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Abstract 

Background Therapeutic targets supported by genetic evidence from genome-wide association studies (GWAS) 
show higher probability of success in clinical trials. GWAS is a powerful approach to identify links between genetic 
variants and phenotypic variation; however, identifying the genes driving associations identified in GWAS remains 
challenging. Integration of molecular quantitative trait loci (molQTL) such as expression QTL (eQTL) using mendelian 
randomization (MR) and colocalization analyses can help with the identification of causal genes. Careful interpretation 
remains warranted because eQTL can affect the expression of multiple genes within the same locus.

Methods We used a combination of genomic features that include variant annotation, activity-by-contact maps, MR, 
and colocalization with molQTL to prioritize causal genes across 4,611 disease GWAS and meta-analyses from biobank 
studies, namely FinnGen, Estonian Biobank and UK Biobank.

Results Genes identified using this approach are enriched for gold standard causal genes and capture known bio-
logical links between disease genetics and biology. In addition, we find that eQTL colocalizing with GWAS are statisti-
cally enriched for corresponding disease-relevant tissues. We show that predicted directionality from MR is generally 
consistent with matched drug mechanism of actions (> 85% for approved drugs). Compared to the nearest gene 
mapping method, genes supported by multi-omics evidences displayed higher enrichment in approved therapeutic 
targets (risk ratio 1.75 vs. 2.58 for genes with the highest level of support). Finally, using this approach, we detected 
anassociation between the IL6 receptor signal transduction gene IL6ST and polymyalgia rheumatica, an indication 
for which sarilumab, a monoclonal antibody against IL-6, has been recently approved.

Conclusions Combining variant annotation, activity-by-contact maps, and molQTL increases performance to identify 
causal genes, while informing on directionality which can be translated to successful target identification and drug 
development.
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Background
Genome-wide associations studies (GWAS) have been 
successful in identifying genes associated with traits, dis-
eases, and molecular phenotypes [1, 2]. Discoveries from 
GWAS have increased substantially over the years due to 
low cost of genomic profiling technologies, an increased 
number of studies, larger cohorts, and meta-analyses, 
as well as the formation of deeply phenotyped datasets 
[3]. The latter include large-scale biobank projects such 
as UK Biobank (UKB) [4, 5], Estonian Biobank [6], and 
FinnGen [7]. As an example, the UK Biobank alone has 
contributed to over 3,200 publications (https:// www. 
ukbio bank. ac. uk/ enable- your- resea rch/ publi catio ns), 
and the FinnGen project is set to increase the number of 
discoveries emerging from rare variants enriched in the 
Finnish population [7]. Similarly, the Estonian Biobank, 
with its extensive dataset, has enhanced rare and low-fre-
quency genetic variation discoveries [8–10]. 

Discoveries from genetic studies provide a highly valua-
ble resource for drug discoveries. For example, therapeu-
tic targets with genetic support are > 2 times more likely 
to succeed in clinical trials [11, 12]. A notable example 
is the association between a loss-of-function missense 
variant in IL23R gene and Crohn’s disease, suggesting 
that IL-23 blockage could be beneficial [13–16]. Drugs 
targeting the IL-23 receptor including Ustekinumab and 
Risankizumab have recently been approved by the FDA 
for the treatment of Crohn’s disease following successful 
clinical trials [17–19]. Other notable examples of targets 
supported by GWAS include IL6R for rheumatoid arthri-
tis (Sarilumab, Tocilizumab) and HMGCR  for high levels 
of low-density lipoprotein (statins) [20, 21]. 

While these examples clearly show that genetic  dis-
ease associations provide important information for drug 
development, it remains a challenge to accurately assign 
causal genes driving disease risk from GWAS as most 
variants identified in GWAS fall in non-coding regions 
of the genome [22–24]. While it’s been observed that the 
nearest gene often is the causal gene, this is not a guar-
antee as genetic variants can influence traits over large 
genomic distances [25]. In addition, this observation may 
be biased towards genes that have been well-character-
ized because they fall at the center of genetic association 
signals [26]. 

Several approaches have been used to predict causal 
genes, including selecting the nearest gene, variant patho-
genicity predictions, epigenetic interactions, and integra-
tion of molecular quantitative trait loci (molQTL) such as 

expression QTL (eQTL). Mendelian randomization (MR) 
integrating GWAS and molQTL can help identify causal 
relationships while informing on directionality but may be 
confounded due to linkage disequilibrium (LD) [27–29]. 
On the other hand, colocalization approaches can be used 
to detect whether molQTL and GWAS signals share a 
common causal variant in a specific locus [30, 31]. While 
colocalization approaches can link genetic variation to 
changes in gene expression in specific tissue or cell-type 
contexts, they also tend to be pleiotropic and often impact 
the expression of multiple genes within the same locus [26, 
32, 33]. They can also impact expression across multiple 
tissues and cell types, decreasing their utility to identify 
pathogenic cell types [32, 34, 35]. In addition, a large frac-
tion of GWAS loci don’t show eQTL signals, potentially 
due to the unavailability of data for relevant cell types or 
specific biological contexts or variants affecting disease risk 
due to different mechanisms such as splicing [32, 36, 37]. 
Despite these challenges, eQTL has successfully been used 
to identify causal genes [38, 39]. In addition, recent prioriti-
zation approaches such as the Locus to Gene (L2G) scores 
from Open Targets have shown that incorporating molecu-
lar trait information does increase performance to identify 
relevant genes [26]. 

Here, we sought to use currently available eQTL infor-
mation to identify disease relevant genes in the context of 
drug discovery. We first derived a simple approach to pri-
oritize causal genes based on MR [40], eQTL colocalization 
[31], activity-by-contact (ABC) enhancer-promoter inter-
actions [41], and variant annotations [42]. We used this 
combinatorial approach as a way to mitigate the pleiotropic 
effect of eQTL while retaining important information 
about directionality. We show that this approach enriches 
for gold standard genes [26] and captures known target 
biology. In addition, genes prioritized by this approach 
are enriched for drug targets with successful clinical tri-
als, and directionality inferred by MR or coding variants 
recapitulate drug mechanisms of action (MoA). Finally, we 
show that this approach can be used to identify drug indi-
cation expansion opportunities using genes related to the 
IL6  receptor as a case study and identify an association 
between IL6ST and polymyalgia rheumatica.

Methods
Estonian Biobank GWAS
The Estonian Biobank (EstBB) is a population-based 
biobank with 200k participants. The 198k data freeze was 
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used for the analyses described here. All biobank partici-
pants have signed a broad informed consent form.

All EstBB participants have been genotyped at the Core 
Genotyping Lab of the Institute of Genomics, Univer-
sity of Tartu, using Illumina Global Screening Array v1.0 
and v2.0. Samples were genotyped and PLINK format 
files were created using Illumina GenomeStudio v2.0.4. 
Individuals were excluded from the analysis if their call-
rate was < 95% or if sex defined based on heterozygosity 
of X chromosome did not match sex in phenotype data. 
Before phasing and imputation, variants were filtered by 
call-rate < 95%, HWE p value < 1e-4 (autosomal variants 
only), and minor allele frequency < 1%. Variant positions 
were updated to b37 and all variants were changed to 
be from TOP strand using GSAMD-24v1-0_20011747_
A1-b37.strand.RefAlt.zip files from https:// www. well. ox. 
ac. uk/ ~wrayn er/ strand/ webpage. Chip data pre-phasing 
was done using Eagle v2.3 software [43] (number of con-
ditioning haplotypes Eagle uses when phasing each sam-
ple was set to:–Kpbwt = 20000) and imputation was done 
using Beagle v.28 Sep18.7932 [44] with effective popula-
tion size ne = 20,000. Population specific imputation ref-
erence panel of 2297 WGS samples was used [44]. 

FinnGen
The FinnGen study (https:// www. finng en. fi/ en) was 
described previously [7]. The study is a public-private 
research project that combines genetic and healthcare 
data of over 500,000 Finns. The objective of the FinnGen 
study is to identify novel medical and therapeutical 
insight into human diseases. It is a pre-competitive part-
nership of Finnish biobanks, universities and university 
hospitals, international pharmaceutical industry part-
ners, and Finnish biobank cooperative (FINBB). A full list 
of FinnGen partners is published here: https:// www. finng 
en. fi/ en/ partn ers.

Disease GWAS processing
We retrieved GWAS results from FinnGen release 10 
(R10), UK Biobank pan-ancestry analysis [45], and a 
meta-analyses between FinnGen, UK Biobank, and Esto-
nian biobank. For simplicity, we use the term GWAS 
to refer to both single study GWAS and meta-analyses 
throughout the manuscript. In total, we included 4,611 
GWAS with at least one variant with P < 1 ×  10−6. When 
appropriate, we lifted over variants from hg38 to hg19 
using the liftOver R package [46]. Variant with a minor 
allele frequency (MAF) < 0.0001 were excluded from the 
analysis. For each GWAS, we considered genes located 
within 250 kb of a variant with P < 1 ×  10−6 for further 
analysis. For gold standard and clinical trial enrichment 
analyses (described below), only genome-wide significant 

loci were included (P < 5 ×  10−8). We excluded the human 
leukocyte antigen (HLA) region in all analyses.

Disease EFO mapping
In order to perform semantic integration of genetic data 
and clinical trial data, the ontological system Experimen-
tal Factor Ontology (EFO) was used. We used the EFO 
to map traits to their corresponding EFO categories and 
when multiple EFO terms could be mapped to the same 
trait, we assigned the trait to each possible term. We used 
the EFO version 3.52.0 (https:// www. ebi. ac. uk/ efo/).

Variant annotation
We used variant effect predictor (VEP v102) [42] to 
annotate the impact of variants with the following 
options: --everything --offline --check_existing --dis-
tance 250,000. Coding variants were defined as those 
impacting protein coding transcript annotated as mis-
sense variant or predicted to have “high” impact, includ-
ing stop gain, splice-site, and frameshift variants. We also 
retrieved pathogenicity predictions for missense variants 
from ProtVar [47], considering conservation, structure 
stability predictions, and EVE [48] and ESM1b scores 
[49]. We defined pathogenic variants as those with “high” 
impact, predicted to be pathogenic, destabilizing, or in a 
conserved region. In addition, we linked non-coding var-
iants to genes using activity-by-contact (ABC) maps [41]. 
ABC scores represent the contribution of an enhancer 
to the regulation of genes, measured by multiplying the 
estimates of enhancer activity and three-dimensional 
contact frequencies between enhancers and promot-
ers. ABCmax refers to variant-gene pairs with the high-
est ABC score. We also retrieved disease mutations from 
the Human Gene Mutation Database (HGMD) (licensed 
from Qiagen, Maryland) [50]. We annotated all variants 
with P < 1 ×  10−6 and within 5 orders of magnitude of the 
lead variant at the locus.

Mendelian randomization & colocalization
We performed transcriptome wide MR using the R pack-
age TwoSampleMR [40]. When more than one instru-
ment was present, we used the inverse variant weighted 
approach, otherwise we used the Wald Ratio approach. 
We considered the following exposures: protein quantita-
tive trait loci (pQTL) from Sun et al. [51], and eQTL from 
Blueprint [52], eQTLGen [53] and other datasets from 
the EBI eQTL catalogue [53–77]. In total, 110 molQTL 
from 26 studies were included. For each of those stud-
ies, we excluded variants with a MAF < 1%. We clumped 
variants using PLINK [78] using the options –clump-p1 
1 –clump-p2 1 –clump-r2 0.01 – clump-kb 10,000 and 
using the European ancestry subset of the 1000 Genomes 
Project phase 3 data as reference [79]. We included all 

https://www.well.ox.ac.uk/~wrayner/strand/
https://www.well.ox.ac.uk/~wrayner/strand/
https://www.finngen.fi/en
https://www.finngen.fi/en/partners
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genes within 250 kb of a GWAS variant with P < 1 ×  10−6. 
For each QTL, independent variants with P < 1 ×  10−4 
were used as instruments. For genes with significant MR 
results (false discovery rate < 0.05), we also performed 
colocalization analysis using COLOC [31] in order to 
account for pleiotropy due to linkage, using a region of 
250 kb each side of the local lead GWAS variant. Har-
monization between molQTL and GWAS datasets was 
performed using the harmonise_data function in the 
TwoSampleMR package [40]. Only autosomes were 
included in this analysis.

Causal gene prioritization
We prioritized genes as putatively causal using a combi-
nation of evidence including MR, colocalization H4 pos-
terior probabilities (PP) with molQTL, presence of an 
associated pathogenic variant or other coding variants, 
distance to lead variant, and enhancer-promoter ABC 
scores [41]. Specifically, we ranked genes as follow:

Rank Criteria

Very High Lead pathogenic variant;
Or
Colocalization (H4 PP > 80%) with molQTL of the target 
gene in > 2 dataset; and maximum ABC score for a regula-
tory element overlapping the lead variant

High Lead coding variant;
Or
Associated (P < 1 ×  10−6) pathogenic variant;
Or
Colocalization (H4 PP > 80%) with molQTL of the target 
gene in > 2 dataset and maximum ABC score for an associ-
ated variant overlapping a regulatory element (P < 1 ×  10−6)
Or
Colocalization (H4 PP > 80%) with molQTL of the target 
gene in one dataset; and maximum ABC score for a regula-
tory element overlapping the lead variant

Moderate Colocalization with molQTL of the target gene (H4 
PP > 80%)
Or
Significant MR with genome-wide protein QTL 
(q-value < 0.05)
Or
Maximum ABC score for an element overlapping the lead 
variant
Or
Associated (P < 1 ×  10−6) coding variant

Weak Nearest gene to the lead variant
Or
Maximum ABC score for an element overlapping an associ-
ated variant (P < 1 ×  10−6)
Or
ABC link (any score) between an element overlapping 
the lead variant and target gene

Very weak Significant MR with eQTL
Or
ABC link (any score) between an element overlapping 
the lead variant and target gene

For a given locus, we then prioritized the best gene(s) 
as the one with the highest rank. In case of ties, we 

prioritized the nearest gene to lead variant if it is within 
the set of genes with highest scores, otherwise all highest 
ranked genes were prioritized equally.

Enrichment of gold standard genes
We retrieved GWAS causal gene gold standards sup-
ported by functional experiments or observations or 
expert curation from Open Targets (version 191108) 
[26, 80]. We linked the current analysis with the gold 
standard gene list using Ensembl gene identifiers and 
EFO codes. That is, for a given gene-disease pair in the 
current analysis, we consider it a gold standard associa-
tion if the gene and GWAS EFO code are present in the 
Open Targets gold standard gene-disease set. For each 
indication, we filtered out genes not represented in loci 
where a gold standard gene is located. We calculated the 
enrichment of gold standard genes in prioritized genes 
by different features or rankings as described above using 
Fisher exact tests. In addition, we calculated the precision 
(number of prioritized genes that are gold standards over 
all prioritized genes), recall (number of prioritized genes 
that are gold standards over the total number of gold 
standard genes), and F1 scores for each feature.

Single gene colocalizing cell‑type molQTL enrichment
To identify enriched cell types with colocalizing molQTL 
at single genes, we calculated the ratio of indications 
for which this gene is prioritized to be causal by a given 
molQTL dataset (H4 PP > 80%) over the total number of 
prioritized indications (as defined by unique EFO) for 
that gene. We collapsed GWAS by corresponding EFO 
code so that a gene was only counted once per indication 
(and not multiple times for GWAS of the same disease). 
We then compared this ratio to the fraction of prior-
itized indications via colocalization of the same eQTL 
dataset over all prioritized indications genome wide. In 
other words, we are looking for genes that show an over-
representation of colocalizing eQTL cell types across all 
associated indications compared to the genome-wide dis-
tribution. This corresponds to the following contingency 
table:

Where Cijk=1 if disease i colocalize with prioritized 
gene j in tissue k and 0 if not. P-values and odds ratios 
were calculated using Fisher exact tests. False discov-
ery rate (FDR) adjusted P-values < 0.05 were considered 
significant.

iCiJK i k  =KCiJK

i j  =JCijK i k  =K j  =JCijk
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Enrichment of disease categories for single genes
To identify enrichment of  disease categories for single 
genes, we calculated the ratio of the number of GWAS 
where the genes is prioritized for a given EFO category 
over the total number of prioritized GWAS for that gene. 
We then compared this ratio to the genome-wide ratio 
of GWAS for this EFO category over the total number of 
tested GWAS. This corresponds to the following contin-
gency table:

Where Dijk=1 if disease i is prioritized for gene j and 
belongs to category c and 0 if not. P-values and odds 
ratios were calculated using Fisher exact tests. FDR 
adjusted P-values < 0.05 were considered significant.

Disease colocalizing molQTL cell‑type enrichment
We identify enriched cell types in GWAS disease EFO 
categories supported by colocalization as in King et  al. 
2021 [81]. Briefly, we extracted all GWAS colocalizing 
molQTL (H4 probability > 0.8). Then, for a given cell type 
K and disease category I, we generated the following con-
tingency table:

Where Cijk=1 if at least one disease GWAS of category 
i colocalize with gene j in tissue k and 0 if not. P-values 
and odds ratios were calculated using Fisher exact tests. 
We performed the analysis considering all molQTL sepa-
rately, as well as by grouping similar cell types and tissues 
together prior to testing for enrichment. FDR adjusted 
P-values < 0.05 were considered significant.

Drug target‑ indication pairs in clinical trials
Information about drugs approved or in clinical trials was 
obtained from the Citeline data from Informa Pharma 
Intelligence, which is a superset of the most used data 
sources. In addition to multiple data streams, including 
nightly feeds from official sources such as ClinicalTri-
als.gov, Citeline also contains data from primary sources 
such as institutional press releases, financial reports, 
study reports, and drug marketing label applications, and 
secondary sources such as analyst reports by consulting 
companies. Secondary sources are particularly important 
to reduce potential biases to the organizations’ tenancy 
to report only successful trials, especially those before 
the FDA Amendments Act of 2007, which requires all 
clinical trials to be registered and tracked by ClinicalTri-
als.gov. Citeline database contains information from both 
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US and non-US sources. Any cancer or cancer related 
indications were excluded from this analysis.

In order to map gene-disease pairs in the genetic data 
to target-indication pairs in the drug data, we used EFO, 
which provided a systematic description of many data 
elements available in EBI databases. A target-indication 
pair is said to have genetic evidence if there is genetic 
evidence of association between the gene and disease 
sufficiently similar to the indication, based on semantic 
similarity. Two methods were used to calculate semantic 
similarity matrix [82, 83]. Semantic similarities between 
each pair of EFO headings were computed in the ontolo-
gySimilarity R package [84]. The average of the two meth-
ods was calculated and standardized similarities had a 
maximum value of 1 for each disease or indication. Two 
diseases are considered similar if the similarity is greater 
than or equal to a previously published value of 0.7 [11]. 

Prediction of drug mechanism of action directionality
We retrieved information about drug mechanism of 
action (MoA) from the Informa Pharma Intelligence 
dataset described above. Drug MoA were linked to 
GWAS using a semantic similarity threshold 0.7. When 
multiple GWAS could be connected to the same drug tar-
get and indication, we kept only the GWAS with the most 
significant p-value at the locus. For targets for which 
decreased expression or loss of function (LoF) is benefi-
cial, we considered datasets with the following keywords: 
“antagonist”, “inhibitor”, and “degrader”. For targets for 
which increased expression or function is beneficial, we 
considered the following keyworks: “agonist”, and “acti-
vator”. We considered drugs and targets in phase II clini-
cal trial or above. We performed two analyses to infer 
directionality from GWAS. First, we assess directionality 
using the effect size of low-frequency lead coding variant 
(MAF < 5%). We assumed that these variants are disrup-
tive or LoF. Therefore, a LoF coding variant associated 
with increased risk suggests that a drug MoA of agonist 
or activator would be beneficial, whereas for a protective 
LoF coding variant, an inhibitor or antagonist would be 
beneficial. Next, we assessed directionality based on the 
direction of effect of gene expression on disease risk pre-
dicted by MR using molQTL as exposure (q-value < 0.05). 
We included only molQTL colocalizing with local GWAS 
signal (H4 PP > 80%). For gene-disease pairs supported 
by multiple colocalizing molQTL, a consensus direction 
was inferred if the MR direction of effect was consistent 
across > 75% of the molQTL. Here, a negative consensus 
MR direction suggests that increased gene expression 
leads to decreased disease risk. Therefore, an activator 
or agonist drug targeting this gene would be beneficial. 
Conversely, a positive consensus MR direction suggests 
that increased gene expression increases disease risk, and 
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an inhibitor or antagonist drug would be beneficial. We 
calculated enrichment of concordant direction of effect 
between GWAS and drug MoA using Fisher exact tests.

Identification of causal links between diseases and genes 
related to the IL6 receptor
We aimed to apply our proposed approach to a specific 
case example. Using the causal gene prioritization and 
GWAS datasets described above, we extracted all disease 
GWAS for which IL6, IL6R, or IL6ST were predicted to 
be causal. We predicted directionality of effect of gene 
expression on disease risk by MR as above using a thresh-
old of q-value < 0.05. We generated local association of 
plots molQTL and GWAS using LocusZoom [85]. We 
performed fine-mapping of IL6ST genetic variants asso-
ciated with polymyalgia rheumatica using SuSIE [86] as 
previously described for FinnGen [7].

Results
Prioritization of putative causal genes in thousands 
of GWAS
We aimed to prioritize causal genes across 4,611 GWAS 
from 3 different sources (Table  1): UKB [45], FinnGen 
release 10 (R10), and meta-analyses of UKB, FinnGen 
R10, and Estonian biobank [6]. For simplicity, we refer to 
both single studies and meta-analyses as GWAS through-
out the manuscript. While molQTL such as eQTL have 
been used previously to prioritize causal genes, they are 
often pleiotropic with the same variant associated with 
multiple genes within the same locus [26, 32, 33]. Addi-
tional genomic information such as the ABC model have 
been shown to increase performance to identify causal 
genes, in particular when selecting genes with the high-
est ABC score (ABCmax) [41]. Therefore, we derived 
a ranking scheme to prioritize genes using different 

features including ABC, molQTL, coding variant annota-
tions and pathogenicity predictions, and distance to lead 
variant (Fig.  1A, methods). We integrated 110 molQTL 
datasets from 26 studies using MR to infer causality and 
directionality of gene expression on disease risk. We also 
performed colocalization analyses to confirm that both 
GWAS or meta-analyses and molQTL signals shared at 
least one causal variant. Top ranking genes were selected 
as those that either contained an associated lead coding 
variant or were supported by both ABCmax and colo-
calization across > 2 cell types or tissues. We did not 
include distance to lead variant for higher ranks because 
we wanted to first prioritize genes for which we could 
identify potential biological mechanisms. However, for 
loci without such evidence, or in cases where multiple 
genes showed identical ranks, the nearest gene to the 
lead variant was selected as the putative causal gene if it 
was among the best candidates. Overall, between 1.1 and 
1.4 genes were prioritized per locus on average (before 
breaking ties with the nearest gene), with 17–45% of loci 
supported by molQTL colocalization or coding variants 
(Table 1).

Enrichment of genomic features for gold standard genes
Comparing the enrichment of different genomic fea-
tures alone for curated gold standard genes [26], we 
found a strong enrichment for genes supported by 
ABCmax with lead variant (Odds ratio (OR) = 16.3, 
P = 5 ×  10−19i (Additional file  1: Figure S1; Additional 
file  2: Table S1). molQTL colocalization also enriched 
for gold standard genes (colocalization H4 poste-
rior probability (PP) > 95%, OR = 13.3, P = 3 ×  10−31). 
However, the strongest enrichment was observed for 
genes with associated  coding variants (OR = 50.5, 
P = 7 ×  10−60) and the nearest genes (OR = 28.5, 

Table 1 GWAS included in this study.The table reports the maximum GWAS sample size for each study, the total number of GWAS 
with at least one associated gene. The number of loci with at least one variant with GWAS P < 1 ×  10−6. To calculate the number of 
loci, we defined 250 kb regions on each side of the lead variant. Overlapping regions were then merged. The table reports the total 
number of non-overlapping regions. The mean number of prioritized genes corresponds to the average number of genes prioritized 
across each GWAS. The mean number of prioritized gene per locus corresponds to the average number of genes with the highest 
scores in a locus. For the analyses reported throughout this manuscript, ties are broken using the shortest distance to the lead variant. 
Finally, the last column reports the average number of prioritized gene supported by coding variants or molQTL colocalization

molQTL molecular QTL, N Number

Study ID Max sample size Number 
of GWAS

Mean N loci 
(P < 1 ×  10−6)

Mean N 
prioritized 
genes

Mean N 
prioritized genes 
per locus

Mean N prioritized genes 
supported by molQTL or coding 
variants

FinnGen R10 412,181 2,297 16.36 19.9 1.17 0.21

FinnGen, UK biobank, Estonian 
biobank meta-analysis (R10)

1,073,998 95 123.44 164.76 1.32 0.44

UKBB pan ICD-10 (European) 420,531 898 9.01 10.23 1.08 0.17

UKBB pan phecodes (European) 42,0531 1,321 10.52 12.21 1.09 0.19
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P = 3 ×  10−81). These strong enrichments are expected 
given that the gene closest to the lead variant is often 
the causal gene. In addition, several of the gold stand-
ard genes have been selected because they are sup-
ported by coding variants or tend to fall in the center of 
GWAS peaks and have been investigated more closely 
[26]. However, when using these features in combina-
tion, we found that our ranking approach performed 
well and generally better than selecting the nearest 
gene alone, with a mean increase in F1 score of 0.13 
across studies (range 0.08–0.23) (Additional file 1: Fig-
ure S2-S3; Additional file 2: Table S1).

Pathogenicity annotations identify genes linked 
to monogenic disorders
Integrating information about variant pathogenic-
ity retrieved variants linked to monogenic disorders 
including PSEN1 with Alzheimer’s disease (AD) [87] 
(rs764971634, p.Ile437Val, P = 2 ×  10−12), SQSTM1 
and Paget’s disease [88] (rs104893941, p.Pro392Leu, 
P = 6 ×  10−11 ), and HFE and disorders of iron metab-
olism [89] (rs1800562, p.Cys282Tyr, P = 1 ×  10−178) 
(Fig.  1B; Additional file  2: Table S3). We also iden-
tified protective variants such as APP p.Ala673Thr 
(rs63750847, P = 7 ×  10−11) reducing odds of developing 
AD [90], and ALOX15 p.Thr560Met protecting against 
nasal polyps (rs34210653, P = 2 ×  10−15) [91]. Of 504 
genes prioritized with at least one predicted patho-
genic lead variant, 287 had at least one disease muta-
tion reported in the Human Gene Mutation Database 
(HGMD) [50] (OR = 2.4 [2.0-2.9], P = 4 ×  10−21). Poten-
tial novel associations included COLGALT2 and arthro-
sis (rs35937944, p.Tyr212Cys, P = 2 ×  10−14), LGR5 
and carcinoid syndrome (rs200138614, p.Cys712Phe, 
P = 4 ×  10−9), and GREB1 and female infertility 
(rs755857714, p.Arg1339His, P = 4 ×  10−9).

Colocalizing molQTL link genes to diseases and pathogenic 
tissues
Prioritized candidate causal genes showed enrich-
ment in disease-colocalizing molQTL related to their 
known function. For instance, colocalizing molQTL 
for prioritized genes supported associations with dis-
ease categories such as EDNRA, LPA and FGF5 with 
cardiovascular diseases (P < 5 ×  10−10), TSLP, IL33, 
CHRNA3, and CHRNA5 and respiratory system diseases 
(P < 2 ×  10−16), and IL23R, TYK2, IL10 and immune sys-
tem disease (P < 2 ×  10−9) (Fig.  1C-D; Additional file  2: 
Table  S4). In addition, disease-colocalizing molQTL 
tended to be enriched in specific tissues and cell types. 
For instance, we found an enrichment of disease-colocal-
izing eQTL in kidney cortex for FGF5, a gene expressed 
during kidney development and associated with kidney 
function (P = 2 ×  10−18) [92] (Fig.  1E; Additional file  2: 
Table S5). Other examples include artery eQTL for the 
cardiovascular diseases associated gene PHACTR1 [93] 
(P = 8 ×  10−10); the lysosomal acid lipase (LIPA) gene 
and microglia eQTL (P = 2 ×  10−11); and the ABO blood 
group gene with plasma pQTL (P = 1 ×  10−21). Finally, we 
confirmed that enriched colocalizing eQTL matched the 
expected pathogenic tissues and cell-types of different 
disease categories (Fig.  1F; Additional file  2: Table  S6). 
For instance, after grouping eQTL of similar tissues 
and cell types together, we found a strong enrichment 
of genes with artery and heart eQTL colocalizing with 
cardiovascular disease GWAS (P < 6 <  x10−17). We found 
similar enrichment for T cell and thyroid eQTL in endo-
crine system diseases (P < 3 ×  10−7); blood, lymphoblas-
toid cell line, monocytes, neutrophil, and T cells with 
immune system diseases (P < 1 ×  10−6); and fibroblasts 
and musculoskeletal diseases (P = 7 ×  10−6). Treating each 
eQTL dataset separately revealed additional associations 
with tissues or cell subsets including brain cortex and 
diseases of the visual system (P = 7 ×  10−6); cerebellum 

(See figure on next page.)
Fig. 1 Characteristics of prioritized genes via gain or loss of function variants and molQTL. A Features used to prioritize genes in GWAS loci. Genes 
are ranked based on a combination of features including molQTL, activity-by-contact (ABC) maps, and variant annotations, including variant 
effect predictions (VEP) and pathogenicity predictions. B Disease-associated predicted pathogenic variants capture disease associations with high 
effect sizes. Lead pathogenic variants with GWAS P-value < 5 ×  10−8 are reported in the figure. Effect of the risk allele (odds ratio) is reported 
on the y-axis. The x-axis corresponds to the frequency of the risk allele. C Disease category overrepresentation for single genes predicted 
to be causal. Each dot represents a different associated disease category. Top 30 enrichments are shown. D Same as B, but filtered for genes 
predicted to be causal and enriched in “Immune system diseases”. Each dot represents a different associated disease category. Top 30 genes 
are shown. E Overrepresentation of eQTL colocalization for single genes predicted to be causal. Gene-tissue pairs are included only if the gene 
has the highest rank in a locus for a given associated disease. Top 30 enriched eQTL are shown. Each dot represents a different enriched tissue 
or cell-type. F Enriched colocalizing cell types and tissues by disease categories. Only disease categories and tissues or cell types with at least 
one significant enrichment are reported in the heatmap. Enrichment P-values are calculated using Fisher exact test, testing for the enrichment 
of genes with eQTL colocalizing with GWAS belonging to specific disease categories as in [81]. Tissues and cell-types were collapsed into broader 
categories before testing for enrichment. For example, tibial, coronary, and aorta arteries were grouped into “artery” molQTL: Molecular QTL; ABC: 
Activity-By-Contact; LCL: Lymphoblastoid cell lines; iPSC: induced Pluripotent Stem Cells .: Adjusted P < 0.1; *: Adjusted P < 0.05; **: Adjusted P < 0.01; 
***: Adjusted P < 0.001
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Fig. 1 (See legend on previous page.)
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and nervous system diseases (P = 4 ×  10−6); regulatory T 
cells and endocrine system diseases (P = 9 ×  10−9); and T 
helper 17 cells and digestive system diseases (P = 5 ×  10−7) 
(Additional file 1: Figure S4; Additional file 2: Table S7). 
Overall, the analyses illustrate that in contrast to the 
nearest gene approach, inclusion of molQTL can help 
contextualize genetic associations to potential patho-
genic cell types and tissues.

Prioritized genes increase clinical trial probability 
of success
Building on these results, we tested whether we could 
use molQTL information of putative causal gene to drive 
drug repurposing opportunities. First, we evaluated 
whether the prioritized genes enriched for therapeutic 
targets with clinical trial success. Clinical trial informa-
tion was retrieved from the Citeline Pharma Intelligence 
project. Consistent with previous observations, we found 
that targets with clinical trial success were enriched for 
features such as presence of coding variants (Fig.  2A, 
Additional file 2: Table S8). For example, likely pathogenic 
coding variants demonstrated some of the best predictive 
performances (Phase I: Risk ratio (RR) = 1.20, P = 0.007; 
Phase II: RR = 1.26, P = 0.008; Phase III: RR = 2.07, 
P = 3 ×  10−8; Approved: RR = 2.84, P = 1 ×  10−9). Similar 
results were observed analyzing each study separately 
(Additional file 1: Figure S5). Use of epigenetic evidence 
also improved predictions, in particular lead SNPs linked 
by the ABC model (Phase I: RR = 1.23, P = 0.004; Phase II: 
RR = 1.36, P = 6 ×  10−4; Phase III: RR = 1.67, P = 5 ×  10−4; 
Approved: RR = 2.06, P = 4 ×  10−4). However, molQTL 
information alone did not enrich as much for clinical trial 
success, for example, colocalizing molQTL with poste-
rior probability > 80% (Phase I: RR = 1.15, P = 0.003; Phase 
II: RR = 1.21, P = 0.001; Phase III: RR = 1.29, P = 0.01; 
Approved: RR = 1.57, P = 0.002). While the overall pri-
oritized genes did not show the strongest enrichment 
(Phase I: RR = 1.18, P = 1 ×  10−5; Phase II: RR = 1.24, 
P = 3 ×  10−6; Phase III: RR = 1.49, P = 7 ×  10−7; Approved: 
RR = 1.83, P = 4 ×  10−8), this was likely due to the inclu-
sion of genes with no supportive evidence other than 
distance (Fig.  2A). Indeed, we found that “High” and 
“Very High” prioritization ranks were more predictive 
of successful clinical trial progression (higher risk ratios) 
than lower-ranking genes, especially at later clinical trial 
phases or after approval (High + Very high ranks Phase I: 
RR = 1.24, P = 4 ×  10−6; Phase II: RR = 1.33, P = 8 ×  10−7; 
Phase III: RR = 1.71, P = 3 ×  10−8; Approved: RR = 2.24, 
P = 1 ×  10−10) (Fig. 2B, Additional file 1: Figure S5, Addi-
tional file 2: Table S9). In our analysis, distance itself was 
not as predictive of clinical trial success especially after 
excluding loci likely driven by coding variants (Phase I: 
RR = 1.13, P = 0.01; Phase II: RR = 1.21, P = 0.001; Phase 

III: RR = 1.32, P = 0.009; Approved: RR = 1.54, P = 0.003) 
(Fig. 2B).

Inferred directionality from GWAS recapitulate drug MoA
To understand whether inferred directionality could be 
informative of clinical trial success, we first investigated 
the consistency between the direction of effect of cod-
ing variants and drug MoA (methods). When consider-
ing prioritized genes with lead low-frequency coding 
variants (minor allele frequency < 0.05) and clinical tri-
als phase II and above, between 92% showed consistent 
effect between the minor allele and drug MoA (Fisher 
P = 2 ×  10−16, Fig.  2C). Results were similar when strati-
fying GWAS by data source (Additional file  1: Figure 
S6). We then asked whether molQTL could similarly 
inform on directionality. Using prioritized gene-disease 
pairs supported by MR (q-value < 0.05) and colocaliza-
tion (PP > 80%), we inferred the direction of effect when 
the predicted MR effect was consistent across > 75% of 
molQTL datasets for a given gene. This was the case for 
most gene-disease pairs (Additional file  1: Figure S7). 
Again, direction of effect was generally in agreement with 
drug MoA (73% agreement, Fisher P = 4 ×  10−8-5 ×  10−41, 
Fig. 2D, Additional file 1: Figure S6). Consistency across 
all studies increased when considering only approved 
drugs (85–94% agreement, Fisher P = 4 ×  10−7-5 ×  10−26, 
Additional file  1: Figure S8). Overall, these data suggest 
that molQTL can be used to inform on drug MoA.

Causal gene predication from GWAS identifies a link 
between IL6ST and polymyalgia rheumatica
Finally, we applied our causal gene prioritization 
approach to a specific use case, that is to identify potential 
new indications for drugs targeting the IL6 receptor such 
as Sarilumab and Tocilizumab, both drugs approved for 
rheumatoid arthritis. We extracted diseases prioritized 
by our approach for genes related to the receptor, namely 
IL6, IL6ST, and IL6R. We identified putative causal links 
between increased IL6 expression in CD16 monocytes 
and increased risk of varicose veins, ischemic heart dis-
ease, coronary atherosclerosis, and atrial fibrillation (MR 
beta > 0), but decreased risk of asthma and allergy (MR 
beta < 0) (Additional file  1: Figure S9; Additional file  2: 
Table  S10). eQTL of IL6 in whole blood also supported 
these disease associations, albeit with an opposite pre-
dicted direction of effect. Similarly, IL6R expression in 
multiple tissues including artery, colon, and esophagus 
was associated with increased risk of coronary revascu-
larization, coronary atherosclerosis, and abdominal aor-
tic aneurysm (AAA), but lower risk of lower respiratory 
diseases and atopic dermatitis  (Additional file  1: Figure 
S10). Again, we observed opposite direction of effect pre-
dicted by MR for these diseases when  using monocyte 
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or macrophage eQTL as exposure. The associations with 
coronary atherosclerosis and AAA were further driven 
by a lead coding variant in IL6R, rs2228145 (Asp358Ala, 
Additional file  2: Table  S10). Finally, we found that 
increased IL6ST expression in T cells and whole blood 
is predicted to increase the risk of rheumatoid arthritis, 

systemic connective tissue disorders, polyarthropathies, 
other arthritis, autoimmune diseases, and polymyalgia 
rheumatica (Fig. 3A, Additional file 2: Table S10). These 
associations were driven by rs7731626 (SuSIE fine-map-
ping probability > 0.99). This variant is located within an 
intron of ANKRD55 and colocalizes with eQTL for both 

Fig. 2 Prioritized genes predict clinical trial success. A Enrichment of targets of approved drugs or drugs in clinical trials (phase I-III) using genetic 
evidence aggregated from FinnGen, UKB, and biobank meta-analyses prioritizing genes using colocalization (posterior probability of colocalization 
[H4] > 80% or > 95%), predicted pathogenic variants, genes with highest prioritization rank, ABC score for lead variant, or nearest gene excluding loci 
with associated coding variants. B Enrichment of targets of approved drugs or drugs in clinical trials (phase I-III) using causal gene prioritization 
ranks across all studies. C Concordance between direction of effect of lead low-frequency coding variants on disease risk, and drug MoA for targets 
in phase II clinical trials or above. We retrieved information about targets, clinical trials, and drug MoA from the Citeline Pharmacogenomics dataset. 
We connected this dataset to GWAS phenotypes using EFO codes and a semantic similarity score > 0.7. We assume that low-frequency coding 
variants (minor allele frequency < 5%) are disruptive (LoF). Therefore, a negative (protective) direction of effect would translate into inhibition 
or antagonism being beneficial (and vice-versa). D Concordance between the predicted impact of gene expression on disease risk predicted by MR, 
and drug MoA for targets in phase II clinical trials or above. Information about targets, clinical trials, and drug MoA were collected from the Citeline 
Pharmacogenomics dataset and connected to GWAS phenotypes using EFO codes and a semantic similarity score > 0.7. The direction of effect 
of gene expression on disease risk was assessed by MR using molQTL as exposure (q-value < 0.05). Only molQTL colocalizing with local GWAS 
signal (H4 posterior probability > 80%) were included. A consensus direction was inferred if the MR direction of effect was consistent across > 75% 
of molQTL for a given gene and disease GWAS. A negative consensus MR direction suggests that increased gene expression leads to decreased 
disease risk. Therefore, an activator or agonist drug targeting this gene would be beneficial. Conversely, a positive consensus MR direction suggests 
that increased gene expression increases disease risk, and an inhibitor or antagonist drug would be beneficial. Reported P-values were calculated 
by Fisher exact test .: P < 0.1; *: P < 0.05; **: P < 0.01; ***: P < 0.001
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ANKRD55 and IL6ST (PP > 80%). However, this variant 
also overlaps with an enhancer that shows the highest 
ABC score for IL6ST for genes in the region, suggesting 
the latter is the causal gene, in line with previous stud-
ies [94, 95] (Fig.  3B). Overall, our approach was able to 
capture known associations with IL6-R related genes and 
identified an association between IL6ST and polymyalgia 
rheumatica.

Discussion
We prioritized disease-associated genes across 4,611 
GWAS and meta-analyses from biobank studies using a 
combination of MR with molQTL, colocalization analy-
sis, variant effect prediction, and epigenetic annotations 
(ABC model). This approach allows the use of molQTL 
to infer directionality of gene expression on disease risk, 
while improving the causal gene prediction compared 
to using molQTL alone. Based on combination of these 
features, we used a ranking approach to prioritize genes 
within loci and showed that this approach is enriched 
for gold standard genes. We recover known coding vari-
ant associations, including rare variants in genes linked 
to monogenic disorders such as PSEN1 and APP1 and 
Alzheimer’s disease, and SQSTIM1 and Paget’s disease 
(Fig. 1B). Genes prioritized by molQTL also show enrich-
ment in disease categories related to their function with 
pathogenic tissue contexts (Fig.  1C-F). Of note, when 
multiple genes show evidence of colocalization within 
the same locus, the addition of epigenetic (ABCmax) 
information can help prioritize one gene over the others. 
We note as an example the association of variants with 

polymyalgia rheumatica at the ANRKD55 locus where 
this gene would be prioritized using the nearest gene 
approach. Whereas colocalization alone did not identify 
a single causal gene, combination of colocalization and 
ABCmax identified IL6ST as the putative causal gene, 
consistent with recent reports [96, 97]. IL6ST encodes a 
protein involved in signal transduction for the IL6 recep-
tor pathway. Inhibitors of the IL6 receptor have recently 
shown success in clinical trials for this indication leading 
to a recent approval by the FDA [98]. 

In line with previous studies [11, 12], we show that 
therapeutic targets with genetic evidence are enriched at 
later clinical trial phases and as targets of approved drugs. 
In our analysis, using the nearest gene information alone 
was not strongly predictive of clinical trial success. The 
most predictive features were coding variant annotations 
and ABC maps. While the latter performs well to link 
causal genes to diseases, it does not provide information 
about directionality. We used coding variants and MR 
with molQTL to infer directionality of a target on dis-
ease risk. Both approaches were generally consistent with 
drug MoA matched for the target and disease. These data 
support that molQTL can be used to predict drug MoA. 
However, while we found that in general eQTL were con-
sistent across cell type and tissues for a given gene and 
disease (Additional file  1: Figure S7), we note that this 
isn’t always the case. This is exemplified by the IL6-R case 
study, where all three queried genes displayed inconsist-
ent direction of effect predicted by MR depending on the 
molQTL dataset. Future improvement of this approach 
should consider prior knowledge on pathogenic cell types 

Fig. 3 IL6ST is predicted to be causal for rheumatoid arthritis and polymyalgia rheumatica. A Diseases associations supported by MR, colocalization 
and ABC. The figure shows tissues and cell-types with significant MR (q-value < 0.05) using IL6ST eQTL as exposure and diseases as outcome 
(red: positive effect size estimate [MR beta]; blue: negative effect size estimate). The size of the dots represents absolute effect size. Disease-eQTL 
pairs with a colocalization posterior probability > 80% are highlighted with a dark border. B LocusZoom [85] plot showing the top association 
for polymyalgia rheumatica at the ANKRD55-IL6ST locus. Both IL6ST and ANKRD55 eQTL colocalize with the polymyalgia rheumatica signal, but IL6ST 
has the highest ABC score
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or tissues to infer directionality in relevant contexts. 
Overall, our analysis suggests that using features such as 
ABCmax in combination with molQTL can increase the 
performance of causal gene inference approaches while 
informing on directionality which is crucial for translat-
ing GWAS hits to therapies.

We note that this study has some limitations. First, 
we did not perform fine-mapping analyses nor colocali-
zation approaches that use LD references. Indeed, we 
opted to avoid methods that do not rely on LD refer-
ences as we used GWAS from various sources, includ-
ing meta-analyses where these methods may not be 
well calibrated [99]. Nevertheless, using fine-mapping 
information likely would improve performance, espe-
cially in cases where there are multiple causal variants 
underlying molQTL or GWAS signals, and would reduce 
LD contamination [30, 100]. In addition, using MR 
approaches like SMR and HEIDI or MRLocus, are likely 
to perform better in case of pleiotropy or allelic hetero-
geneity [101, 102]. This is evident in the case of IL6ST, 
where MR using eQTL from whole blood from different 
sources (GTEx, eQTLGen) lead to inversed estimate of 
directionality (Fig. 3A). This difference was due to differ-
ent instruments used as only one genetic instrument was 
included in GTEx whereas 5 independent instruments 
were included for eQTLGen. We also assume that there 
is one causal gene per locus, although it is possible that 
multiple genes contribute to disease risk. Finally, inte-
grating other sources of molQTL such as metabolite or 
splice QTL could help further identify putative causal 
genes as coding variants and eQTL only cover a fraction 
of loci (17–47% in this study) [103]. Similarly, consider-
ing additional cell types in both the molQTL and ABC 
annotations would further help identify functional links 
between variants and genes. While these approaches can 
be useful to nominate candidate causal genes and their 
relationship to diseases, proper functional validation 
remains of high importance.

Conclusions
We nominated putative causal genes across 4,611 GWAS 
from biobank studies and public resources by integrat-
ing variant annotations as well as molQTL. We show 
that these prioritized genes recover known biological 
relationships in terms of disease and tissue enrichment 
and are enriched for therapeutic targets that succeeded 
in clinical trials. We show that directionality predicted by 
molQTL and coding variants generally recapitulate drug 
MoA. Finally, we applied this approach to genes related 
to the IL6 receptor and identified an association between 
IL6ST and polymyalgia rheumatica supporting the recent 
approval of Sarilumab for this indication.
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