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Abstract 
Graph databases are becoming increasingly popular across scientific disciplines, being highly suitable for storing and connecting 
complex heterogeneous data. In systems biology, they are used as a backend solution for biological data repositories, ontologies, 
networks, pathways, and knowledge graph databases. In this review, we analyse all publications using or mentioning graph databases 
retrieved from PubMed and PubMed Central full-text search, focusing on the top 16 available graph databases, Publications are 
categorized according to their domain and application, focusing on pathway and network biology and relevant ontologies and tools. We 
detail different approaches and highlight the advantages of outstanding resources, such as UniProtKB, Disease Ontology, and Reactome, 
which provide graph-based solutions. We discuss ongoing efforts of the systems biology community to standardize and harmonize 
knowledge graph creation and the maintenance of integrated resources. Outlining prospects, including the use of graph databases as 
a way of communication between biological data repositories, we conclude that efficient design, querying, and maintenance of graph 
databases will be key for knowledge generation in systems biology and other research fields with heterogeneous data. 
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Introduction 
In the last decade, new technologies and approaches emerged 
to extract large amounts of biological data, to interconnect data 
types across biological layers (proteins, metabolites, pathways, 
drugs, etc.) and to capture complex data relationships such as 
drug–biomarker–disease. Traditional approaches of storing bio-
logical data in a tabular format using relational databases present 
shortcomings when integrating biological content that is diverse, 
complex, and highly connected [1]. Such data are important for 
systems biology [2], where biological processes are studied by 
assembling and modelling the entirety of relevant knowledge. 
This requires efficient exploration of highly connected and het-
erogeneous data and their inter-relationships [3]. 

Graph databases (GDBs) have become popular for data integra-
tion, exploration, and visualization in systems biology due to their 
potential to overcome the limitations of the relational approach 
[1, 4, 5]. Graphs can naturally integrate and represent interactions 
between heterogeneous biological entities in the form of so-called 
knowledge graphs (KGs), allowing for efficient data traversal and 
exploration without the need to join multitudes of tables, a com-
putationally expensive task [1, 4]. GDBs are particularly efficient 
for querying highly interconnected data such as pathway data 
[1, 6, 7], where execution performance for complex queries on 
gene-related paths and relationships between proteins is greatly 
improved using a GDB solution [7]. 

Here, we provide a systematic review on the application of 
GDBs in systems biology. We focus on the problems addressed by 
the GDB methodology, on identified solutions, and their advan-
tages and limitations. We also discuss approaches towards har-
monized KGs. Finally, we review current needs and new research 
questions in systems biology and related domains in the context 
of GDBs. 

The review focuses on the top 16 available GDB technologies 
(db-engines.com/en/ranking/graph+dbms) including but not lim-
ited to ArangoDB, Neo4j, OrientDB, and Virtuoso. Initially, we auto-
matically extracted a set of 681 publications on GDB applications 
in systems biology with a cut-off date of 31 March 2023. Each of 
the abstracts was then manually and independently annotated by 
two reviewers to assess relevance, applicability, documentation, 
and sustainability for further inclusion in this review. Finally, 
a list of 179 publications was considered for the review. Code 
developed for automatic publication metadata extraction and the 
manual annotations for each publication are available at github. 
com/ilyamazein/gdbreview. Details on the protocol including the 
inclusion and exclusion criteria are provided in the Methods 
section. 

In the Background section, we briefly introduce relational and 
graph databases. In the Results section, we present examples of 
GDB applicability with a focus on (i) pathway biology, (ii) relevant 
ontologies, and (iii) relevant tools and analytical methods, as well
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as provide examples from COVID-19 research. These three sec-
tions follow the logic of these three questions: what is the content, 
how are the data structured, and how are the data analysed and 
used? In the Discussion section, we address challenges and future 
prospects of applying GDB technologies in the biological domain, 
and we conclude by outlining advantages of GDB usage. 

Background 
Relational databases 
Relational databases are well established and widely used for 
storing and querying biological data [8]. They are founded on the 
concept of tables (or relations). A table represents a type of entity. 
The columns represent named attributes of the entity, and the 
rows represent instances of the entity itself. Each row of a table 
should be identified by a unique key (formed by one or more 
attributes, usually a unique ID attribute) called its primary key. 
A relational database may be queried using a query language, 
usually SQL (Structured Query Language). For complex relations, 
intermediate tables are generated. However, this also results in 
potentially complex queries. 

Relational databases offer many algorithms for the efficient 
retrieval of bulk structured data [9]. However, they work best 
with data in a suitable, uniform structure, namely, nonsparsely 
populated and well-defined tables. When presented with highly 
connected, sparsely populated, or heterogeneous data, a rela-
tional database becomes less efficient. Specifically, the time and 
computational resources required to complete complex queries 
involving several joins among multiple tables increase consider-
ably, thus making exploration of interconnected data challenging 
[1, 6]. 

Graph databases 
A graph database (GDB) represents data and their inter-
relationships using a graph, where an object or concept can be 
represented as a node and a relationship between two objects as 
an edge. Notably, GDBs are schema-optional: the representation 
of objects and relationships in the graph is not necessarily 
determined by a schema, does not require an initial normalization 
step, and can be adapted without the need to restructure the 
database itself [5, 10]. 

GDBs are particularly efficient for storing and querying highly 
connected data such as pathway data or for performing traversal 
queries [1, 6]. While it is possible to implement graph algorithms 
in relational databases, it typically requires complex SQL queries 
and multiple join operations to traverse relationships stored in 
tables. For example, representing a graph structure in a relational 
database involves creating tables for nodes and edges and using 
foreign keys to establish relationships. Subgraph mining and other 
graph algorithms necessitate repeated joining of these tables to 
explore paths and connections, which can be computationally 
expensive and slow, particularly for large and highly intercon-
nected datasets. 

In systems biology, GDBs, which rely on graph representation, 
can naturally integrate and represent heterogeneous biological 
entities as networks allowing for efficient data traversal explo-
ration without the need to join multiple tables [1, 4]. Moreover, 
graphs provide a more natural solution for human visualization 
and interpretation, whereas the relational model is more suitable 
for computer interpretation, making it hard to visualize data in a 
way people can quickly and easily understand [11]. For example, in 
the GDB implementation of Reactome, the average time for path-
way query was reduced by 93% in comparison with the relational 

database implementation [6]. In another example of comparing 
Neo4j and MySQL performance on a variety of queries exploring 
gene-related paths and relationships between proteins, authors 
reported that the Neo4j-based implementation outperformed the 
MySQL solution for all queries and highlighted that the difference 
was more evident (reaching a magnitude of 7 with respect to 
measured time performance) between the two systems when the 
queries became more complex [7]. 

The two most frequent graph models are ‘Resource Descrip-
tion Framework (RDF) triple stores’ (w3.org/TR/rdf-concepts) and  
‘labelled property graphs (LPGs)’ [5]. 

The ‘RDF model’ is an open World Wide Web Consortium 
(W3C) standard used to describe resources and relationships 
between them in the form of triples (w3.org/TR/2004/REC-rdf-
concepts-20040210). A triple is composed of three elements: a 
subject, an object, and a predicate that describes the relationship 
between them (see Supplementary Fig. S1.A for an example). Each 
element of a triple is generally denoted using an International-
ized Resource Identifier, such as a URL. A set of triples forms 
an RDF graph, where resources are nodes and relationships are 
edges between these nodes. RDF stores are typically queried using 
SPARQL (SPARQL Protocol and RDF Query Language) (w3.org/TR/ 
rdf-sparql-query), which is a declarative language that aims to be 
similar to SQL. 

The ‘LPG model’ enriches the base graph structure with addi-
tional features: (i) nodes may have one or more labels that indicate 
their type(s); (ii) edges must have one type; and (iii) both edges 
and nodes may have a set of properties defined as key-value pairs 
(see Supplementary Fig. S1B for an example). Currently, one of the 
most popular LPG database management platforms in systems 
biology is Neo4j (neo4j.com), which has its own declarative lan-
guage, (entitled Cypher), and presents intuitive exploration and 
visualization features that facilitate its usability. 

While RDF databases are better suited to publish and exchange 
structured data representations, LPGs are more efficient when it 
comes to schema complexity, graph density, and querying the data 
itself [12]. Therefore, if the KGs demand sharing data in an inter-
operable way (e.g. ontologies), the RDF would be a better option, 
while, for KGs that require efficient analysis and storage, (e.g. 
biological pathways), an LPG would be better suited for the job. 

List of graph databases 
In Table 1, we provide the details on the data model, initial 
release, licence type, and the number of associated publications 
from PubMed (pubmed.ncbi.nlm.nih.gov) or PubMed Central 
(PMC; ncbi.nlm.nih.gov/pmc) for the top GDB technologies (both 
open-source and commercial) as reported in the DB-Engines 
resource (db-engines.com/en, reference date September 2023). 
Additionally, there are publications that offer a more detailed 
comparison of specific graph database technologies, as well as 
their experimental evaluation [13, 14]. 

Results 
We selected an initial set of 681 publications related to GDBs 
by querying PubMed and PMC (see Methods for more details). 
We then annotated, classified, and evaluated all publications of 
this initial set manually (two reviewers per publication, seven 
main categories) and selected a set of 179 publications as suitable 
for this review. The seven main categories (reviews, methods, 
software, primary resources, integrated resources, ontologies, and 
other) were initially chosen as a technical classification for the 
publications and then narrowed down according to the focus of
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Table 1. Ranking of the top 16 graph open-source and commercial databases based on DB-Engines (db-engines.com/en/ranking/graph+ 
dbms, reference date September 2023), an initiative to collect and present information on database management systems. We include 
the number of articles found in PMC that use or mention these databases. 

# Graph database name Database model Initial release Licence PMCa Rank 

1 Neo4jb Graph 2007 Community Edition: GPLv3 544 50.39 
2 Microsoft Azure Cosmos DB Multimodel 2014 Commercial 1 35.45 
3 Virtuosob Multimodel 1998 Open Source Edition: GPLv2 69 5.38 
4 OrientDBb Multimodel 2010 Community Edition: Apache 2 35 4.33 
5 ArangoDBb Multimodel 2012 Free Edition: Apache 2 25 4.29 
6 Memgraph Graph 2017 Commercial 1 2.88 
7 GraphDB Multimodel 2000 Commercial 18 2.6 
8 Amazon Neptune Multimodel 2017 Commercial 2 2.54 
9 JanusGraphc Graph 2017 Apache 2 7 2.39 
10 Nebula Graphc Graph 2019 Apache 2 141 2.33 
11 Stardog Multimodel 2010 Commercial 6 2.28 
12 TigerGraph Graph 2017 Commercial 5 2.21 
13 Dgraphc Graph 2016 Apache 2 6 1.89 
14 Fauna Multimodel 2014 Commercial 4 1.69 
15 Giraphc Graph 2013 Apache 2 4 1.65 
16 AllegroGraphb Multimodel 2013 Commercial; Free edition 36 1.15 

aThis column is based on authors’ analysis for the number of hits in PMC publications, last updated in September 2023. bCommercial with open source or free 
version available. cOpen source. 

the review (see Supplementary Tables S1 and S2 for the number 
of selected publications per category and section of this review, 
respectively). The workflow for publication selection is shown in 
Fig. 1, which follows the PRISMA 2020 approach for systematic 
review reporting (Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses—PRISMA: prisma-statement.org) 
[15]). 

Notably, the number of publications in biology mention-
ing at least one GDB published each year is increasing (see 
Supplementary Fig. S2). Throughout the selected publications, 
the use of LPGs seems to have supplanted the use of the more 
traditional RDF stores by approximately seven times: among the 
papers mentioning at least one GDB that were selected to appear 
in this review, 87% mentioned an LPG, while only 12% mentioned 
an RDF store, and 1% mentioned both. From the GDB technology 
point of view, the ones mentioned most were Neo4j—82% of the 
selected publications, Virtuoso—8%, and AllegroGraph—4%. 

The following sections summarize our findings, stand-out 
methodologies, approaches, and resources. We bundle the results 
by (i) applicability in pathway biology; (ii) available ontologies, and 
(iii) available tools. Figure 2 shows an overview of these different 
sections. At the end of the Results section, we provide a use case 
with an example of COVID-19 resources—KGs adapted or newly 
developed for the COVID-19 research. 

Pathway biology 
Process description 
In systems biology, model information is mostly encoded in the 
Systems Biology Markup Language (SBML) [16], the Systems 
Biology Graphical Notation (SBGN) [17], and the Biological 
Pathway Exchange (BioPAX) [18]. More specifically, the SBGN 
Process Description language encodes biological processes [19]. It 
is used in pathway databases such as Reactome [20–22], PANTHER 
[23], Recon human metabolic network [24], and others (Table 2), 
in which interactions are presented in the form of molecular 
processes with connected regulatory proteins and complexes 
(see Supplementary Fig. S3 for a detailed example of an SBGN 
Process Description map being converted to Neo4j). Reactome is 
a knowledge base of biomolecular pathways not only originally 
stored in a relational database format but also available in the 

Neo4j GDB format [6, 20–22]. The Neo4j Reactome shows greatly 
improved query efficiency when compared to the relational 
database [6]. Recon2 is a genome-scale human metabolic network 
stored initially in SBML format with the visualization built in 
CellDesigner on the MINERVA platform [31]. The Neo4j version 
of Recon2 is available on GitHub (Table 2) for exploration and 
querying [26]. The StonPy tool [27] made it possible to create Neo4j 
resources for the Atlas of Cancer Signalling Network (ACSN) and 
PANTHER pathway database, with new possibilities for analysis 
and comparison of Reactome, PANTHER, and ACSN [28]. The 
StonPy library also allowed building a Neo4j instance of the 
COVID-19 Disease Map [27]. 

The main advantage of these GDB resources is the access 
provided to the corresponding pathway resources, allowing their 
network-based exploration and analysis. These resources store 
the data in their own formats, but, through the Neo4j environ-
ment, the data and relationships between them can be searched, 
compared, and used in the same analytical pipeline [28]. 

Protein–protein interactions 
Information on protein–protein interactions (PPIs) is fundamen-
tal for understanding the functioning of biological systems [32]. 
Well-established PPI databases are broadly available (including 
[33–40]). 

In a graph, proteins can be represented as nodes and PPIs as 
edges [32, 41]. Due to their capabilities in facilitating network-
based integration, querying, and analysis, GDB approaches gained 
popularity for managing PPI data [42]. Here, we outline the specific 
advantages of GDBs for the management of PPI data focusing on 
(i) heterogeneous data integration and exploration and (ii) support 
for network-based analysis and modelling. We provide several 
prominent examples of well-established GDBs for each group. An 
extended list is provided in Supplementary Table S3. 

PPI networks can be extremely large and complex, involv-
ing thousands of protein/complex interactions in interconnected 
pathways [41]. For a proper understanding of biological systems, 
PPI data have to be integrated with other additional data types 
[32, 43]. GDBs (i) provide means for the integration of multimodal 
data types, such as gene expression, disease biomarkers, drug 
targets, pathway involvements, tissue, and cell type association
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Figure 1. PRISMA 2020 flow diagram for our review, which included searches of PubMed and PMC databases. 

Table 2. Examples of process description-based pathway resources available in Neo4j. 

Database Content Accessible at Publications 

Reactome Pathways in SBML- and SBGN-compatible format https://github.com/reactome/graph-core [6] 
Plant Reactome Pathways in SBML- and SBGN-compatible format https://plantreactome.gramene.org [25] 
Recon2 Metabolic pathways in SBML format https://github.com/ibalaur/MetabolicFramework [26] 
PANTHER Pathways built in CellDesigner in SBML- and 

SBGN-compatible format 
Can be installed using stonpy (https://github.com/ 
adrienrougny/stonpy) 

[27, 28] 

Atlas of Cancer 
Signalling Network 

Signalling network of cancer-related mechanisms 
built in CellDesigner in SBML- and 
SBGN-compatible format 

Can be installed using StonPy (https://github.com/ 
adrienrougny/stonpy) 

[27, 28] 

COVID-19 Disease 
Map 

Signalling pathways in SBML- and 
SBGN-compatible format focused on the 
COVID-19 mechanisms 

https://c19dm-neo4j.lcsb.uni.lu/browser [29] 

KEGG Pathway 
Database 

Signalling and metabolic pathways http://biochem4j.org [30] 
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Figure 2. An overview of the Results section and connections between subsections: Pathway biology, ontologies, and tools, in the context of graph 
databases. 

[ 1, 44–46] and (ii) allow for flexible and expressive queries on 
PPI networks [47–50]. Heterogeneous data integration within one 
single GDB enables comprehensive analysis and interpretation 
of biological phenomena by considering multiple layers of sys-
tems biology simultaneously [51]. For example, the SmartGraph 
knowledge base integrates data on compounds and targets, focus-
ing on drug–target interactions and PPI [52]. The Network-based 
Drug Repurposing and exploration (NeDRex) platform integrates 
several biomedical data types (including genes, proteins, drugs, 
and their targets) with their interrelationships and uses the inner 
PPI network as a central and major layer in network-based anal-
ysis aimed towards drug repurposing and disease module iden-
tification [46]. IntAct is a comprehensive open-source curated 
resource that provides detailed information on PPIs and molecular 
complexes, facilitating the exploration of interaction networks 
in biological systems. The IntAct Neo4j component empowers 
researchers to perform advanced queries and visualization of the 
integrated data, streamlining the computational analysis of intri-
cate molecular networks [47]. The Protein Data Bank in Europe 
Knowledge Base [48–50] is a well-established open-access reposi-
tory on proteomic data (3D structures, functional and biophysical 
annotations). A hybrid relational-GDB approach is implemented: 
an Oracle component that is more efficient on simple queries 
and a Neo4j solution that permits executing more sophisticated 
queries and analyses [49]. 

GDBs are also suitable for network-based analysis for PPI data. 
The graph-based algorithms implemented in GDBs (details given 
in the Tools section) provide means for detection of hidden pat-
terns in interconnected data as well as for the prediction of 
novel associations or interactions between entities in heteroge-
neous biological networks involving protein interaction data [44, 
46, 53, 54]. For example, SmartGraph [52] used network-based 
inference to perform in silico prediction of novel relationships 
between compounds and targets, exploring the complex land-
scape of drug–target and target–target interactions. In Mishra 
et al. [54], a combined approach of a human PPI network (inte-
grating over 200 000 000 interactions involving >20 000 proteins) 

and a regulatory network was developed to explore pathologic 
features of neurodegeneration in amyotrophic lateral sclerosis. 
The Clinical Knowledge Graph (CKG) is an open-source platform 
that integrates data on various biomedical concepts (e.g. proteins, 
tissues, peptides, drugs, biological function, cellular components) 
and their inter-relationships from clinical experimental studies, 
public databases, and specialized literature. It focuses on pro-
teomics analysis and interpretation via incorporated statistical 
algorithms and machine learning. The CKG uses a Neo4j GDB 
to manage the knowledge base composed of millions of nodes 
and inter-relationships and has developed a library for optimized 
implementation of graph-based algorithms including path find-
ing, similarity functions, and community detection [53]. 

Ontologies 
An ontology is a set of concepts and relationships between these 
concepts that describes a domain of knowledge. Ontologies play 
a role in a wide variety of tasks in bioinformatics, allowing 
researchers to define and share a common conceptualization of a 
domain in a formal way. Numerous ontologies have been defined 
to describe different subdomains of biology and in particular 
systems biology [18, 55–61]. 

Ontologies and graph databases 
RDF and ontologies are tightly linked technologies in the realm 
of the semantic web. RDF enables a linked data paradigm [62], 
used in ontologies to create a semantic layer that enables formal 
reasoning and knowledge discovery. Most ontologies available 
online are represented and exchanged using the Web Ontology 
Language (OWL) (w3.org/TR/owl-guide), which is built on top of 
the RDF format. Ontologies can thus be represented as RDF triples 
and queried using SPARQL (w3.org/TR/rdf-sparql-query). Some 
RDF stores also include reasoning capabilities supporting direct 
OWL-based inferences (e.g. AllegroGraph and Virtuoso). Most of 
the mentioned systems biology ontologies are stored using RDF 
stores, but some also use Neo4j as their endpoint (Table 3, see  
Supplementary Table S4 for an extended list). Tools such as
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Table 3. Examples of systems biology ontologies that are stored in GDBs. 

Ontology Content GDB OWL Accessible at Publications 

Disease Ontology Medical terms and 
human diseases 

Neo4j Yes https://disease-ontology.org [59] 

Knowledge Base of 
Biomedicine 

Biomedical data AllegroGraph or Virtuoso Partially Installed locally via https:// 
github.com/drlivingston/ 
kabob 

[63] 

Protein Ontology Taxon-specific and 
taxon-neutral 
protein-related entities 

Virtuoso Yes https://proconsortium.org [64, 65] 

Human Phenotype 
Ontology 

Phenotypic 
abnormalities in humans 

Unknown but part of the 
Monarch Initiative (https:// 
monarchinitiative.org) that uses 
RDF and Neo4j 

Yes https://hpo.jax.org/app [66, 67] 

Unified Phenotype 
Ontology 

Organism-specific 
phenotypes 

Unknown but part of the 
Monarch Initiative (https:// 
monarchinitiative.org) that uses 
RDF and Neo4j 

Yes https://ols.monarchinitiative. 
org/ontologies/upheno2 

[66] 

Owl2Neo4j [ 68] may be used to store an OWL ontology in a Neo4j 
database automatically. 

Ontologies for data integration in graph databases 
Ontologies may be used as backbones to integrate data from dif-
ferent sources into one database. In the context of GDBs, this may 
be facilitated by the tight integration of ontologies into the RDF 
framework. The (semi-)automatic integration process generally 
relies on the transformation of heterogeneous data into uniform 
ontology-backed RDF triples using rules (e.g. the Knowledge Base 
of Biomedicine (KaBOB) [63]), probabilistic models (e.g. GORouter 
[69]), or shared guidelines (e.g. Bio2RDF [70]). The integration 
process may result in unique RDF stores (KaBOB, GORouter) or 
a series of individual although homogeneous stores that can be 
queried using federated SPARQL queries (Bio2RDF) [71]. 

Ontology-based graph database queries 
Data can be retrieved from GDBs using database-specific query 
languages. While all RDF stores may be queried using SPARQL, 
there is no unique standard language for LPG databases (see 
Table 1). A means to overcome this heterogeneity in query lan-
guages is to build systems that allow users to query databases in 
natural language. In some systems, the transformation process is 
knowledge-based and guided by the ontology that backs the GDB 
[72]. For example, the OntoNLQA framework can be used to auto-
matically answer natural language questions based on parasite 
immunology data stored in an RDF store backed by an ontology 
[73]. Ontologies may also be used to check the correctness of user 
input queries in the context of GDBs [74]. 

Tools 
Graph algorithms play an important role in data science and 
systems biology in particular, as they can be integrated into 
frameworks for analysing and extracting insights from highly 
interconnected datasets, providing a better understanding of the 
underlying data. They can be used to explore existing relation-
ships and predict new connections across metabolic, signalling, 
and regulatory networks and create visually appealing repre-
sentations of biomedical networks, facilitating the exploration 
and interpretation of complex datasets. The following are some 

examples of common analytical approaches for biological data 
using graph algorithms. An extended list of tools is given in 
Supplementary Table S5. 

Pathfinding aims to identify the shortest path between two 
entities, making it useful in exploring the biological context [7, 
75]. For example, the Neo4j-based resource GREG combines five 
types of regulatory processed data (transcription factors, regula-
tory noncoding RNAs, chromatin interactions, protein complexes, 
and cofactors). Using graph traversal algorithms, it is possible to 
determine if two nodes are directly connected or if their relation-
ship is mediated by other nodes in the integrative network. This 
helps determine the shortest path between a transcription factor 
and its target gene or between a noncoding RNA and its asso-
ciated genomic region, facilitating the exploration of regulatory 
pathways involved in gene expression and regulation. Identifying 
a short path may suggest direct regulation, while longer paths 
involving multiple intermediate molecules indicate more com-
plex regulatory networks. A potential connection could suggest 
new biological mechanisms [76]. 

Connectivity analysis allows exploration of the neighbourhood 
of a node of interest, revealing the strength of functional and 
structural links between biological entities and ‘centerpoints’ for 
different regions of the graph. It further serves to analyse the 
flow of information inside the network and to explore similarities 
between different entities based on their common connections 
and properties. Neo4j-based Graffinity is an example of a con-
nectivity analysis tool [77], applied to a connectome (a graph of 
connections between cells) in the retina. The authors detected 
a previously unknown anomalous pathway between cone cells 
and rod cells, finding an intermediate node in the pathway with 
unexpected connections to cone cells. Pinpointing the specific 
synapses responsible for this anomaly, the authors discovered 
that it was an annotation error. Despite previous analysis of this 
connectome at a broader level of detail, fine-scale annotation 
errors remained, and they were revealed when conducting visual 
connectivity analysis. 

Subgraph mining identifies frequently occurring patterns (sub-
graphs) in complex graph structures [78]. In systems biology, sub-
graph mining is used to identify important molecular interactions 
and biological pathways in large-scale biological data such as PPI 
networks or metabolic pathways and to identify coding patterns 
and overlap of systems biology models [79].
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https://monarchinitiative.org
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https://hpo.jax.org/app
https://hpo.jax.org/app
https://hpo.jax.org/app
https://hpo.jax.org/app
https://hpo.jax.org/app
https://monarchinitiative.org
https://monarchinitiative.org
https://monarchinitiative.org
https://ols.monarchinitiative.org/ontologies/upheno2
https://ols.monarchinitiative.org/ontologies/upheno2
https://ols.monarchinitiative.org/ontologies/upheno2
https://ols.monarchinitiative.org/ontologies/upheno2
https://ols.monarchinitiative.org/ontologies/upheno2
https://ols.monarchinitiative.org/ontologies/upheno2
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae561#supplementary-data
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Visual exploration allows us to see the relationships within the 
data and perform visual network analysis. For example, starPepDB 
supports visual exploration of integrated bioactive peptide data 
gathered from a large array of databases [80]. Also, web-based 
user-friendly applications that integrate a GDB component facil-
itate bioinformatics data extraction, visualization, and analysis. 
One such application is BioGraph, which uses a collection of 
heterogeneous data from a variety of bioinformatics resources. 
An important analytical feature is its own query language called 
Gremlin, as it supports both declarative and imperative queries. 
This allows for an explicit implementation of the traversal algo-
rithms that a query will utilize, offering advanced and complex 
custom graph-based algorithms [81]. 

Systems biology use-case: COVID-19 resources 
During the COVID-19 pandemic, a scientific effort of unprece-
dented global scale has been made, resulting in a significant 
number of resources and community projects using GDBs to 
integrate and explore the rapidly emerging new data about 
SARS-CoV-2 infection and COVID-19 disease [47, 82–91] (see  
Supplementary Table S6 for a list of GDB-based COVID resources). 
For example, GDB approaches have contributed to the develop-
ment of (i) molecular pathways [47], (ii) clinical trials and drug 
repurposing [82–85], (iii) ontology resources related to COVID-
19 [86–88], and (iv) application of graph-based methods for 
the exploration of COVID-19 mechanisms, comorbidities, and 
risk factors [88–90]. A classification of the COVID-19 KGs using 
GDBs based on their main application domain is provided in 
Chatterjee et al. [91]. Here, we discuss selected GDBs for COVID-
19 data focusing on pathway biology, resources developed using 
ontologies, and tools used in the COVID-19 research. 

A particular class of GDB resources focused on integrating 
heterogeneous COVID-19 data to facilitate data exploration and 
visualization of molecular pathways and disease mechanisms 
[47, 84, 86, 87]. For example, the IntAct Coronavirus interactome 
dataset integrates PPIs and RNA–protein interactions involving 
SARS-CoV-2 and SARS-CoV and can be explored in the Neo4j 
version of IntAct [47]. KG-COVID-19 (Neo4j-based) [84] and  
COVID-19 KG (Virtuoso-based) [86] are comprehensive knowledge 
bases for machine learning applications and downstream 
analysis in COVID-19 drug repurposing. KG-COVID-19 integrates 
primarily data on drug targets, protein interactions, protein 
functional annotations, and disease ontologies [84]. The COVID-
19 Knowledge Graph is developed using text mining and 
relevant curated biological databases [86]. Data exploration and 
visualization of KGs are also employed in several comprehensive 
COVID-19 community projects, including HealthEcco (healthecco. 
org) [87] and COVID-19-Net (github.com/covid-19-net/covid-19-
community). HealthEcco integrates COVID-related data such 
as publications and patents, clinical trial data, biomedical 
data, and computational systems biology models into a Neo4j 
GDB to provide a single point of access to these diverse data 
sources. The COVID-19-Net project uses a Neo4j approach to 
integrate heterogeneous biological data types (both health-
and pathogen-related) with environmental characteristics to 
facilitate the exploration of COVID-19 mechanisms by looking at 
interdependencies among host–pathogen–environment systems. 

COVID-19 GDBs are backed up by ontologies to facilitate 
semantic integration of data from multiple sources. Semantic 
relationships are enriched by integrating knowledge from 
several public biomedical repositories and ontologies [34, 66, 67, 
92–95]. The KGEV framework uses Neo4j to store and query the 
data and can be extended to other diseases. The gcCov is a 
coronavirus genotype–phenotype KG based on a semantic web 

framework (employing RDF and Neo4j) and open linked data. 
This database provides a resource for structural and sequence 
similarities among coronaviruses and may therefore aid in 
the identification of cross-neutralizing antibodies that bind to 
multiple CoV antigens, which may be relevant for the treatment 
of SARS-CoV-2 infections [90]. 

COVID-19 GDBs have been also used to explore candidates for 
drug repurposing using computational modelling approaches [82– 
85]. For example, a novel method using neural networks (involv-
ing several graph completion algorithms) and literature curation 
approaches was developed for the identification of candidates for 
COVID-19 drug repurposing. The work uses Neo4j to store seman-
tic relationships among the data (e.g. relationships on inhibition, 
interaction, association, causality between drugs, and other bio-
logical concepts) and to help with navigation and visualization of 
the integrated resources. The Neo4j functionality was also used in 
a computational analytical step to evaluate the plausibility of sev-
eral highly ranked drug candidates returned by the graph-based 
completion component [82]. Identification of possible drugs for 
treatment can also be achieved by a graph neighbourhood search, 
as performed on a COVID-19 KG constructed using the KGEV 
framework [88]. In addition, a shortest-path approach identified 
similarities in pathways (alterations) in obese people and COVID-
19 patients. In COVID-19 pharmacology research, a workflow 
for semiautomated integration of multimodal data was used to 
develop the Neo4COVID19 resource, which describes a network 
of host–host, host–pathogen, and drug–target interactions for 
COVID-19 [85]. 

Discussion 
Challenges and lessons learned 
Training and documentation for graph databases help to 
use them efficiently 
GDBs, and in particular LPGs, are a relatively new technology 
compared to relational databases. An effort to use these tools 
efficiently is ongoing, and new techniques are continuously devel-
oped. 

Knowing the data model and being familiar with the query 
language are key steps for efficient use of GDBs. The LPG ecosys-
tem is not completely mature and still undergoes rapid changes. 
LGPs notably lack a standardized query language (such as SQL for 
relational databases or SPARQL for the RDF), despite progress on 
openCypher (opencypher.org) and International Organization for 
Standardization Graph Query Language (gqlstandards.org). There-
fore, it is of particular importance that the developed resources 
and software are well documented and that query examples are 
provided and explained by initial developers. 

Integrated resources and sustainability 
The term ‘integrated resources’ refers to GDBs that assimilate 
data from multiple sources. Integrated resources facilitate (i) 
discovery of new connections across data from multiple sources 
(e.g. pathway biology) and (ii) semantic enrichment by combining 
data and ontologies. They offer a single query language and access 
to multiple databases via a single platform. 

A large portion of the reviewed GDBs for systems biology 
are integrated resources (see Supplementary Table S7 for a list 
of primary resources and Supplementary Table S8 for a list of 
integrated resources), which suggests that relational databases 
are still the main technology for primary data sources. This could 
be explained by the fact that (i) GDBs are still a new technology 
compared to relational databases, (ii) they might be difficult to 
adopt, and (iii) they are less efficient than relational databases

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae561#supplementary-data
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for some types of queries (e.g. complex queries with aggregates) 
or for structured data that are not densely interconnected [96]. 

GDBs are adequate for data integration tasks: they are 
schema-optional, they are efficient for visualizing and retrieving 
highly connected data, and they are compatible with ontologies. 
However, GDBs still face challenges inherent to the integration of 
heterogeneous data types originating from multiple resources 
and the sustainability of these integrated resources [97–99]. 
This latter issue is particularly significant, as among the 93 
publications that report accessible resources for data integration, 
only 20 are regularly updated (see Supplementary Table S8). 
These difficulties can be addressed with standardized approaches 
(see Efforts toward a Uniform Development of Knowledge Bases) 
or with the use of specific GDB technologies, such as federated 
queries [100]. 

Perspectives 
GDBs are suitable for systems biology and will support future 
automated model generation and machine learning tasks. How-
ever, they need to be standardized, documented, and maintained 
to unlock their full potential. Therefore, key points when planning 
a GDB application are (i) building on established approaches that 
aim at standardizing KG creation, (ii) following the principles of 
Findability, Accessibility, Interoperability and Reusability (FAIR) 
[101] for the data included and the principles of Transparency, 
Responsibility, User focus, Sustainability and Technology (TRUST) 
[102] for the KG itself, and (iii) automating the GDB maintenance. 

Pathway resources available in process-description-type 
and activity-f low-type formats 
We anticipate that in the future more pathway resources will be 
made available in GDB environments, ideally using standard com-
patible formats such as the Systems Biology Graphical Notation 
(SBGN) [28, 103]. For example, the OmniPath resource [104] is a  
collection of databases, including a signalling network database 
and a database on posttranslational modification of enzymes. 
Information is integrated from >100 resources (omnipathdb.org/ 
info). The content representation is compatible with the SBGN 
Activity Flow standard language [105] and can be accessed via 
Python and a Cytoscape plug-in [106]. The Pathway Commons 
[107, 108] integrates pathway information from 22 databases 
(pathwaycommons.org). Its content is represented using mainly 
the BioPAX language [18] with visualization available in SBGN 
[17]. This extensive resource covers 2.3 million interactions [107], 
accessible via Java, R, Python and Javascript. Both SBGN Process 
Description and Activity Flow conceptual types of relationships 
are included. A GDB instance would facilitate network-based 
exploration and analysis of the pathway content. 

Elasticsearch and graph databases 
Elasticsearch (elastic.co) is a distributed open-source search and 
analysis platform that can process large-scale data of various 
types, including text, numerical, structured, and unstructured 
data. Elasticsearch is based on indexing, where an index is a 
collection of documents related to each other. It uses a data 
structure called an inverted index that connects every unique 
word appearing in any document to all the documents of the 
collection it appears in, allowing fast full-text searches. When 
presented with a new document, Elasticsearch stores it and re-
builds an inverted index. 

Elasticsearch and GDB technologies have been recently 
combined, for example, creating optimized systems for semantic 
indexing and classification of biomedical literature [109] or  
knowledge bases that enable the exploration of drug molecular 

mechanisms for precision medicine [110]. In systems biology, 
the Alliance of Genome Resources, which integrates data from 
the major model organisms databases, uses Neo4j as a database 
and the Elasticsearch technology as a search service [111]. To 
this end, the Alliance harmonized data models of the different 
sources and curation workflows. As a result, all sources can be 
integrated into a single database with a unified data model, which 
facilitates queries spanning over several organisms and enables 
cross-organism investigation. 

Efforts towards a uniform development of knowledge bases 
Several challenges arise with the rapidly increasing number of 
GDBs in the field of systems biology and systems medicine [44, 
45, 53, 112]. One of the challenges faced by GDBs is redun-
dancy. If sources without standardized metadata schema are 
connected to each other, duplicate nodes and relations are intro-
duced. Identification and removal of such duplicates is time-
consuming and may require manual intervention. Additionally, 
the design of a high-quality and well-maintainable GDB requires 
informed decisions about the specific GDB approach, the appro-
priate data model, the relevant semantic enrichment, etc. For 
many researchers, specifically in the applied biological and clin-
ical domains, such decisions do not lie in their field of expertise, 
easily resulting in shortcomings of the designed GDBs. To over-
come the described problems and to improve the quality of the 
resulting GDBs, the systems biology community started to design 
methods and implement tools that harmonize and standardize 
GDB development. 

Within the Biomedical Data Translator project [113], the 
so-called Knowledge Beacons API allows accessing knowledge 
sources and discovering shared semantics [114]. This work 
provided access to several important GDB resources, such as 
SemMedDB, HMDB, or Biolink, but required labour-intensive 
specific indexing and query definitions for each resource. Later, 
RTX-KG2 [115] was developed to integrate biomedical concepts 
and their relationships from 70 different knowledge sources, 
including ChEMBL [116], DrugBank [117], KEGG [118], Reactome 
[20] and UniProtKB [94]. To deal with this unprecedented amount 
of data sources, it was necessary to standardize the schema 
and semantic layers. The resulting GDB conforms to the Biolink 
model [60] and includes provenance information to maximize 
interoperability. 

BioCypher (biocypher.org) is a framework for the development 
of integrated biology-related GDBs [119], freely available (github. 
com/biocpher/biocypher) and reusable under the MIT licence. 
BioCypher facilitates the integration of diverse sources into one 
Neo4j GDB. It uses a modular approach based on project-specific 
input and output adapters and relies on the Biolink data model 
[60] for structuring the integrated information. The available and 
reusable BioCypher adapters are represented as a meta-graph 
(github.com/biocpher/meta-graph) based on the Biomedical 
Resource Ontology (BRO) [120] (github.com/biocpher/biomedical-
resource-ontology). In summary, the BioCypher framework makes 
the implementation of a GDB accessible to researchers with 
limited technological knowledge and it facilitates integration and 
harmonization of diverse data sources. Several well-established 
systems biology resources have already joined this project, such 
as the CKG [53], the OTAR KG [121], or the HealthEcco project 
(healthecco.org) [87]. 

Conclusion 
We observe a rapid increase in the use of graph databases (GDB): 
while in 2012, only 17 PubMed publications cited any of the GDB
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approaches mentioned in this review, there were >190 in 2022. 
In systems biology, GDBs have been proven efficient for storing 
data that are naturally organized in the form of graphs, such as 
pathways and molecular networks. For this type of data, where 
exploration comes to follow nodes along paths, GDBs turn out 
to be more efficient than relational databases, since they are 
less computationally expensive. The GDB approach also offers 
significant additional advantages (schema-optional, better visu-
alization, embedded graph algorithms) that all together make it a 
great candidate for data integration, exploration and analysis in 
systems biology. We observe a growing number of publicly avail-
able GDB-based KGs that integrate data from multiple sources 
and often constitute substantial knowledge bases on more generic 
(e.g. human cancer) or more focused topics (e.g. COVID-19) of 
systems biology. The construction of such KGs often relies on non-
sustainable workflows that fetch and merge data from the desired 
sources into one GDB, sometimes backed by ontologies that help 
structure the used data model. While these KGs offer readily and 
efficiently accessible data on specific systems biology topics, the 
way they are built and their growing number bring consequential 
issues, such as their redundancy, heterogeneity, and sustainability. 
These issues may be solved in the future by applying standardized 
common workflows and data models for building KGs and by 
organizing their construction and maintenance around durable 
communities or consortia. 

Methods 
In this systematic review, we performed the following steps (see 
Supplementary Fig. S4 for a graphical summary). 

i) First, we analysed the use of GDB technologies as reported 
in the DB-Engines (db-engines.com, reference date Sep 2023) 
and prepared a list of the top 16 GDBs (Table 1). 

ii) We then proceeded with the automatic retrieval of 
publications from PubMed and PMC that use the term ‘graph 
database’ or mention specific GDBs such as AllegroGraph, 
ArangoDB, GraphDB, and Neo4j (Table 1). The specific 
queries can be found in Supplementary Methods. 

iii) Next, publications were manually reviewed by two review-
ers and shortlisted using the following criteria: the use 
of a specific GDB technology and the applicability in 
systems biology. For integrated resources, we had an extra 
criterion on their sustainability, which assessed whether 
the resource was available to be queried or at least the 
source code was made publicly available. Publications were 
grouped into the following categories: reviews, methods, 
software, primary resources, integrated resources, and 
ontologies. 

iv) Finally, the shortlisted publications are further refined and 
discussed in the text of this review, focusing on the following 
major topics: pathway biology, ontologies, tools, and appli-
cations for COVID-19 research. Priority for selection was 
given to the projects that are actively maintained and are 
potentially likely to be reused. 

More details on methods and queries used are provided in 
Supplementary Methods. The complete annotated list of publi-
cations with corresponding PubMed and DOI identifiers is pro-
vided in Supplementary Table S9. Updated versions of this list 
will be available at github.com/ilyamazein/gdbreview/tree/main/ 
annotated. 

Key Points 
• Graph databases (GDBs), which provide a natural fit for 

network-based representation of biological information, 
are becoming increasingly popular as a way to man-
age and query heterogeneous data and to provide new 
insights into data connections. 

• Knowledge graphs facilitate the discovery of unexpected 
relationships across integrated multimodal data that 
can lead to the generation of new hypotheses in systems 
biology. 

• This review is based on 681 systematically identified 
GDB-related publications from the fields of biology and 
bioinformatics in PubMed and PubMed Central reposito-
ries, further filtered down to 179 publications based on 
applicability in systems biology. 

• We outline the prospects of applying GDBs in systems 
biology with technologies such as Elasticsearch. 

• We highlight the ongoing efforts towards the devel-
opment of unified GDB platforms for integration and 
exchange of heterogeneous biomedical data between 
multiple projects. 

Supplementary data 
Supplementary data are available at Briefings in Bioinformatics 
online. 
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