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Abstract

Introduction: There is growing interest in using electronic health records (EHRs) for chronic 

disease surveillance. However, these data are convenience samples of in-care individuals, which 

are not representative of target populations for public health surveillance, generally defined, for the 

relevant period, as resident populations within city, state, or other jurisdictions. We focus on using 

EHR data for estimation of diabetes prevalence among young adults in New York City, as rising 

diabetes burden in younger ages call for better surveillance capacity.

Methods: This article applies common nonprobability sampling methods, including raking, 

post-stratification, and multilevel regression with post-stratification, to real and simulated data 

for the cross-sectional estimation of diabetes prevalence among those aged 18–44 years. Within 

real data analyses, we externally validate city- and neighborhood-level EHR-based estimates to 

gold-standard estimates from a local health survey. Within data simulations, we probe the extent to 

which residual biases remain when selection into the EHR sample is non-ignorable.

Results: Within the real data analyses, these methods reduced the impact of selection biases 

in the citywide prevalence estimate compared to gold standard. Residual biases remained at the 

neighborhood-level, where prevalence tended to be overestimated, especially in neighborhoods 

where a higher proportion of residents were captured in the sample. Simulation results 

demonstrated these methods may be sufficient, except when selection into the EHR is non-

ignorable, depending on unmeasured factors or on diabetes status.
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Conclusions: While EHRs offer potential to innovate on chronic disease surveillance, care is 

needed when estimating prevalence for small geographies or when selection is non-ignorable.
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1. Introduction

Increasingly, public health researchers and practitioners have explored how electronic 

health records (EHRs) can be leveraged for valid and reliable public health surveillance 

purposes.1,2 While EHRs offer a compelling opportunity for surveillance, patient 

populations may be non-representative of the general population with respect to 

demographic characteristics.3 From a health status perspective, patients represented within 

EHR data are typically sicker than the general population.4 These differences introduce the 

potential for selection bias in EHR-based surveillance.5

Addressing selection bias in EHR-based surveillance is a formidable challenge. Contrary 

to a complex survey sample with known sampling weights to infer from the sample to 

the target, EHR data are nonprobability samples wherein the process by which individuals 

select into the sample is unknown. The statistical missing data lexicon has been adapted 

to characterize the selection process in nonprobability samples.6 Selection completely at 

random (SCAR) describes scenarios whereby each individual has an equal probability of 

selection into the sample. Selection at random (SAR) describes scenarios whereby the 

probability of selection depends on observed characteristics of the individuals, but given 

those characteristics, is independent of unobserved outcomes from individuals absent from 

the sample.7–9 Lastly, selection not at random (SNAR) refers to selection processes whereby 

the probability of selection is dependent on unobserved outcomes, even after adjusting for 

observed covariates.7–9 For valid EHR-based surveillance, the selection mechanism into the 

EHR sample needs to be incorporated into the estimation approach.

Previous research for EHR-based surveillance has used various nonprobability sampling 

methods to estimate population disease prevalence.10–12 Based on SAR, these methods 

assume that after controlling for variables captured in the EHR sample and population, 

such as basic demographics, the selection process no longer depends on the unobserved 

disease status of individuals not represented in the EHR sample. However, the tendency for 

EHRs to over-represent sicker individuals increases the plausibility of SNAR, suggesting 

the assumptions behind SAR are unlikely to be correct. As the goal of surveillance is 

estimation in the general population, including those not in-care, this type of SNAR scenario 

can contribute to overestimation of disease prevalence and incidence. The extent to which 

EHR-derived surveillance estimates may be sensitive to SAR assumptions has received little 

attention in previous literature.10

As part of wider efforts to use EHR data to estimate diabetes prevalence among young 

adults, 13 a population that is experiencing rising diabetes burden,14 we conducted a 

multi-step process to evaluate common bias adjustment methods. First, we conducted a 

data illustration using real data where we could evaluate validity against “gold-standard” 
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estimates. Second, we conducted simulations where we could generate various selection 

processes to explore hypothesized factors that could contribute to residual biases observed 

within the initial data illustration. The overarching goal of the paper was to compare 

these bias adjustment methods using real data and simulations to help inform the broader 

discussion on how to effectively use EHRs for population-level surveillance purposes.

2. Methods

2.1. Data Illustration

NYU Langone Health (NYU) is a large academic medical center that serves patients 

throughout New York City (NYC). NYU includes three major hospitals, an extensive 

network of outpatient clinics, and one of the nation’s largest Federally Qualified Health 

Center networks. Longitudinal NYU EHR data were obtained for all NYC-resident patients 

aged 18–44 years with an inpatient or outpatient encounter from 2017–2019. This study 

was approved by the NYU Winthrop Hospital Institutional Review Board and the Columbia 

University Institutional Review Board. Main analyses included all NYC residents since 

prevalence estimation to the full NYC jurisdiction is of greater public health relevance. 

As some researchers have attempted to limit EHR samples to health system service areas 

to reflect primary populations served by their facilities and to potentially reduce selection 

biases,13 we conducted sensitivity analyses varying the resident inclusion criteria to restrict 

to NYC neighborhoods within different definitions of NYU service areas (Appendix).

Using EHR data through 2019, we defined patients with diabetes as those with ≥2 diagnoses 

for diabetes, one diagnosis and ≥2 elevated A1C labs ≥6.5%, or at least one anti-diabetes 

prescription (excluding metformin/acarbose).15 Demographic variables defined in the EHR 

sample included age group, sex, race/ethnicity, Medicaid insurance status, and Public Use 

Microdata Areas (PUMA), Census sub-geographies containing ≥100,000 residents to proxy 

neighborhood of residence (n = 55). Race/ethnicity was imputed for those with unknown 

race/ethnicity (19%) using the Bayesian Improved Surname Geocoding (BISG) methods.16 

All patients with an unknown/other age or sex were excluded (<1%). To characterize 

demographics of the target population, we defined equivalent demographic variables on 

the NYC subset of American Community Survey (ACS) 2019 5-year data obtained through 

IPUMS USA, a line-level sample of ACS data that is weighted to the general population.17

We estimated diabetes prevalence overall and by PUMAs according to four estimation 

methods: crude, raking, post-stratification, and multi-level regression with post-stratification 

(MLRP). In the crude method, we calculated the proportion of patients within the EHR 

sample who were classified as having diabetes. In the raking method, we iteratively adjusted 

the EHR sample to match the marginal distribution of demographic covariates in the 

general population.18 In the post-stratification method, we adjusted the EHR sample to 

match the joint distribution of demographic covariates in the general population.18 In the 

MLRP method, we fit a multilevel logistic regression model to predict diabetes in the EHR 

sample, including fixed effects for binary demographics and random effects for all non-

binary individual-level demographics.19,20 Full details on model specification and sensitivity 

analyses of alternative specifications that include neighborhood-level social determinant of 
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health (SDOH) and health outcomes are found in Appendix I. Model predicted probabilities 

were applied to the post-stratification weights within the general population.

The proxy gold standard prevalence estimates for comparison were calculated using pooled 

2015–2020 data from the pooled Community District (CD) version of the NYC Community 

Health Survey (CHS).21,22 The NYC CHS is an annual, cross-sectional telephone survey 

of a stratified random sample of approximately 10,000 NYC adults.23 The pooled version 

includes respondents who are assigned to a CD, an NYC geographic unit that approximates 

PUMAs.24 We compared EHR-derived crude and adjusted prevalence estimates to diabetes 

prevalence estimates from external surveillance systems using three measures: (1) the 

relative difference from the gold standard estimate (PEHR–PCHS)/PCHS*100); (2) statistical 

equivalence to the gold standard estimate through the two one-sided test (TOST) using an 

alpha of 0.05 and equivalence bounds of 0.005; and (3) the Pearson correlation coefficient 

between the neighborhood-level EHR and gold standard estimates.

2.2. Simulation Study

Based on the results from the data illustration, simulations were run to probe the extent to 

which residual biases remain under two SNAR scenarios: (1) selection is dependent on an 

unmeasured factor, for which there is proxy/auxiliary information measured in the sample 

and general population (e.g., SES); and (2) selection is dependent on diabetes status in the 

population.

Simulated populations were composed of 500,000 individuals equally distributed across 

50 neighborhoods to approximate the number of NYC PUMAs. Diabetes status and 

selection into the EHR sample were simulated using observed associations obtained 

through real world data (Appendix). Diabetes (“DM”) and selection were defined using 

mixed effects regression models with probit link functions. The DM model included 

fixed effects for demographic variables and random effects to generate heterogeneity in 

diabetes prevalence across neighborhoods. The selection model included fixed effects for 

demographics, neighborhood distance from the healthcare facility, and random effects to 

generate heterogeneity in selection for the interaction of sex and race/ethnicity. Baseline 

associations between all variables are displayed in Figure 1. Overall, the simulated 

populations had a true mean diabetes prevalence of 3% and a mean probability of selection 

into the sample of 10%.

Simulation scenario 1 introduced a binary individual-level, unobserved variable “U” that 

was associated with DM (OR=2.0) and selection (OR=0.7), which was modeled after 

observed patterns with household poverty level.23 An observed auxiliary variable “W” was 

defined based on a set association with U, which was modified at levels equivalent to 10%, 

30%, 50%, 70%, and 90% misclassification when using W as a proxy for U. For scenario 

1, U was not included in the adjustment procedures but W was. Simulation scenario 2 

introduced and modified an association between DM and selection (ORDM) at OR levels of 

0.33, 0.67, 1.0, 1.5, and 3.0, selecting an upper limit from the crude association between DM 

and having a personal doctor/provider within CHS data. For each scenario, 100 simulations 

were run.

Conderino et al. Page 4

BMJ Public Health. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Simulations produced the true diabetes prevalence within the general population, crude 

prevalence within the EHR sample, and estimated prevalence adjusted to the general 

population using raking, post-stratification, and MLRP We assessed performance of each 

adjustment method using: (1) relative bias, or the average percent difference between the 

true diabetes prevalence in the full population and the estimated diabetes prevalence within 

the sample; and (2) coverage probability, or the percentage of simulations with a true 

diabetes prevalence falling within the 95% CI. All analyses were performed using R version 

4.1.2.25

2.3. Patient and Public Involvement

No patient involved.

3. Results

3.1. Data Results

A total of 454,612 young adults were identified in the EHR sample. Compared to the NYC 

general population, the EHR sample had overrepresentation of White (1.6-fold) and female 

(1.2-fold) individuals, who had a lower crude prevalence of diabetes than other racial/ethnic 

or sex subgroups (Table 1). The sample also had overrepresentation of those aged 30–44 

years (1.1-fold), who had a greater crude prevalence of diabetes than those aged 18–29 years 

(3.82% vs. 1.88%). Representation varied more substantially across the 55 neighborhoods 

(Figure 2A).

According to the gold standard survey, diabetes prevalence among young adults was 3.33% 

(95% CI: 3.02–3.67) (Table 2). Within the EHR sample, 3.09% were classified as having 

diabetes (95% CI: 3.04–3.14), 0.92 times the gold standard (−7.88% relative difference) and 

not statistically equivalent through the TOST. Adjusted prevalence estimates using raking, 

post-stratification, and MLRP (ranging from 3.54–3.55%) were approximately 1.06 times 

the gold standard and statistically equivalent at the equivalence bound of 0.005, though 

improvements in relative differences were small (5.75%–6.16%). Prevalence estimates by 

race, age group, and sex are presented in Appendix Table 1. Subgroup estimates were 

comparable across adjustment methods.

When comparing EHR-based and gold standard prevalence estimates at the PUMA 

neighborhood-level, there was moderate, statistically significant correlation (R = 0.5, 

p <0.001) for all EHR-based methods; though, as with the overall adjusted estimates, 

neighborhood-level EHR estimates were generally higher than the neighborhood-level gold 

standard estimates (Figure 2B). In addition, as the proportion of the general population 

captured within the EHR sample increased, the relative difference from the gold standard 

estimates increased (Figure 2C).

Sensitivity analyses varying the residential inclusion criteria to NYU service areas found 

that demographic representativeness of the sample increased within service areas where a 

greater proportion of the general population was captured in the sample (Appendix Table 

2). When these samples were adjusted and externally validated to the general population 

within the overall equivalent service area, they produced estimates that were systematically 

Conderino et al. Page 5

BMJ Public Health. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



higher and not statistically equivalent to the gold standard estimate for the service area 

(Appendix Tables 3-4). Sensitivity analyses including neighborhood-level SDOH and health 

outcomes in the MLRP model did not meaningfully affect the overall or neighborhood-level 

prevalence estimates (Appendix Table 3).

3.2. Simulation Results

In scenario 1, crude diabetes prevalence within the simulated EHR sample had an average 

relative bias of approximately −40% when the unobserved variable U was introduced into 

the selection process (Figure 3A). Adjustment methods including W partially accounted for 

this bias, however substantial residual biases remained, with coverage below 70% for all 

adjusted estimates (Appendix Table 5). The level of residual biases depended on the strength 

of the association between the auxiliary and unobserved variables but not on the direction. 

For both 10% and 90% misclassification, average relative biases were approximately −10%, 

and for both 30% and 70% misclassification, average relative biases were approximately 

−20%.

In scenario 2, crude diabetes prevalence within the simulated EHR sample had an average 

relative bias ranging from −94% when those with diabetes had strong decreased odds of 

selection (ORDM=0.33) to +143% when those with diabetes had strong increased odds 

of selection (ORDM=3.0) (Figure 3B). Adjustment methods did not have a meaningful 

impact on the residual biases when those with diabetes had decreased odds of selection 

(ORDM=0.33 or ORDM=0.67), with coverage at 0% for all methods. When those with 

diabetes had increased odds of selection (ORDM=1.5 or ORDM=3.0), adjustment methods 

increased the relative bias compared to crude estimates (Figure 3B). Simulation results 

displayed similar patterns for neighborhood-level estimates (Appendix Figure 1).

4. Discussion

In this paper, bias adjustment methods were applied to EHR data to explore whether valid 

diabetes prevalence estimates could be generated for young adults within NYC. Within 

the NYU sample, crude prevalence was lower than the proxy gold standard estimate of 

diabetes prevalence for NYC young adults, which may have been driven by demographic 

differences. Compared to the target population, the EHR sample had a higher proportion of 

female and White individuals, which are groups known to have lower diabetes prevalence. 

All adjustment methods performed similarly and produced prevalence estimates that were 

statistically equivalent to gold standard, albeit systematically higher. Within neighborhood-

level analyses, we observed that relative differences from gold standard estimates increased 

as proportion of the general population captured in the sample increased. Further, larger 

relative differences were observed in sensitivity analyses that were restricted to NYU service 

areas. These findings were counter-intuitive, as these samples were more representative 

of the target populations based on measured demographics; we would assume that 

representativeness on unmeasured factors would also increase.

Simulation analyses were then used to probe the potential for residual selection biases within 

EHR-derived estimates. Scenario 1 introduced an unobserved predictor of diabetes for which 

there was an imperfect proxy variable. This scenario demonstrated that residual biases may 
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still exist even when this auxiliary information is a strong proxy of unobserved predictors. 

Evidence supports that SDOH are associated with diabetes and healthcare utilization.3 

However, these variables are notoriously difficult to measure using EHR data. Consistent 

with prior research, Medicaid status and neighborhood-level SDOH were imperfect proxies 

that may not have fully accounted for selection biases by these factors in our data 

illustration.26,27 Continued efforts to incorporate and utilize SDOH screening tools within 

EHRs may improve estimation through these methods.28

Scenario 2 introduced an association between diabetes and selection into the sample. 

Importantly, this scenario demonstrated that biases could be exacerbated through these 

methods when diabetes independently increased the odds of selection into the sample, which 

is plausible given individuals with chronic conditions are more likely to receive regular care 

than individuals who are healthy.5,29,30 These selection biases could be further complicated 

by neighborhood. For example, patients residing in neighborhoods within close proximity, 

where capture of the general population within the sample is high, may be more likely 

to use the health system for routine care, including diabetes management.30 The observed 

positive relative differences and positive trend between relative differences and proportion 

of the general population captured in the NYU sample could be partially attributed to 

such a mechanism. Including neighborhood-level health outcomes in the MLRP models 

did not have a large impact on prevalence estimates, consistent with prior research using 

neighborhood hospitalization rates.10 As proposed in the missing data literature, additional 

granular data on variables that are strongly correlated with diabetes (e.g., obesity) within the 

general population could improve these methods.31

In this analysis, using common nonprobability sampling methods to adjust for demographic 

non-representativeness of the EHR sample was effective in reducing the impact of selection 

biases in the overall estimate of diabetes prevalence among NYC young adults. However, 

based on the data illustration and simulation analyses, these methods, as implemented, may 

not always consistently produce valid estimates of diabetes prevalence across jurisdictions 

or EHR sources. Observed positive relative differences compared to gold standard estimates 

supports the hypothesized presence of an SNAR mechanism, where those with diabetes are 

more likely to be users of healthcare systems. This could contribute to an overestimation 

of diabetes prevalence, which could be exacerbated within certain neighborhoods or other 

subgroups of interest. Of the methods tested in this work, MLRP has the greatest potential 

for addressing the more complex selection biases that are likely present within EHR data 

through the inclusion of auxiliary information within the predictive model. This potential 

could be realized by using population-representative clinical data sources (e.g., all-payer 

claims databases) to incorporate neighborhood-level healthcare utilization patterns or health 

outcomes at more granular geographic scales.

This study has a number of strengths. The data illustration was conducted in NYC, a 

diverse, urban center that includes several academic medical centers and a large system of 

11 public hospitals; thus, the likelihood of any private health system being representative of 

the general population is low. NYC is also home to granular, high-quality gold standard data 

sources from external surveillance systems, allowing for validation of neighborhood-level 

prevalence estimates. Comparison to a gold standard alone cannot facilitate understanding 
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the conditions under which different methods will provide valid estimation. Our use of data 

simulations fills this gap by testing these methods under controlled conditions, which may 

inform the transportability of these methods to other populations or health outcomes.

However, there are several limitations to this analysis. NYC CHS gold standard estimates 

are based on self-reported diabetes status, which may under-report undiagnosed individuals 

not in-care. Further, variation in care seeking patterns by demographic factors3 could result 

in differential misclassification in self-reported diabetes status. The NYC CHS data were 

also pooled from 2015–2020 to produce reliable neighborhood-level prevalence estimates 

within this age group. As diabetes prevalence has increased over time, this pooling 

could also contribute to lower prevalence within the gold standard. Additionally, while 

the computable phenotype for diabetes status was based on prior literature, it has not 

been validated within NYU. Misclassification of diabetes status may depend on healthcare 

utilization patterns, which could contribute to positive relative differences observed within 

the data illustration.5 Sensitivity analyses incorporating neighborhood-level SDOH or health 

outcomes did not have a large impact on the results, which may have been driven by 

the use of PUMAs.32 Neighborhood-level factors defined using smaller geographic areas 

have been shown to improve estimation of diabetes prevalence through MLRP methods.10 

While assumptions underlying the data generation process in the simulations were based on 

real world data, these likely represent a simplification of true selection processes. Finally, 

race/ethnicity was missing on a large proportion of the population, and we relied on BISG 

imputation, which could have resulted in misclassification. BISG is also not feasible when 

using pseudonymized EHR data. EHRs offer a rich source of clinical information that can 

inform public health surveillance, yet selection biases inherent in these data can limit their 

utility, especially in generating small-area estimates. Statistical methods like MLRP can help 

account for these biases but depend on the ability to measure and adequately account for 

factors that affect selection into the EHR, which is likely to vary across jurisdictions and 

EHR data sources. Further, an understanding of underlying selection mechanisms is critical, 

as these methods have the potential to exacerbate biases. Future analyses should examine 

these issues for a variety of chronic diseases or locations, as selection biases likely differ 

across diseases, populations, or EHR data sources.
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NYC New York City

MLRP multilevel regression with post-stratification

CHS Community Health Survey

ACS American Community Survey

SCAR selection completely at random

SAR selection at random

SNAR selection not at random

BISG Bayesian Improved Surname Geocoding

PUMA public use microdata area

CD community district

SES socioeconomic status

SDOH social determinants of health
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Key Messages:

• What is already known on this topic: Electronic health records (EHRs) are a 

compelling data source for public health research but are prone to selection 

biases.

• What this study adds: We use bias adjustment methods to estimate 

diabetes prevalence among children and young adults in New York City 

and demonstrate how these methods can be used to produce EHR-based 

prevalence estimates that are statistically equivalent to survey estimates.

• How this study might affect research, practice or policy: EHRs can inform 

chronic disease surveillance efforts. However, residual biases may exist if 

selection into the EHR depends on unmeasured factors.
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Figure 1: Simulation Study Directed Acyclic Graph with Baseline Odds Ratio (OR) Associations.
Observed diabetes within those selected into the EHR sample; Scenario 1 (orange): modified 

the level of misclassification of the auxiliary variable W compared to the unobserved 

variable U at levels equivalent to 10%, 30%, 50%, 70%, and 90% misclassification; Scenario 

2 (purple): modified the association between diabetes and selection at OR levels of 0.33, 

0.67, 1.0, 1.5, and 3.0.
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Figure 2: Characterization of the NYU Langone Patient Sample and Comparison of NYU EHR-
Based to Gold Standard Diabetes Prevalence Estimates for Young Adults Aged 18–44 Years by 
New York City PUMA Neighborhood.
Panel A: Proportion of general population captured within the EHR sample by NYC 

PUMA, calculated by dividing NYU Langone patient counts by the total NYC PUMA 

population estimates from the American Community Survey 2019 5-year data, obtained 

through IPUMS USA. Panel B: Comparison of NYU EHR-based to gold standard diabetes 

prevalence estimates. Each point represents a PUMA neighborhood. EHR estimates are 

defined using NYU Langone Health 2019 data. The gold standard estimate is defined using 

NYC CHS 2015–2020 data. Panel C: Comparison of relative bias in NYU EHR-based 

prevalence estimates vs. proportion of the general population captured within the EHR 

sample. Relative bias calculated as the percent change between the gold standard and 

EHR-based prevalence estimate for each NYC PUMA neighborhood.
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Figure 3: Mean Relative Bias in the EHR-Based Estimates vs. True Diabetes Prevalence by 
Simulation Scenario.
Error bars represent standard deviation in mean relative bias across simulations. Panel A: 

Scenario 1 modified the level of misclassification of the auxiliary variable W compared to 

the unobserved variable U; Panel B: Scenario 2 modified the association between diabetes 

and selection (ORDM).
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Table 1:

Demographic Profile of the NYU Langone EHR Sample and NYC General Population, Young Adults Aged 

18–44 Years.

NYC General Populationa NYU Langone EHR Sample Crude EHR-based Diabetes Prevalence

Sex

 Female 51.2% 62.2% 2.93%

 Male 48.8% 37.8% 3.35%

Race

 Black 20.3% 12.7% 4.23%

 Latino 29.6% 19.1% 4.44%

 Other 18.1% 16.1% 2.88%

 White 32.0% 52.1% 2.38%

Age

 18–29 43.6% 37.5% 1.88%

 30–44 56.4% 62.5% 3.82%

Insurance

 Non-Medicaid 74.2% 77.8% 2.78%

 Medicaid 25.8% 22.2% 4.18%

a
Defined using American Community Survey (ACS) 2019 5-year data obtained through IPUMS USA.17
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Table 2:

Diabetes Prevalence among NYC Young Adults 18–44 Years, Estimated from the NYU Langone Health 

Electronic Health Record vs. NYC Community Health Survey (NYC CHS) Gold Standard.

Prevalence (%) (95% CI) Relative Difference from Gold Standard (NYC CHS)a

Gold Standard

 NYC CHS 3.33% (3.02–3.67) -

EHR-Based

 Crude 3.09% (3.04–3.14) −7.88%

 Raking 3.55% (3.46–3.63) 6.02%*

 Post-stratification 3.54% (3.43–3.64) 5.75%*

 MLRP 3.55% (3.47–3.63) 6.16%*

*
Reject the null hypothesis of the TOST, or equivalent to the gold standard within equivalence bounds of 0.005.

a
Percent difference from the gold standard estimate, the New York City Community Health Survey.
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