
R E S E A R CH A R T I C L E

C a n c e r G e n e t i c s a n d E p i g e n e t i c s

Polymorphisms within autophagy-related genes as
susceptibility biomarkers for pancreatic cancer: A meta-
analysis of three large European cohorts and
functional characterization

Fernando Gálvez-Montosa1 | Giulia Peduzzi2 |

José Manuel Sanchez-Maldonado3,4,5,6 | Rob ter Horst7,8 |

Antonio J. Cabrera-Serrano4,5 | Manuel Gentiluomo2 | Angelica Macauda6 |

Natalia Luque1 | Pelin Ünal6 | Francisco José García-Verdejo1 | Yang Li7,8 |

José Antonio López López1 | Angelika Stein6 | H. Bas Bueno-de-Mesquita9† |

Paolo Giorgio Arcidiacono10 | Dalila Luciola Zanette11 | Christoph Kahlert12 |

Francesco Perri13 | Pavel Soucek14 | Renata Talar-Wojnarowska15 |

George E. Theodoropoulos16 | Jakob R. Izbicki17 | Hussein Tamás18,19 |

Hanneke Van Laarhoven20,21 | Gennaro Nappo22,23 | Maria Chiara Petrone10 |

Martin Lovecek24 | Roel C. H. Vermeulen25 | Kestutis Adamonis26 |

Fernando Jesus Reyes-Zurita3 | Bernd Holleczek27,28 | Jolanta Sumskiene26 |
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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with

patients having unresectable or metastatic disease at diagnosis, with poor prognosis

and very short survival. Given that genetic variation within autophagy-related genes

influences autophagic flux and susceptibility to solid cancers, we decided to investi-

gate whether 55,583 single nucleotide polymorphisms (SNPs) within 234 autophagy-

related genes could influence the risk of developing PDAC in three large independent

cohorts of European ancestry including 12,754 PDAC cases and 324,926 controls.

The meta-analysis of these populations identified, for the first time, the association

of the BIDrs9604789 variant with an increased risk of developing the disease

(ORMeta = 1.31, p = 9.67 � 10�6). We also confirmed the association of

TP63rs1515496 and TP63rs35389543 variants with PDAC risk (OR = 0.89,

p = 6.27 � 10�8 and OR = 1.16, p = 2.74 � 10�5). Although it is known that BID

induces autophagy and TP63 promotes cell growth, cell motility and invasion, we also

found that carriers of the TP63rs1515496G allele had increased numbers of FOXP3+

Helios+ T regulatory cells and CD45RA+ T regulatory cells (p = 7.67 � 10�4 and

p = 1.56 � 10�3), but also decreased levels of CD4+ T regulatory cells

(p = 7.86 � 10�4). These results were in agreement with research suggesting that

the TP63rs1515496 variant alters binding sites for FOXA1 and CTCF, which are tran-

scription factors involved in modulating specific subsets of regulatory T cells. In con-

clusion, this study identifies BID as new susceptibility locus for PDAC and confirms

previous studies suggesting that the TP63 gene is involved in the development of

PDAC. This study also suggests new pathogenic mechanisms of the TP63 locus

in PDAC.

K E YWORD S

autophagy, functional characterization, genetic variants, pancreatic cancer, polymorphisms,
susceptibility

What's new?

The etiology of pancreatic ductal adenocarcinoma (PDAC), among the most aggressive and

deadliest cancers worldwide, remains largely unknown. Here, using data from cohorts of Euro-

pean ancestry, the authors investigated the influence on PDAC risk of single nucleotide poly-

morphisms (SNPs) in genes associated with autophagy. Analyses identified multiple SNPs

associated with PDAC risk, including variants within BID and TP63. Variants in BID potentially

dysregulate BID-dependent autophagy, while those in TP63 may influence PDAC risk by modu-

lating levels of T regulatory cells involved in host immune responses against tumor cells. The

variants warrant further study to better elucidate their involvement in PDAC.
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1 | INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the most common form

of pancreatic cancer1–3 with a worldwide incidence that has been

increasing over decades and it is somewhat higher in males than

females (6.7 vs. 6.0 cases per 100,000 people per year, respectively;

https://gco.iarc.fr/today/home). Early diagnosis of PDAC is hampered

by the lack of specific screening tests and by the fact that most of the

patients do not have symptoms or if they do, they are very unspeci-

fic.3,4 Consequently, PDAC is frequently diagnosed at late stages lead-

ing to an extremely poor prognosis and a 5-year survival rate that

ranges from 2% to 10%.5 Several environmental factors (including

exposure to pesticides, asbestos, benzene, and chlorinated hydrocar-

bons) and lifestyle risk factors (cigarette smoking, obesity, family his-

tory of cancer, pancreatitis, type 2 diabetes, heavy alcohol

consumption, low physical activity, stress, mobile phone use, allergies,

and poor oral health) have been identified for PDAC.2,6–8 Further-

more, around 30 genetic susceptibility loci have been identified

through genome wide association studies (GWAS) and large candidate

gene or candidate region studies.9–16 However, PDAC continues to

be one of the most aggressive and lethal diseases with still a relatively

unknown etiology.17,18

Recent evidence suggests that autophagy, a lysosome-dependent

catabolic degradation process involved in removing toxic air pollut-

ants, particulate particles and heavy metals, but also toxic aggregated

cytosolic proteins and malfunctioning organelles from normal cells,

might influence the onset of solid tumors and blood malignancies.19–

21 In PDAC, several studies have demonstrated that pancreatic

tumoral tissues have an increased autophagy flux and a greater num-

ber of autophagosomes22 in comparison to normal pancreatic

cells.23,24 Furthermore, it has been shown that autophagy participates

in controlling multiple processes including tumor cell growth, metabo-

lism, MHC-I and MHC-II presentation,25,26 cell migration and metasta-

sis.27 These findings, along with the fact that treatment with

chloroquine (an autophagy inhibitor) or the genetic ablation of autop-

hagy initiation genes (ATG5 or ATG7) reduced the growth of human

PDAC cell lines,23 suggest that autophagy might represent a potential

target for PDAC treatment. In support of this hypothesis, studies

using xenografts or animal models have shown the benefit of inhibit-

ing autophagy to induce tumor regression and prolong survival.28–30

In addition, autophagy is implicated in controlling the resistance to

apoptosis31 and, therefore, it might represent a poor prognostic factor

for PDAC.32 Nonetheless, several studies have also suggested an anti-

tumorigenic effect of autophagy in PDAC33,34 and some clinical trials

using autophagy inhibitors have shown limited success.35,36

Considering the above-reported results, but also previous findings

suggesting that genetic variation within autophagy-related genes

influences autophagic flux and the susceptibility to solid and hemato-

logical cancers,37,38 we decided to comprehensively evaluate the

impact of 55,583 common genetic variants within 234 autophagy-

related genes in determining the risk of developing PDAC. Under-

standing the impacts of environmental exposure through autophagy

and how this catabolic process is genetically regulated might offer

new approaches for risk assessment, protection and preventive

actions against cancer. Given the known role of autophagy in shaping

immune responses, inflammation and immune tolerance39 and its

potential role in regulating immunotherapy efficacy,40 we also

assessed the correlation of the most promising autophagy variants

with cytokine production after in vitro stimulation of whole blood

(WB), peripheral blood mononuclear cells (PBMCs), or monocyte-

derived macrophages (MDM) with lipopolysaccharide (LPS), phytohe-

magglutinin (PHA), Pam3Cys or CpG. Additionally, we assessed the

impact of genetic variants in autophagy genes on the absolute num-

bers of 91 blood-derived cell populations, 103 serum immunological

proteins, and 7 steroid hormones in a large cohort of 408 healthy

donors (500FG) from the Human Functional Genomic Project

(HFGP).41

2 | MATERIALS AND METHODS

A workflow diagram of the study is included as Figure 1.

2.1 | Study populations

The discovery population consisted of 15,776 subjects from previous

GWAS on PDAC conducted by the Pancreatic Cancer Cohort (Pan-

Scan I–III),42–44 and the Pancreatic Cancer Case–Control (PanC4) con-

sortia45 (Figure 1). In these studies, the PDAC cases presented an

established diagnosis and controls were blood donors or healthy sub-

jects randomly selected from the general population and with no his-

tory of previous cancers. As part of the discovery cohorts, we also

included the FinnGen research genomic project, which arose from

Finnish biobanks and digital health record data from Finnish health

registries (https://www.finngen.fi/en). At the time this study was con-

ducted, FinnGen (Data Freeze 10 or Ristey10) included genetic data

of 314,924 individuals (731 PDAC cases and 314,193 controls).

2.2 | SNP selection and meta-analysis of discovery
cohorts

A total of 234 autophagy-related genes were selected based on their

presence in the autophagy database (http://autophagy.lu/clustering/

index.html; Table S1) and association of 55,583 genotyped or imputed

SNPs within or near these genes (5 kb upstream and 3 kb down-

stream)46–48 with PDAC risk was computed from a GWAS conducted

in the PanScan I–III and the PanC4 population. GWAS datasets were

downloaded from the NCBI database of genotypes and phenotypes

(dbGaP; study accession numbers phs000206.v5.p3 and phs000648.

v1.p1; project reference no. 12644), namely PanScan I, PanScan II and

PanC4. These PanScan I–III + PanC4 GWAS were subjected to rigor-

ous standard quality control protocols before imputation using the

Michigan imputation server (based on the Haplotype Reference Con-

sortium).49 After imputation, GWAS data were filtered to include only
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high-quality imputed variants (info score >0.8). Further quality-control

checks were implemented including checks for missingness, dupli-

cates, abnormal heterozygosity, cryptic relatedness, population out-

liers (evaluated by principal components analyses using Eigenstrat

software), and genomic inflation (λ = 1.00).50 Detailed information

about the genotyping technologies used, quality control, imputation,

and ethnic composition of the discovery cohorts is provided as

Data S1. A fixed-effect meta-analysis of the PanScan I–III + PanC4

and publicly available FinnGen GWAS data was conducted using

METAL.51 The I2 statistic was used to assess statistical heterogene-

ity between the study cohorts and pooled odds ratios (ORs) were

computed using the fixed-effect model. Among the 55,583 selected

variants, a total of 45,036 SNPs were shared by the GWAS

platforms and were, therefore, available for association analysis. Of

those 45,036 variants, a total of 2907 SNPs were considered inde-

pendent (r2 < .1) according to LDLink data for European cohorts

(https://ldlink.nci.nih.gov/?tab=snpclip), and therefore, the multi-

ple testing significance threshold for the study was set to

p = 1.72 � 10�5 (0.05/2907 SNPs; Table S2). To select the most

interesting markers for further validation, we excluded those SNPs

that were previously reported as susceptibility markers for PDAC

and we advanced for replication in the PANcreatic Disease

ReseArch (PANDoRA) consortium only those markers that showed

a significant association with PDAC risk after multiple testing cor-

rection (p < 1.72 � 10�5). Genotyping of the genetic markers

included 3283 PDAC cases and 3697 controls.

F IGURE 1 Flow diagram of the study.
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2.3 | Genotyping and meta-analysis

Genotyping of genetic variants advanced for replication in PANDoRA

was carried out at University of Pisa (Department of Biology, Univer-

sity of Pisa, Pisa, Italy) using KASPar (LGC Genomics, Hoddesdon, UK)

according to previously reported protocols.52,53 For internal quality

control, �5% of samples were randomly selected and included as

duplicates. Concordance between the original and the duplicate sam-

ples for the SNPs tested was ≥99.0%. Selected SNPs showed geno-

type frequencies in the control population similar to those found in

the 1000 Genomes database (data not shown) and were in Hardy–

Weinberg equilibrium (HWE). After the genotyping of selected

markers in PANDoRA, an overall meta-analysis of the association esti-

mates of PANDoRA with those from the PanScan I–III, PANC4, and

FinnGen studies was conducted in R using the Meta package.54

2.4 | Functional effect of the autophagy-related
variants

To provide insight into the functional role of those SNPs that

remained statistically significant after multiple correction

(p = 1.72 � 10�5), but also those SNPs that are well-established sus-

ceptibility markers for PDAC, we tested if any of them were associ-

ated with cytokine expression quantitative trait loci (cQTL) data from

in vitro stimulation experiments. We also tested the association with

the absolute numbers of 91 blood-derived cell populations, 103 serum

or plasmatic inflammatory proteins and 7 steroid hormones quantified

in 408 volunteers from the 500 Functional Genomics (500FG) cohort

from the HFGP.

2.4.1 | Correlation of autophagy-related SNPs with
cQTL data

The cQTL data included cytokine levels (IFNγ, IL1β, IL6, TNFα, IL17

and IL22) measured when peripheral blood mononuclear cells

(PBMCs), monocyte-derived macro-phages (MDM), or whole blood

from 408 healthy subjects were left untreated or stimulated for 24 h

with LPS (1 or 100 ng/mL; Sigma Aldrich, St. Louis, MO), PHA (10 μg/

mL, Sigma, St. Louis, MO), Pam3Cys (10 μg/mL, EMC microcollec-

tions, Tübingen, Germany) or CpG (100 ng/mL, InvivoGen, San Diego,

CA). Detailed protocols for PBMCs isolation, macrophage differentia-

tion and stimulation assays have been reported elsewhere.38,55

Briefly, PBMCs were washed twice in saline and suspended in

medium (RPMI 1640) supplemented with gentamicin (10 mg/mL),

L-glutamine (10 mM) and pyruvate (10 mM). PBMC stimulations were

performed with 5 � 105 cells/well in round-bottom 96-well plates

(Greiner Bio-one, Frickenhausen, Germany) for 24 h in the presence

of 10% human pool serum at 37�C and 5% CO2. Supernatants were

collected and stored at �20�C until used for ELISA. Concentrations of

human IFNγ, IL1β, IL6, TNFα, IL17 and IL22 were determined using

specific commercial ELISA kits (PeliKine Compact, Amsterdam or R&D

Systems), in accordance with the manufacturers' instructions. When

values were below or above the detection limit of the ELISA, the cor-

responding limit was used. After log transformation, linear regression

analyses adjusted for age and sex were used to determine the correla-

tion of the selected SNPs with cQTL data.

2.4.2 | Correlation of autophagy SNPs and blood
cell counts and serum/plasmatic proteomic profile

Next, we evaluated the impact of selected SNPs on cell-level varia-

tion. A total of 91 blood-derived cell populations were measured by

10-color flow cytometry (Navios flow cytometer, Beck-man Coulter,

Miami, FL) after blood sampling (2–3 h), and cell count analysis was

performed using Kaluza software (Beckman Coulter, v.1.3). To reduce

inter-experimental noise and increase statistical power, cell count

analysis was performed by calculating parental and grandparental per-

centages, which were defined as the percentage of a certain cell type

within the subpopulation of the cells from which it was isolated

(Table S3).55 Detailed laboratory protocols for cell isolation, reagents,

gating, and flow cytometry analysis have been reported elsewhere56

and raw flow cytometry data and analyzed data files are available

upon reasonable request to the authors (http://hfgp.bbmri.nl,

accessed on 13 February 2024). A proteomic analysis was also per-

formed in serum and plasma samples from the HFGP study. Circulat-

ing proteins were measured using the proximity extension assay

(Olink Inflammation panel, Olink, Sweden) that resulted in the mea-

surement of 103 different biomarkers (Table S4). Protein levels were

expressed on a log2-scale as normalized protein expression values

and normalized using bridging samples to correct for batch variation.

Considering the number of proteins (n = 103), blood-derived cell

populations (n = 91), and SNPs (n = 4) tested, significance p-values

were set to be 1.21 � 10�4 and 1.37 � 10�4 for the proteomic and

blood cell count analyses, respectively.

2.4.3 | Correlation between autophagy-related
SNPs and serum steroid hormone levels

Besides the immunological experiments, we also evaluated the corre-

lation of autophagy SNPs with serum steroid hormone levels (andro-

stenedione, cortisol, 11-deoxy-cortisol, 17-hydroxyprogesterone,

progesterone, testosterone and 25 hydroxy vitamin D3) from 279

healthy controls of the 500FG cohort without hormone replacement

or oral contraceptive therapies. Serum steroid hormone levels were

determined by ELISA following the manufacturer's instructions. Corre-

lation between levels of 7 serum steroid hormones and autophagy-

related SNPs was evaluated by linear regression analysis adjusted for

age and sex. The significance threshold was set to p = .00178 consid-

ering the number of independent SNPs tested (n = 4) and the number

of hormones determined (n = 7).

All analyses of functional data were performed using R software

(http://www.r-project.org), using custom scripts in the R programming
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language based on existing functions such as lm (stats). Functional

plots were displayed using the Prism software.

2.5 | In silico functional analysis

Haploreg (http://www.broadinstitute.org/mammals/haploreg/

haploreg.php)57 was also used to predict the functional role of the

autophagy SNPs. We also tested whether all these autophagy SNPs

could represent expression quantitative trait loci (eQTL) for different

cell types and tissues using publicly available GTex portal data

(https://gtexportal.org/home/) and information available at the Blood

eQTL browser (https://genenetwork.nl/bloodeqtlbrowser/).

3 | RESULTS

This study included 337,680 individuals consisting of 12,754 cases of

PDAC and 324,926 controls, 8740 cases and 7036 controls from the

PanScan I–III and PanC4 cohort, 731 cases and 314,193 controls from

the FinnGen study and 3283 patients and 3697 healthy controls from

the PANDoRA cohort. A total of 45,036 SNPs showing no deviation

from HWE (p < .001) neither in the PanScan I–III + PanC4 and Finn-

Gen cohorts were selected for association analysis. After testing HWE

in the control group by a standard observed-expected chi-square (χ2)

test (p < 10�5) and filtering by linkage disequilibrium (LD) values

(r2 < .1) and a minor allele frequency (MAF) of 0.01, the meta-analysis

of the association estimates for these SNPs in the PanScan I–III

+ PanC4 and FinnGen cohorts showed that nine polymorphisms were

associated with the risk of developing PDAC at p ≤ 10�4 level

(Table 1).

Importantly, among these 9 SNPs, we found a statistically signifi-

cant association for a SNP within the BID locus with PDAC risk

(p < 1.72 � 10�5). Therefore, it was advanced for replication and gen-

otyped in PANDoRA. Association results for this SNP are reported in

Table 2. After the meta-analysis of the three European cohorts, we

found that carriers of the BIDrs9604789G allele had an increased risk of

developing PDAC when compared with those carrying the most fre-

quent allele (OR = 1.31, p = 9.67 � 10�6; Table 2). The association of

the BIDrs9604789 SNP with PDAC risk remained significant after cor-

rection for multiple testing, which suggested that this variant might

have a functional role in modulating PDAC risk. In support of this

hypothesis, it has been reported that the BIDrs9604789 SNP affects

chromatin states in multiple primary cell types including primary

monocytes from peripheral blood, T regulatory cells, T helper cells,

CD8+ T cells, B cells, NK cells, and neutrophils.

Besides these results, we found three autophagy-related SNPs

within the TP63 locus that have been previously identified as suscep-

tibility markers for PDAC. Our results confirmed that carriers of the

TP63rs1515496G TP63rs35389543C alleles had decreased risk of develop-

ing PDAC (OR = 0.89, p = 6.27 � 10�8 and OR = 1.16,

p = 2.74 � 10�5; Table 1). As expected, the association of the

TP63rs1515496 SNP remained significant after correction for multiple T
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testing (with a threshold of pBonferroni = 1.72 � 10�5) whereas the

TP63rs35389543 SNP remained borderline significant.

Given that the TP63rs1515496 SNP is a well-established risk marker

for PDAC, we investigated, for the first time, its correlation with host

immune responses. Of note, we found a potentially interesting corre-

lation of the TP63rs1515496 SNP with increased numbers of FOXP3+

Helios+ T regulatory cells (p = 7.67 � 10�4; Figure 2A) and CD45RA

+ T regulatory cells (p = 1.56 � 10�3; Figure 2B) but decreased levels

of CD4+ T regulatory cells (p = 7.86 � 10�4; Figure 2C). Although

these associations did not remain significant after correction for multi-

ple testing (pBonferroni = p = 6.1 � 10�5, 0.05/9SNPs/91 blood-

derived cell populations), these results, together with our genetic find-

ings, might suggest a modest but still functional effect of the TP63

locus on determining PDAC risk by regulating absolute numbers of

specific subpopulations of regulatory T cells.

Interestingly, we could not find significant correlations between

the BID and TP63 variants and levels of circulating inflammatory pro-

teins or steroid hormones, which also suggests that these loci do not

impact PDAC risk through the modulation of circulating hormone and

inflammatory protein levels. However, further investigation into these

aspects is warranted to fully understand their roles in PDAC

development.

4 | DISCUSSION

This study comprehensively evaluated the role of autophagy-related

variants in modulating PDAC risk in three large and independent

cohorts including a total of 13,215 PDAC cases and 270,274 healthy

controls. The meta-analysis of these European populations identified

for the first time that the BIDrs9604789 SNP was significantly associ-

ated with an increased risk of PDAC. This association remained signifi-

cant after Bonferroni correction (multiple testing). The BID gene (BH3

Interacting Domain Death Agonist) is located on chromosome 22 and

it encodes for a Bcl-2 family member that promotes autophagy-medi-

ated cell death and apoptosis through different mechanisms involving

caspase-8, but also Bak and Bax proteins.58–60 Interestingly, it has

been proposed that BID also acts as a mediator in modulating the

autophagic flux and host immune responses,61,62 which underlines the

central role of this gene in tumorigenesis. In this regard, it has been

described that the BIDrs9604789 SNP alters binding motifs for multiple

transcription factors including NFκB, POL2, TAF1, TCF12, EGR1,

GABP, TBP, POL24H8 and PAX5N19 that are very well-known regu-

lators of key immune processes involving multiple immune cell

types.63 Furthermore, it has been shown that the BIDrs9604789 SNP

affect chromatin states and modulates histone marks in multiple

primary immune cell types,57 which might suggest a role of this

SNP in modulating BID expression in specific immune cells. Like-

wise, it has been reported that the BID protein interacts with

NOD1, NOD2 and IKK complex to promote the activation of NFκB

and the induction of the extracellular signal-regulated kinase (ERK)

signaling pathway. Previous studies have reported that the consti-

tutive activation of ERK/MAPK signaling pathway (resulting fromT
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KRAS mutation) has a relevant role in modulating autophagy, which

confirms that BID is an autophagy regulator gene that has a rele-

vant role in PDAC.

This activation is linked to macrophage cell survival64 and it is

independent of the BID-induced apoptosis.61 Furthermore, it has

been demonstrated that macrophages from BID�/� mice are markedly

defective in the production of IL6 and TNFα after stimulation with a

NOD2 agonist,61 which suggests that any disruption of BID function

might modulate cytokine production. In agreement with these find-

ings, it has been reported that different mutant forms of the BID gene

affecting protein phosphorylation regulated IL-6 production after

stimulation of macrophages with muramyl-dipeptide, a NOD2 ago-

nist.65 Importantly, it has been also shown that BID modulates mye-

loid homeostasis and tumor suppression66 and acts along with BIM to

regulate T cell expansion following acute and persistent infection.62

Therefore, considering the above information, it seems plausible to

suggest that the BIDrs9604789 SNP might dysregulate BID-dependent

autophagy, host innate immune responses and survival of macro-

phages and T cells and, thereby, influence cancer development.

However, although tempting, we could not demonstrate the immuno-

logical role of this marker to modulate PDAC risk as our functional

experiments did not show any significant effect on cytokine produc-

tion, absolute numbers of blood-derived cell populations and serum

inflammatory mediators.

Considering these results, it seems more plausible to suggest that

the role of BIDrs9604789 SNP in modulating the risk of PDAC is medi-

ated by its effect on the modulating of autophagy-mediated cell death

and/or apoptosis.67 In support of this hypothesis, Li et al. (1998)

reported that BID is a specific proximal substrate of CASP8 in the Fas

apoptotic signaling pathway that mediates mitochondrial damage

induced by CASP8.68 Conversely, although BID is mainly known as a

pro-apoptotic protein,65 it has been reported that it may also lead to

the inhibition of apoptosis and induce a shift of toward autophagy-

mediated cell death especially in cells resistant to apoptosis.69 In addi-

tion, it has been reported that BID is a target gene of p53,70 which

suggests its implication in the regulation of autophagy-dependent cell

death. However, despite the above-reported information, it is difficult

to draw definitive conclusions on how the BIDrs9604789 SNP within

the BID gene might determine BID function and, thereby, cancer risk.

Therefore, additional functional studies are now warranted to deci-

pher the specific role of this SNP in modulating the risk of PDAC.

Besides the identification of the BID SNP in determining PDAC

risk, the meta-analysis of the three cohorts validated results from pre-

vious studies demonstrating that autophagy-related variants within

the TP63 locus (or specific SNPs in strong LD with them) are suscepti-

bility biomarkers for PDAC risk.16,45,71 The strongest effect was found

for the TP63rs1515496 SNP that survived correction for multiple testing

(p = 5.0 � 10�8). Although the association of the TP63rs1515496 SNP

with PDAC risk has been previously established using among others

PanScan, PanC4 and PANDoRA populations,45,72 its specific biological

function has not been completely elucidated. In this regard, we could

demonstrate that the TP63rs1515496 SNP was associated with

increased absolute numbers of FOXP3+ Helios+ T regulatory cells,

and CD45RA+ T regulatory cells, but also with decreased numbers of

CD4+ T regulatory cells, the latter being a subset of regulatory T cells

with potentially suppressing immunological activities. These findings

F IGURE 2 (A–C) Correlation of the TP63rs1515496 SNP with
numbers of specific T regulatory T cell subsets.
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are in agreement with previous studies demonstrating that higher

counts of T regulatory cells were significantly associated with an

increased risk of PDAC in participants diagnosed within the first

5 years of follow-up73 and even with poor prognosis.74,75 Further-

more, functional data from Haploreg showed that the TP63rs1515496

SNP alters binding sites for FOXA1 and CTCF transcription factors,

which are involved in modulating T regulatory cell numbers and,

therefore, host immune responses.63 In addition to this, it has also

been shown that TP63 is frequently overexpressed in PDAC tissues76

and that its expression correlates with disease aggressiveness.76 Like-

wise, besides the role of the TP63rs1515496 variant in determining

absolute numbers of regulatory T cell subsets and host immune

responses, it is conceivable that this intronic variant (or any other

polymorphism in strong LD with it) could influence TP63 function

through alteration of splicing sites and thus give rise to functionally

different TP63 isoforms. In this regard, a recent study has demon-

strated that whereas the TAp63 isoform induces cell death and cell

cycle arrest with tumor suppressor features,65 the DNp63 isoform,

which is the most common isoform in PDAC cell lines, has an opposite

effect inducing pancreatic cancer growth, motility and invasion.77,78

Finally, even though the association of genetic markers within the

MAP1LC3B, ERBB2, MTOR, PEX14 and NRB1 loci did not reach the

multiple testing significance threshold and, therefore, were not

advanced for replication in the PANDORA cohort, we think that they

are potentially interesting markers that need to be further analyzed in

future studies. In particular, it has been reported that the MAP1LC3B

and ERBB2 genes, which showed SNPs associated with PDAC risk

close to the Bonferroni significance threshold, may play a role in mod-

ulating tumor cell survival and resistance to treatments. Rouschop

et al. (2010) demonstrated that the unfolded protein response pro-

tects human tumor cells during hypoxia by regulating MAP1LC3B,

which is involved in phagophore expansion and autophagosome for-

mation.79 In addition, expression of the MAP1LC3B protein in carci-

noma-associated fibroblasts (CAFs) has been linked to poor survival in

PDAC patients,80 suggesting its involvement in modulating adaptative

immune resistance of tumor cells.

Similarly, ERBB2 has also been consistently implicated in PDAC

onset and patient survival. Previous studies have demonstrated that

this gene is frequently amplified in PDAC patients,81 and its oncogenic

effect is mediated not only by gene amplification but also by overex-

pression,82 highlighting the value of studying this component from a

genetic perspective. Additionally, Ortega et al. (2015) recently demon-

strated that ERBB2 is upregulated in a high proportion of PDAC

patients,83 suggesting its involvement not only in disease onset but

also in disease progression84–86 and patient survival.83 However, fur-

ther studies are needed to delineate the precise roles of MAP1LC3B

and ERBB2 in PDAC pathogenesis, as some previous studies have indi-

cated a lack of influence of these genes on disease progression.87,88

This study has both strengths and limitations. The most important

strengths of our study are the comprehensive analysis of autophagy-

related SNPs and the inclusion of three large independent populations

of European ancestry for a total of 276,608 study participants. Fur-

thermore, we comprehensively analyzed the functional impact of

autophagy-related SNPs in modulating host immune responses, abso-

lute numbers of blood-derived cell populations, serum and plasma

metabolites, and steroid hormones in a large study of healthy subjects

ascertained through the HFGP. However, this study also has limita-

tions. Even though the 5 kb upstream and 3 kb downstream range

used to select SNPs is generally sufficient to capture most relevant

variants, including those in promoter regions and untranslated regions

that can impact gene function, we acknowledge that regulatory ele-

ments, such as enhancers and repressors, can exist outside these

regions. Therefore, our study might miss some potentially interesting

and functional markers that affect the regulation of autophagy genes.

Another limitation of our study is that it included only populations of

European ancestry, which restricted the translation of the above-

reported results to other ethnicity groups. Although we attempted to

validate the association of the BID SNP with PDAC risk in the JaPAN

consortium, this cohort did not have genotyping information of the

BID marker (or its proxies).89 Additionally, the lack of environmental

variables in the PANDORA database prevented us from conducting

gene-environmental interaction analyses to explore the relationship

between genetic factors and environmental influences in PDAC

development.

5 | CONCLUSION

In summary, our study has identified, for the first time, the association

of the BIDrs9604789 SNP with an increased risk of developing the dis-

ease. In addition, it has confirmed the association of TP63 SNPs with

the risk of developing PDAC. This study points to a functional role of

the BID and TP63 loci in modulating PDAC onset likely through the

regulation autophagy and host immune responses mediated by differ-

ent subsets of T regulatory cells. Finally, this work has underlined the

need of additional studies to elucidate the functional role of the

MAP1LC3B, ERBB2, MTOR, PEX14 and NRB1 loci to determine

PDAC risk.
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