inhibitor, the anti-
contractile effect was abolished, suggesting the role of lactate as
the possible relaxing factor derived from skeletal muscle. How-
ever, when we administered lactate directly to the arteries in a
concentration-dependent manner, and in the absence of skele-
tal muscle, lactate failed to induce relaxation, except at higher
concentrations (>15 mm). At these higher concentrations, lac-
tate becomes toxic by inducing acidosis, and resulting in tissue
death (as seen in the typical trace, Figure 2H). This experiment
led to the hypothesis that lactate’s anti-contractile effect may be
indirect.

A few studies have suggested lactate as a vasodilator factor;
however, these studies utilized perfusion experiments rather
than isolated organs,'®-?2 making it difficult to ascertain whether
lactate would have a direct and/or indirect effect on the vas-
culature. Therefore, based on the new evidence described in
the present manuscript, lactate can activate different path-
ways, such as proteins or enzymes, directly responsible for pro-
moting the anti-contractile. For instance, the literature cites
the nitric oxide/cGMP pathway and potassium channels.?2:-24
Firstly, we performed a concentration-response curve for sero-
tonin in the presence and or absence of important potassium
channel blockers involved in the vascular tone, and we did not
observe any significant changes (Table 2). Then, we focused on
NOS, specifically the NOS1 form. Accordingly, the skeletal mus-
cle NOS1 enzyme regulates several cellular processes, such as
contraction, glucose metabolism, and blood flow regulation.3>3/
The non-specific NOS inhibitor (L-NAME) and the specific NOS1
inhibitor (L-NPA) abolished the anticontractile effect, suggesting
that NOS1-specific nitric oxide was being released by skeletal
muscle. To confirm this premise, we used primary cells isolated
from skeletal muscle surrounding the femoral artery and treated
them with physiological lactate levels. We observed a significant
increase in the phosphorylation of NOS15¢7*4Y7 without altering
total protein expression or the phosphorylation of NOS15¢7847,
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dots. The results are expressed as the mean + SEM. Statistic: Student’s t-test, ****P < 0.0001. Please note that the original membrane referenced in Figure 5 are in the

Suppl. Figure S1.

Phosphorylation at Ser 1417 activates NOS1 and increases NO
production, while phosphorylation at Ser847 has the opposite
effect.383° We used the same approach as before, adding the
specific AMPK inhibitor to the lactate treatment. This experi-
ment demonstrated the role of AMPK in activating NOS15114%7,
Therefore, we suggested that the anticontractile effect involves
the lactate-AMPK-NOS1-NO signaling via increased phosphory-
lation of NOS15¢r1417,

In the present study, we also observe some intriguing data
that need further investigation. For instance, total protein
expression for NOS1 was more prominent in the muscle
surrounding the carotid artery, which did not affect the
anti-contractile response. Further, the carotid artery skele-
tal muscle presents predominantly fast-twitch fibers, as
opposed to the femoral artery skeletal muscle which presents
predominantly slow-twitch fibers. A possible explanation for
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this phenomenon would be the localization of NOS1. Accord-
ingly, previous work has shown that NOS1 is localized in
different compartments in the skeletal muscle, and this would
affect its function.?” The limitation of the present work is that
we did not evaluate the localization of NOS1, but the total
expression of this enzyme. Further, carotid muscles presented
with more lactate levels, which supports our findings that
this type of muscle presents with the predominance of type
2 (fast-twitch/glycolytic metabolism). We suggest that the

lactate-AMPK-NOS1-NO signaling, via increased phosphoryla-
tion of NOS15%Y is more sensitive and compartmentalized in
the skeletal muscle from the femoral arteries. For instance, the
activity of NOS1 and NO bioavailability are important factors
and are directly associated with the half-life of this molecule.
Skeletal muscles from femoral arteries, although expressing
increased activity of NOS1, present a more potent antioxidant
defense system to maintain NO bioavailability. Superoxide
dismutase (SODs) are functional antioxidant defense systems
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Figure 7. Lactate concentration of skeletal muscle skeletal muscles surrounding the carotid (sternohyoid) and femoral (adductors) of Wistar rats (A). Graphical represen-
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original membrane referenced in Figure 6 are in the Suppl. Figures S4-6.

for maintaining delicate redox homeostasis; they are the first
line of defense against oxygen-free radicals and, consequently,
NO bioavailability.*>#? The expression of the mitochondrial
manganese-containing SOD (MnSOD or SOD2) and the extra-
cellular SOD (EcSOD or SOD3) are greater in the femoral artery
muscle than the skeletal muscle surrounding the carotid artery.
This suggests that the muscle that surrounds the femoral
artery has a greater bioavailability of NO, since the muscle
that surrounds the carotid artery possibly has an increased
formation of peroxynitrite (ONOO~) and, consequently, lower
NO bioavailability. In conclusion, we demonstrated that femoral
artery skeletal muscle, regardless of sex, is a potent endocrine
organ that maintains vascular tone. Perturbations of this tissue
could lead to exacerbated vasoconstriction, resulting in vascular
dysfunction, as observed in several cardiovascular diseases,
including hypertension, and other diseases associated with
sarcopenia, including aging and cancer. Mechanistically, we
demonstrated that the anticontractile effect involves the type
of fiber and/or anatomical location but not the type of artery

and the presence of endothelium. Finally, we propose that
this anticontractile effect is mediated by the lactate-AMPK-
phospho-NOS15¢417-NO signaling axis.
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