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Abstract 

Background  Proximal renal tubular dysfunction occurs during diabetic ketoacidosis (DKA) in type 1 diabetes. How-
ever, only a few studies have reported on the multiple proximal renal tubular functions simultaneously. Moreover, 
to the best of our knowledge, distal renal tubular function has not yet been investigated.

Methods  Patients with newly diagnosed type 1 diabetes mellitus were classified into those with DKA and those 
without DKA, and their proximal and distal renal tubular functions were investigated. The diagnostic criteria for DKA 
were blood glucose > 200 mg/dL, blood pH < 7.3 or HCO3

– < 15 mEq/L, and urine ketone body positivity.

Results  Six patients with DKA and five patients without DKA were included. In patients with DKA, urinary 
β2-microglobulin levels were significantly higher, while blood pH, HCO3

–, and tubular reabsorption of phosphorus 
were significantly lower than in those without DKA. There were no significant differences in blood glucose, HbA1c, 
serum phosphorus, urinary N-acetyl-beta-glucosaminidase, and urinary amino acid excretion between patients 
with and without DKA. Elevated NH3 levels and impaired urinary acidification were not observed in patients 
with and without DKA.

Conclusions  In patients with newly diagnosed type 1 diabetes mellitus complicated with DKA, multiple proximal 
renal tubular dysfunctions occur simultaneously, suggesting transient Fanconi syndrome. Distal renal tubular acidosis 
was unlikely. The diagnostic criteria for DKA are appropriate also in the view of proximal renal tubular dysfunction 
and are considered suggestive of pathophysiological factors that may cause proximal renal tubular dysfunction.

Keywords  Type 1 diabetes mellitus, Diabetic ketoacidosis, Proximal renal tubular dysfunction, Distal renal tubular 
acidosis, Fanconi syndrome

Introduction
Type 1 diabetes mellitus, which results from damage 
to pancreatic β cells and absolute insulin deficiency, is 
the most common cause of diabetes mellitus in children 
[1]. Children with newly diagnosed type 1 diabetes mel-
litus often present with diabetic ketoacidosis (DKA) 
[2]. DKA is a frequent and serious complication of dia-
betes mellitus characterized by hyperglycemia, ketone 
body accumulation, and metabolic acidosis, leading 
to acid–base imbalance and electrolyte abnormalities 
[3]. Metabolic acidosis, which is an acid–base balance 
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abnormality, consists of both anion gap (AG) metabolic 
acidosis due to ketone body accumulation and nor-
mal AG metabolic acidosis due to HCO3

– loss [4, 5]. 
Hyponatremia and hypophosphatemia are commonly 
observed electrolyte abnormalities.

Elevated urinary β2-microglobulin (β2-MG) levels 
[6], elevated urinary N-acetyl-beta-glucosaminidase 
(NAG) levels [6], and increased urinary amino acid 
excretion have been reported in patients with DKA or 
poorly controlled type 1 diabetes mellitus [7, 8]. More-
over, it has also been reported that impaired phos-
phorus reabsorption is a complication of long-term 
morbidity [6]. It has been reported that at the onset of 
childhood type 1 diabetes mellitus, some kind of proxi-
mal renal tubular damage is observed in all patients 
with DKA, and even in the patients without DKA, 
some kind of proximal tubular damage was commonly 
observed [9]. These findings suggest that proximal renal 
tubular dysfunction occurs during DKA and is involved 
in acid–base imbalance and electrolyte abnormalities. 
However, to the best of our knowledge, only a few stud-
ies have reported on the multiple proximal renal tubu-
lar functions simultaneously. Moreover, as far as we 
can tell, distal renal tubular function has not yet been 
investigated.

In this study, we classified patients with newly diag-
nosed type 1 diabetes  mellitus into patients with and 
without DKA and investigated the multiple proximal 
renal tubular functions and distal renal tubular func-
tions simultaneously.

Materials and methods
This retrospective study was conducted on Japanese 
patients newly diagnosed with type 1 diabetes mellitus 
who were admitted to the Department of Pediatrics at 
Fujita Health University Hospital or Fujita Health Univer-
sity Okazaki Medical Center between July 2018 and Octo-
ber 2023. Patients’ information and data were extracted 
from electronic medical records. The diagnosis criteria 
for DKA include hyperglycemia (blood glucose > 200 mg/
dL), blood pH < 7.3 and/or HCO3

– < 15  mmol/L, and 
ketonuria and/or ketonemia [10]. Our participants were 
classified into those with and without DKA at the time of 
diagnosis. The first test results of blood and urine sam-
ples were recorded. Blood gas analyses were performed 
on venous blood. Urinary amino acid levels were meas-
ured on the first voided spot urine using liquid chroma-
tography/mass spectrometry.

All statistical analyses were performed using EZR 
(Saitama Medical Center, Jichi Medical University, 
Saitama, Japan), which is a graphical user interface for 
R (The R Foundation for Statistical Computing, Vienna, 
Austria) [11].

The data were expressed as median values with inter-
quartile ranges (IQRs) for skewed data. Mann–Whitney 
U test was used, with a p value of < 0.05 being considered 
statistically significant.

Results
There were 16 Asian patients newly diagnosed with type 
1 diabetes mellitus between July 2018 and October 2023 
(Fig. 1). Eight of them had DKA and 8 did not have it at 
the time of diagnosis. Eleven patients were finally ana-
lyzed, as five were excluding from the study (one patient 
with shock and one patient with insufficient test results 
from those with DKA and three patients with insufficient 
test results from those without DKA).

The profiles of our study participants are presented in 
Table  1. The male-to-female ratio was 6:5 in the entire 
study population, with 4:2 among patients with DKA and 
2:3 among patients without DKA. The median age was 
9.0 (5.5–10.0) years for all cases, and there was no sta-
tistically significant difference in this parameter between 
patients with and without DKA (p = 0.355). The median 
blood glucose levels were 573  mg/dL (475.5–657.5) in 
all patients and were higher in patients with DKA but 
was not statistically significant (p = 0.0823; Table  2, 
Fig.  2a). The median HbA1c was 12.5% (11.6–13.45) in 
all patients, and no significant difference was observed 
between patients with and without DKA (p = 0.464; 
Table 2, Fig. 2b). Venous blood gas analyses demonstrated 
that venous blood pH was 7.279 (7.193–7.350) in all 
patients and was significantly lower in patients with DKA 
(p = 0.004; Table  2, Fig.  2c). HCO3

– was 16.30  mmol/L 
(8.50–22.05) in all patients and was significantly lower in 
patients with DKA (p = 0.017; Table 2, Fig. 2d).

16 patients with newly diagnosed type 1 diabetes mellitus

8 patients with DKA 8 patients without DKA

2 patients excluded
1 shock state
1 insufficient data

3 patients excluded
3 insufficient data

6 patients included 5 patients included

Fig. 1  Flow diagram of the participant inclusion process. DKA, 
diabetic ketoacidosis
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Investigation of proximal tubular function
Based on the corrected HCO3

– level, two of the patients 
with DKA were in both AG metabolic acidosis and nor-
mal AG metabolic acidosis (patients 1 and 6; Table  1). 
The median serum phosphorus level was 4.2  mg/dL 
(4.00–4.85) in all patients, and there was no significant 
difference in this parameter between patients with and 
without DKA (p = 0.854; Table  2, Fig.  2e). The tubular 
reabsorption of phosphorus rate was 75.95% (83.1–91.85) 
in all patients, and a significant decrease was observed in 
patients with DKA (p = 0.0043; Table 2, Fig. 2f ). Urinary 
NAG level was 2.0 U/L (1.0–7.2) in all patients, and there 
was no statistically significant difference in this param-
eter between patients with and without DKA (p = 0.08; 
Table  2, Fig.  2g). The median urinary β2-MG level was 
1874  μg/L (198.5–7953) in all patients and was signifi-
cantly higher in patients with DKA (p = 0.0135; Table 2, 
Fig. 2h). Urinary amino acid level analyses demonstrated 
that the excretion of glutamic acid in patients with DKA 
was lower than that in patients without DKA (p < 0.05). 
Although the excretion of threonine, serine, asparagine, 
valine, leucine, isoleucine, and arginine in patients with 
DKA was higher than the reference value [12], there 
was no significant difference in this parameter between 
patients with and without DKA (Table 3).

Investigation of distal tubular function
In the presence of metabolic acidosis, no patients with or 
without DKA demonstrated a urine pH above 5.5, sug-
gesting that there was no apparent impaired urinary acid-
ification (Table  1). No patients demonstrated NH3 level 
elevation in either group. The median NH3 level was 42.0 
(28.0–55.0) μg/dL in all patients, and this parameter did 
not differ significantly between patients with and without 
DKA (p = 0.413; Tables 1 and 2, Fig. 2i).

In patient number 2, 5, and 6 (Table  1), who experi-
enced DKA as a complication, proximal renal tubular 
functions were re-evaluated after recovery from DKA. 
Re-evaluation was performed on days 9, 23, and 30 after 
admission and demonstrated that urinary β2-MG levels 
were 57.0, 107.0, and 130.0, and tubular reabsorption of 
phosphorus were 94.2%, 93.8%, and 93.4%, respectively, 
suggesting that proximal renal tubular dysfunction was 
transient.

Investigation of thyroid function
Thyroid function was compared. The median TSH, 
fT3, and fT4 levels were 1.014 (0.9593–1.60275)  μIU/
mL, 2.235 (1.4425–3.065) pg/ml, and 1.085 (0.8875–
1.3625) ng/dL, respectively in all patients, and were sig-
nificantly lower in patients with DKA (p < 0.001, p < 0.001, 
p = 0.0317, respectively; Table 2, Fig. 3). Thyroid autoanti-
bodies were not measured.

Discussion
In this study, high urinary β2-MG levels and low tubular 
reabsorption of phosphorus were observed in all patients 
with DKA at the time of diagnosis of type 1 diabetes mel-
litus, and increased urinary excretion of some amino 
acids was also observed. Since multiple proximal renal 
tubular dysfunctions were observed, patients with DKA 
were thought to present with Fanconi syndrome. In all 
three patients in whom proximal renal tubular functions 
were re-evaluated after the recovery from DKA, urinary 
β2-MG levels and tubular reabsorption of phosphorus 
improved within one month, suggesting that the impaired 
proximal renal tubular functions were transient, and this 
was due to DKA. Fanconi syndrome consists of multiple 
proximal renal tubular dysfunctions, resulting in proxi-
mal renal tubular acidosis, increased urinary amino acid 
excretion, impaired phosphorus reabsorption, increased 
urinary β2-MG, and electrolyte abnormalities [8]. To 
date, it is known that DKA is associated with normal AG 
metabolic acidosis [4], transient high urinary β2-MG [6], 
increased urinary amino acid excretion [7, 8], high uri-
nary NAG, and decreased phosphorus reabsorption [6]. 
However, these phenomena were investigated separately. 
At the onset of childhood type 1 diabetes mellitus, some 
kind of proximal renal tubular damage was observed in 
all patients with DKA; moreover, even in the patients 
without DKA, some kind of proximal tubular damage 
was frequently observed [9]. These proximal renal tubu-
lar damages were short-lived. These findings strongly 
suggest that in all patients with DKA, multiple proximal 
renal tubular dysfunctions occur, resulting in Fanconi 
syndrome, which is a transient condition. We previously 
reported a case of newly diagnosed type 1 diabetes mel-
litus with DKA that presented with transient Fanconi 
syndrome [13]. Although this study involved a small 
number of patients, we investigated multiple proximal 
tubular functions simultaneously in the same patient. As 
a result, all patients with newly diagnosed type 1 diabetes 
mellitus with DKA had multiple proximal renal tubular 
dysfunctions, which were alleviated after recovery from 
DKA. These findings suggest that newly diagnosed type 
1 diabetes mellitus with DKA is generally complicated 
with transient Fanconi syndrome due to DKA. Moreover, 
the fact that there is a difference in proximal renal tubu-
lar dysfunction between patients with and without DKA 
suggests that the diagnostic criteria for DKA imply the 
pathophysiological factors that may cause proximal renal 
tubular dysfunction. Classifying type 1 diabetes mellitus 
based on DKA criteria might be appropriate in the view 
of proximal renal tubular dysfunction.

In this study, tubular reabsorption of phosphorus was 
decreased in patients with DKA; however, no patients 
demonstrated hypophosphatemia. According to previous 
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Table 2  Comparisons of characteristics and laboratory findings

The data are expressed as median values with interquartile ranges. DKA diabetic ketoacidosis, IQR interquartile range, NAG N-acetyl-beta-glucosaminidase, β2-MG 
β2-microglobulin, %TRP tubular reabsorption of phosphorus

All patients With DKA Without DKA P value

Sex male (%) 6/11 (54.5) 4/6 (66.6) 2/5 (40.0)

Median (IQR) Median (IQR)

Age (year) 9.0(5.5–10.0) 9.5(6.75–11.5) 9.0(2.0–10.0) 0.355

Blood glucose (mg/dL) 573(475.5–657.5) 604 (574.75–683.5) 442.0 (411.0–569.0) 0.0823

HbA1c (%) 12.5(11.6–13.45) 12.9 (11.975–13.525) 11.8 (11.4–13.1) 0.464

NH3 (μg/dL) 42.0(28.0–55.0) 49.0 (42.0–74.0) 31.0(27.25–39.25) 0.413

P (mg/dL) 4.2(4.00–4.85) 4.4 (3.95–4.925) 4.2 0(4.10–4.20) 0.854

Venous blood pH 7.279(7.1925–7.3495) 7.1925 (7.1515–7.217) 7.352 (7.347–7.355) 0.00433

HCO3
– (mmol/L) 16.30(8.50–22.05) 8.5 (7.575–14.525) 22.6 (21.5–23.4) 0.0173

Urinary NAG (U/L) 2.0(1.0–7.2) 1 (0.9–1.775) 3.6(3.1–10.8) 0.08

Urinary β2-MG (μg/L) 1874(198.5–7953) 7953 (4034.25–8737.5) 63 (0–334) 0.0135

%TRP (%) 75.95(83.1–91.85) 75.95 (72.025–80.1) 92.1 (91.6–94.2) 0.00433

TSH (μIU/mL) 1.014 (0.9593–1.60275) 0.924 (0.839–0.971) 1.686(1.353–1.075) 0.00794

fT3 (pg/mL) 2.235(1.4425–3.065) 1.42 (1.19–1.51) 3.12 (2.90–3.23) 0.00794

fT4 (ng/dL) 1.085(0.8875–1.3625) 0.87 (0.817–1.02) 1.38 (1.31–1.58) 0.0317

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

P=0.08 p=0.46
p<0.01

p<0.05

p=0.85
p<0.01

p=0.08 p<0.05

p=0.41

Fig. 2  Comparison of laboratory findings presented in boxplots. The dots indicate the outliers in the box-and-whisker diagram. a Blood glucose 
(mg/dL), b HbA1c (%), c Venous blood pH, d HCO3

– (mmol/L), e P (mg/dL), f %TRP (%), g Urinary NAG (U/L), h Urinary β2-MG, and i NH3 (μg/dL). DKA 
diabetic ketoacidosis, %TRP tubular reabsorption of phosphorus, NAG N-acetyl-beta-glucosaminidase, β2-MG β2-microglobulin
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reports, hypophosphatemia occurs between the diagno-
sis and treatment of DKA, which results from an absolute 
lack of phosphorus in the whole body due to metabolic 
disturbance before the onset of DKA, an increase in 
phosphorus uptake into cells due to insulin treatment, 
and the loss of phosphorus to urine due to osmotic diu-
resis [14]. It has been reported that the tubular reabsorp-
tion of phosphorus decreases in patients with long-term 
poorly controlled type 1 diabetes mellitus [6]. However, 

the present study investigated patients  newly diagnosed 
with  type 1 diabetes mellitus in whom the decrease in 
tubular reabsorption of phosphorus was not due to long-
term morbidity. According to the present study, tubular 
reabsorption of phosphorus is decreased in patients with 
DKA, suggesting that proximal renal tubular dysfunction 
is also involved in hypophosphatemia during DKA.

In the present study, two patients with DKA were 
suspected to have normal AG metabolic acidosis as 

Table 3  Comparisons of amino acid excretion

The data are expressed as median values with interquartile ranges. DKA diabetic ketoacidosis, IQR interquartile range, mgCr mg creatinine

All patients With DKA Without DKA P value

amino acid reference value median (IQR) median (IQR) median (IQR)

μmol/mgCr

Taurine 1257.95 (583.075–1758.1) 616.9 (571.8–1799.2) 1285.6 (1230.3–1593.7) 1

Aspartic acid 〜0.22 0 (0–0) 0 (0–0) 0 (0–0) 1

Hydroxyproline 〜0.27 0 (0–0) 0 (0–0) 0 (0–72.9) 0.18

Threonine 〜0.59 582 (227.95–1674.625) 2005.3 (501.5–2269.1) 285.1 (208.9–662.5) 0.31

Serine 0.23〜1.39 1438.2 (714.725–2568.925) 2618.2 (873.8–4449.1) 933.2 (661.7–1943.2) 0.421

Asparagine 〜1.04 615 (216.85–1422.925) 1631.8 (560–2035.8) 275.8 (197.2–670) 0.31

Glutamic acid 〜0.43 7.25 (0–30.575) 0 (0–0) 31.1 (29–74.7) 0.0449

Glutamine 〜1.57 528.35 (264.1–805.425) 340.9 (238.5–840.4) 625.6 (431.1–700.5) 0.69

Sarcosine 0 (0–0) 0 (0–0) 0 (0–0)

α-Aminoadipic acid 87.62 (68.525–137.075) 97.5 (77.3 – 180.7) 77.8 (65.6–125) 0.69

ProIine 〜0.16 0 (0–0) 0 (0–0) 0 (0–16.05) 0.424

Glycine 0.91〜4.87 1375.7 (756.85–2643.525) 950.9 (302.3–2214) 1800.5 (790–2810) 0.421

Alanine 〜1.72 644.3 (317–1262.475) 765.5 (523.1–1414) 349.7 (306.1–807.9) 0.841

CitrulIine 〜0.15 66.45 (43–186.975) 90 (51.5–219.3) 51.1(40.3–81.4) 0.69

α-Aminobutyric acid 74.1 (32.875–116.275) 101.8 (87.7–140.8) 46.6 (28.3–60.5) 0.222

Valine 〜0.21 290.25 (194.725–465.85) 484.2 (410.8–490.9) 227.2 (183.9–276.8) 0.0952

Cystine 〜0.18 140.1 (97.8–173.75) 119.1 (88.9–164.9) 154.6 (125.6–186.3) 0.31

Cystathionine 〜0.06 0 (0–0) 0 (0–0) 0 (0–13.1) 0.18

Methionine 〜0.17 31.25 (19–36.6) 37.7 (18.6–67.3) 30.4 (20.2–32.1) 0.548

Isoleucine 〜0.09 79 (59.275–137.2) 137.3 (136.9–138.3) 66.7 (56.8–76.4) 0.0952

Leucine 〜0.20 238.4 (141.75–401.925) 413.6 (366.9–507.5) 161.7 (135.1–226.8) 0.0952

Tyrosine 〜0.73 232.9 (179.9–413.95) 307.3 (226.2–492.5) 181.4 (179.4–239.6) 0.421

Phenylalanine 〜0.29 139.35 (93.175–240.875) 200.9 (146.2–320) 100.6 (90.7–132.5) 0.31

r-Amino β-hydroxybutyric acid 0 (0–0) 0 (0–0) 0 (0–0)

β-AIanie 21.4 (0–40.425) 39.3 (0–40.8) 20.0 (0–22.8) 0.666

β-Amino-iso-butyric acid 552.4 (169.65–1055.625) 152.3 (147.4–907.5) 592.1 (512.7–1689.4) 0.222

γ-Aminobutyric acid 0 (0–0) 0 (0–0) 0 (0–0)

Homocystine 0 (0–0) 0 (0–0) 0 (0–0)

Histidine 0.26〜4.10 2793.2 (1583.15–3703.9) 3176.4 (2193.8–6671.7) 1760 (1524.2–3392.6) 0.31

3-Methylhistidine 293.45 (179.3–343.35) 334.2 (316.2–346.4) 226.1 (163.7–270.7) 0.421

1-Methylhistidine 137.5 (102.375–405.525) 105 (101.5–491.2) 141.1 (133.9–148.5) 1

Tryptophan 241.35 (108.25–266.15) 3716.4 (2193.8–6671.7) 112.9 (106.7–257.9) 0.548

Hydroxylysine 〜0.09 18.7 (3.05–26.2) 0 (0–28.2) 18.9 (18.5–20.2) 0.526

Ornithine 〜0.12 50.6 (32.05–74.125) 42.3 (19.3–77.3) 58.9 (37.6–64.6) 0.841

Lysine 〜0.59 626 (401.275–859.025) 589.5 (203.8–893.6) 662.5 (456.1–755.3) 0.841

Arginine 〜0.11 85.3 (54.575–139.6) 140 (63.8–152.6) 83.9 (51.5–86.7) 0.421
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complication. In general, normal AG metabolic acidosis 
during DKA is thought to be caused by the excretion of 
HCO3

– into urine and lungs. It is metabolized from the 
ketone bodies generated during DKA [5]. The present 
study demonstrated that there are multiple proximal 
tubular dysfunctions during DKA, which implies that 
impaired HCO3

– reabsorption in the proximal tubule 
could occur, resulting in proximal renal tubular acido-
sis and normal AG metabolic acidosis. The bicarbonate 
loading test is necessary to diagnose impaired HCO3

– 
reabsorption. Since proximal renal tubular dysfunction 
during DKA is transient and in short period, it is dif-
ficult to perform bicarbonate loading test during DKA. 
Therefore, it is difficult to prove directly whether proxi-
mal renal tubular acidosis occurs during DKA. There 
is a case report of transient proximal renal tubular aci-
dosis for seven weeks after DKA [15], suggesting that 
proximal renal tubular dysfunction may be involved in 
normal AG metabolic acidosis during DKA.

In this study, although including a small number of 
patients, there was no statistically significant difference 
between patients with and without DKA in urinary 
amino acid excretion; however, the excretion of some 
amino acids exceeded the reference value in patients 
with DKA. To our knowledge, there were two reports 
that investigated amino acid excretion in urine during 
DKA hitherto [7, 8]. The excretion of branched-chain 
amino acids (valine, leucine, and isoleucine), histidine, 
serine, and threonine into the urine during DKA was 
increased. On the contrary, the excretion of glutamic 
acid, glutamine, glycine, and taurine was decreased 
[7]. The influence of amino acid metabolism associated 
with DKA was suggested in this difference. Moreover, 
the excretion of some amino acids such as asparagine 
and histidine was strongly correlated with urinary 
β2-MG excretion, suggesting the influence of proximal 

renal tubular dysfunction [7]. It has been also reported 
that the excretion of histidine, threonine, tryptophan, 
and leucine was increased during DKA and that they 
decreased over time and reached their lowest levels at 
three months, indicating a relationship with proximal 
renal tubular dysfunction [8]. In the present study, the 
asparagine level, which is suggested to be associated 
with proximal renal tubular dysfunction during DKA, 
exceeded the reference value, which implied proximal 
renal tubular dysfunction. It is necessary to elucidate 
the relationship between proximal renal tubular dys-
function and the amino acid metabolism of DKA in uri-
nary amino acid excretion.

The mechanism underlying transient Fanconi syn-
drome during DKA is thought to be reduced glucose 
uptake into renal tubular cells due to insulin deficiency, 
leading to decreased ATP production, which results in 
energy deficiency and renal tubular dysfunction [16, 
17]. Moreover, during DKA, lipolysis is accelerated and 
the blood free fatty acids (FFA) level is increased. Gluca-
gon excess accelerates the conversion of FFAs to ketone 
bodies, resulting in an increase in blood ketone body 
levels and also an increase in urinary ketone excre-
tion. Ketone bodies may directly damage renal tubu-
lar cells [18], contributing to renal tubular dysfunction. 
It has been reported that hyperglycemic states such as 
DKA induce proximal tubular degeneration [19]. Nota-
bly, herein, blood glucose levels were higher in patients 
with DKA who had proximal renal tubular dysfunction 
than in those without DKA, although it was not statisti-
cally significant, implying the existence of an association 
between high glucose levels and proximal renal tubular 
dysfunction. Treatment with insulin improves glucose 
uptake into renal tubular cells, restores ATP production, 
and decreases ketone body production, resulting in the 
relief of renal tubular dysfunction. Therefore, Fanconi 

(a) (b) (c)

p<0.01 p<0.01 p<0.05

Fig. 3  Comparison of thyroid function. a TSH (μIU/mL), b fT3 (pg/mL), c fT4 (ng/dL). DKA diabetic ketoacidosis
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syndrome is thought to be transient. In fact, in the pre-
sent study, in all patients with DKA, renal tubular dys-
function was alleviated shortly after insulin treatment, 
which supports this mechanism.

In the present study, no patients with DKA demon-
strated urinary pH values in excess of 5.5 even in the 
presence of metabolic acidosis, which implied no urinary 
acidification impairment. Moreover, no increase in NH3 
was observed. These findings suggest that no patients 
presented with distal renal tubular acidosis. A few cases 
were reported to present with distal renal tubular dys-
function associated with type 1 diabetes mellitus, includ-
ing distal renal tubular acidosis after long-term morbidity 
of diabetes mellitus [20, 21]. However, in all of the cases, 
distal renal tubular dysfunction was diagnosed without 
DKA. Moreover, when renal function declines due to 
diabetic nephropathy, distal renal tubular dysfunction as 
type 4 renal tubular acidosis may occur [22]. To the best 
of our knowledge, distal renal tubular function has never 
been investigated in newly diagnosed type 1 diabetes 
mellitus with DKA before, and the present study is the 
first to investigate distal renal tubular function. Although 
the present study was conducted in a small number of 
patients, distal renal tubular acidosis was less likely to 
occur as a complication of newly diagnosed type 1 diabe-
tes mellitus with DKA.

At the onset of type 1 diabetes mellitus, autoimmune 
thyroid diseases may be present [23] and patients with 
DKA often present with low T3 syndrome [24, 25]. In 
the patients analyzed in this study, hypothyroidism, 
the so-called low T3 syndrome [25], was observed in 
patients with DKA compared with patients without 
DKA. Hypothyroidism can lead to distal renal tubular 
acidosis [26], which can result in secondary Fanconi 
syndrome if left untreated for a long period [27–29]. 
In patients with impaired reabsorption of multiple 
substances in the proximal tubules, it may take sev-
eral months to several years to improve Fanconi syn-
drome secondary to distal renal tubular acidosis after 
treatment of the distal renal tubular acidosis [27, 29]. 
Herein, hypothyroidism was observed in the patient 
with DKA, however, distal renal tubular acidosis was 
not observed and Fanconi syndrome improved in a 
short period; therefore, hypothyroidism is not believed 
to be the cause of Fanconi syndrome.

The strong points of the present study are that mul-
tiple renal tubular functions were investigated simulta-
neously in the same patients with newly diagnosed type 
1 diabetes mellitus with and without DKA. Therefore, 
the influence of long-term morbidity and other fac-
tors was minimal. The main limitation of the present 
study is that it was a single-center study involving only 

a small number of patients. Moreover, the influence of 
acute kidney injury was not considered.

Conclusion
In patients with newly diagnosed type 1 diabetes mel-
litus with DKA, multiple proximal renal tubular dys-
functions are observed, suggesting transient Fanconi 
syndrome. Proximal renal tubular dysfunction is sug-
gested to be involved in the pathogenesis of hypophos-
phatemia and metabolic acidosis during DKA. Distal 
renal tubular dysfunction is unlikely. The diagnostic 
criteria for DKA are appropriate also in the view of 
proximal renal tubular dysfunction and are considered 
to suggest pathophysiological factors that may cause 
proximal renal tubular dysfunction.
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