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H E A L T H  A N D  M E D I C I N E

A general model for the demographic signatures 
of the transition from pandemic emergence 
to endemicity
Ruiyun Li1,2*, C. Jessica E. Metcalf3,4, Nils Chr. Stenseth1,5, Ottar N. Bjørnstad6,1*

Anticipating the medium- and long-term trajectory of pathogen emergence has acquired new urgency given the 
ongoing COVID-19 pandemic. For many human pathogens, the burden of disease depends on age and previous 
exposure. Understanding the intersection between human population demography and transmission dynamics 
is therefore critical. Here, we develop a realistic age-structured mathematical model that integrates demography, 
social mixing, and immunity to establish a plausible range for future age incidence and mortality. With respect to 
COVID-19, we identify a plausible transition in the age structure of risks once the disease reaches seasonal ende-
mism across a range of immunity durations and relative severity of primary versus subsequent reinfections. We 
train the model using diverse real-world demographies and age-structured mixing to bound expectations for 
changing age incidence and disease burden. The mathematical framework is flexible and can help tailor mitigation 
strategies in countries worldwide with varying demographies and social mixing patterns.

INTRODUCTION
The unfolding pandemic caused by severe acute respiratory syn-
drome coronavirus-2 (SARS-CoV-2) threatens to be one of the biggest 
challenges of our time. Mounting evidence suggests a seemingly in-
evitable resurgence of disease toward endemism in the foreseeable 
future (1, 2). Identifying the age and burden profiles that may define 
the years ahead could help improve response preparedness, both for 
this pandemic and for future emerging pathogens.

A fundamental signature of coronavirus disease 2019 (COVID-19), 
the disease associated with SARS-CoV-2, is the age manifestation of 
the burden of infection and morbidity. Following infection by 
SARS-CoV-2, there is a clear signature of increasingly severe out-
comes and fatality with age (3–5). Historical emergence of acute 
respiratory infections indicates that age-incidence patterns during 
virgin epidemics can be very different from endemic circulation (6, 7). 
This motivates efforts to bind the potential future age circulation 
and fatality to understand the evolving health burden.

Predicting age circulation in the near and mid future (e.g., 1 
to 5 years since emergence) requires realistic age-structured (RAS) 
mathematical models that include characterization of immunity 
following (re-)infection. Empirical evidence from seasonal corona-
viruses indicates that previous exposure may only confer short-
term immunity to reinfection, allowing recurrent outbreaks (8, 9). 
Despite this, previous exposure may prime the immune system to 
provide protection against severe disease (8, 10, 11) and thus 
possibly reduce the public health burden of future recurrences. 

Here, we propose an age-structured multicompartmental susceptible- 
infectious-recovered-susceptible (SIRS) model that allows projec-
tions for future age circulation and disease burden of SARS-CoV-2 
virus under various plausible scenarios. We frame our model around 
a balance between simplicity and flexibility and structure our analysis 
accordingly. First, to develop a baseline for the transition of age-de-
pendent risk over long-term dynamics, we explore outcomes for a 
“rectangular demography” (where survival is complete until a maxi-
mum age, resulting in a rectangular age pyramid and constant popu-
lation size) and “homogeneous mixing” (where individuals have 
equal probability of contact with individuals of all other ages). The 
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Table 1. SIRS model parameters.  

Parameter Values Details

Baseline reproduction 
number, R0

2.30 Estimated

Average duration of 
infection, 1/ 7 days (18)

Immune duration, 1/
Short-lived (3 

months), 1 year, 10 
years, permanent

Assumed

Natural birth rate, 
1/80 for the youngest 

class; 0 for all the 
other age classes

80-year life 
expectancy

Natural mortality  
rate,  0 for all age classes Assumed

Average rate of  
aging, a 1 for all age classes Reverse of the 5-year 

age interval

Infection-fatality ratio age-specific IFR Estimated from (16)

Demography
age-specific 

proportion of 
population

Annualized from (23)

Social mixing  
pattern, C

age-structured 
number of contacts Annualized from (24)
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purpose of this mass-action, homogeneous mixing model is to pro-
vide a baseline for thinking about transitions in age incidence over 
time. As per all mass-action models of virgin epidemics, the initial 
post-epidemic trough is unrealistically deep. Using a power-scaling 
law to allow spatial and social clustering as suggested by Liu et al. 
(12) will obviously alleviate this but add parameters that do not add 
to the overall take-home message. The subsequent step is to incor-
porate demographic and social complexities, including realistic age 
pyramids and assortative contacts among age groups, both derived 
from country-specific data.

Our general model projects age-incidence and thus age-morbidity 
patterns into the future according to chains of differential equations
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where   S i  
p  and  I i  

p   are the number of susceptible individuals and pri-
mary infections in age group i. The recovered individuals (Ri) may 
lose immunity and return to susceptibility (  S i  

np  ) after an average 
protected period of 1/ and subsequently be liable to reinfection; 
accordingly,   I i  

np   is the number of nonprimary infections in age 
group i. The force of infection on susceptibles in age class, which is 
the rate at which any susceptible of age i will be infected, is     i   =  
∑ j  n     C  ij  ( I i  

p  +  I i  
np  ) /  N  i   , where  is the baseline rate of transmission given 

by  = R0 and Cij is the normalized contact rate between age groups 
i and j. In the below illustration, we assume an 80-year life expec-
tancy and thus a birth rate i = 1/80 year−1 at which people are born 
to the youngest group in a population of size Ni (i.e., i is 0 for all 
i > 1). For the baseline model, we assume that ai is the age-specific 
rate of aging with a 1-year duration, i is a rate of natural mortality 
(we assume i = 0 for all i until the rectangular age end point), and 
1/ is the average duration of infection (taken to be 7 days in this 
analysis). To map our model to realistic demographies and social 
mixing patterns, we parametrize the model based on a broad range 
of countries. Details of model parameters are provided in Table 1.

Fig. 1. Trajectory of infected fraction and transitions in age structure of the risk from virgin epidemic to endemic equilibrium. (A) Infected fraction for an outbreak 
is simulated with R0 = 2.3, 1/ = 7 days, and a short-lived (i.e., 3 months) (gray) and 1-year (orange) immunity duration over 20 years. The SIRS model is parameterized with 
rectangular demographic structure and homogeneous social mixing pattern. Dashed lines indicate different stages of disease dynamics. For visualization, only trajectories 
in scenarios of short-lasting (i.e., short-lived and 1 year) are presented. (B) Infected versus susceptible fraction. If primary and nonprimary infections have similar illness, 
(C) shows relative risk (i.e., age-specific infected fraction relative to the population-wide fraction) among age groups in the virgin epidemic, medium-term, and endemic 
stage under the scenario of permanent and 1-year immunity duration, respectively. If nonprimary infections are less severe, (D) shows relative risk from primary infections. 
Relative risk among age groups under the scenario of permanent, 10-year, 1-year, and short-lived immunity durations is shown in the Supplementary Materials (see fig. S1).
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RESULTS
We first identify the broad consequences of the intersection of 
immunity and burden over immediate, medium, and longer terms 
(1, 10, and 20 years, respectively), explicitly considering immune 
scenarios that differ in the degree to which immunity prevents rein-
fections and/or attenuates severe cases, and then consider realistic 
demographics and social mixing for 11 different countries chosen 
to span diverse demographies. Across a 20-year horizon, we assess 
age-specific risk during a virgin epidemic, medium term, and a sce-
nario of long-term endemic circulation.

Prevalence is predicted to surge during a virgin epidemic but then 
recede in a diminishing wave pattern as the spread of the infection 
unfolds over time toward the (probably seasonally varying) endemic 
equilibrium (Fig. 1, A and B). Depending on immunity and demog-
raphy, the virgin epidemic RAS model predicts a notably different 
age structure than the eventual endemic situation (Fig. 1, C and D, 
and fig. S1). When considering overall disease burden in the popu-
lation during a probable transition from emergence to endemicity, 
our model highlights the importance of three main axes of variability/
uncertainty: immune duration, demography, and social mixing. 

Over the course of emergence, the shift in the age profile of risk of 
infection and disease is largely dependent on the extent of infection- 
blocking and disease-reducing immunity. During the transition to 
endemism in a scenario of long-lasting immunity (assumed perma-
nent or 10 years), the young—who for SARS-CoV-2 suffer a mild 
burden of disease—is predicted to have the highest rates of infection 
once the disease dynamics moves toward the steady state (Fig. 1C 
and fig. S1A), as older individuals are protected from infection by 
previous infection. If immunity to reinfection is brief (assumed 
short-lived 3 months or 1 year), changes in disease severity due to 
previous exposure are the main driver of changes to age-structured 
risk and long-term burden of mortality. The possibility of rapid re-
infection and severe outcomes on reinfection would heighten long-
term circulation and continued high-risk infection among adults, 
although it could modulate the age profile of risk over time (Fig. 1C 
and fig. S1A). In contrast, if disease symptoms on reinfection are 
attenuated, the burden of disease may decay over time even if dura-
tion of sterilizing immunity is short-lived and reinfection is fre-
quent. In the latter scenario, the age profile of primary infections 
will define the shifting risk over time, and primary infection recedes 

Fig. 2. Transitions in age structure of the risk in different countries. With (A) demographic structure (greens bars) and social mixing pattern (orange lines) in United 
Kingdom, Italy, and South Africa, (B) to (G) show the relative risk among age groups in the virgin epidemic, medium-term, and endemic stages in the scenario of perma-
nent and 1-year immunity durations. Risk from (B, D, and F) all infections and (C, E, and G) only primary infections is explicitly distinguished. Relative risk among age groups 
under the scenario of permanent, 10-year, 1-year, and short-lived immunity durations is shown in the Supplementary Materials (see fig. S2).
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to younger individuals as an emerging acute respiratory infection 
moves toward endemicity (Fig. 1D and fig. S1B).

Our general model framework allows robust predictions regard-
ing transition in the age profile of risk in the face of either short-/
long-term protective immunity, reduction of severity of disease given 
previous exposure, and consideration of the range of countries with 
their different demographies and social mixing patterns (Fig. 2 and 
figs. S2 to S6). Broadly speaking, we find that immune scenarios are 
the dominant driver of transitions in age dependence and risk toward 
endemicity, although our framework to incorporate realistic demo-
graphies and social mixing patterns to modulate the relative risk is 
likely to provide a critical infrastructure for policy decision-making.

Assuming that previous exposure reduces severity of respiratory 
reinfections, the model’s projected transition is broadly consistent 
with those documented in several historical respiratory pandemics. 
In particular, the critical importance of both age and previous expo-
sure on disease burden and mortality following the 1918 pandemic 
has been well characterized: The elderly were protected by immunity 
from previous exposure to an earlier A/H1N1-related strain, but 

within some years, the overall burden of mortality receded (6, 13, 14). 
Ongoing genomic work following on (15) tantalizes that the million- 
killing 1889/1890 pandemic could have been caused by the emergence 
of HCoV-OC43, which is now an endemic mild repeat–infecting 
coronavirus.

For SARS-CoV-2 preparedness, our model provides a robust 
framework for scenario analyses for the future. Irrespective of para-
metric uncertainties, the burden of mortality will peak during the 
virgin epidemic period (Figs. 3 and 4). The predicted magnitude of 
this peak is moderately affected across a plausible range of immune 
durations and immunity-modulated severity upon re-exposure 
(figs. S7 and S8). By contrast, post-pandemic burden during endemicity 
is shown to be strongly dependent on immune function and pre-
vious infection history as it affects infection probability and disease 
severity. Milder disease from reinfections (Fig. 3 and fig. S7) would 
give rise to decreasing mortality due to the reduction of severe cases, 
while burden of mortality over time may remain unchanging if pri-
mary infections do not prevent reinfections or mitigate severe disease 
among the elderly (Fig. 4 and fig. S8). In this bleakest scenario, 

Fig. 3. Fraction of deaths from primary infections. (A to D) Overall fraction of deaths over 20 years and (E to H) the timing and magnitude of consecutive peaks in the 
scenario of permanent, 10-year, 1-year, and short-lived (i.e., 3-month) immunity durations, respectively. Countries with different demographies and social mixing patterns 
are distinguished by color: Italy (black), United Kingdom (blue), and South Africa (orange). For visualization, insets show trajectories following the first 2 years.
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excess deaths due to continual severe reinfections that result from the 
continuous replenishment of susceptibles via waning of immunity to 
reinfection will continue until effective pharmaceutical tools are available.

A final insight from our detailed RAS model is that regardless of 
immunity and mixing, the population-level burden of mortality may 
differ among countries because of varying demographies. Given the 
marked increase of infection-fatality ratio (IFR) with age, countries 
with older population structure would be expected to have a typi-
cally larger fraction of deaths than those with relatively younger 
population structure (once corrected for differences in public health 
infrastructure). Consistent with this, South Africa, partially due to 
its younger population structure, has a lower fraction of deaths as 
compared with older populations such as Italy. These “deaths 
disparities” among demographies are largely invariant over the 
unfolding pandemic, although young people would be predicted to 
contribute most to burden in the endemic era. When comparing the 
relative importance on the overall burden of mortality, we show 
that the varying demographies are a key determinant of the dis-
parities among countries (see the “Relative effect of demographies 
and social mixing patterns” section in Supplementary Text; figs. S9 
and S10).

DISCUSSION
Our RAS SIRS model provides a general framework to explore var-
ious scenarios for the possible unfolding of the current and future 
pandemic crises in the face of country-specific demographies, social 
mixing patterns, and the inevitable main unknowns for any emer-
gence such as immune duration and immune mitigated reduction 
in severity of disease. Through the integration of age structure, social 
mixing, and immunity, our projections using SARS-CoV-2 as a 
focus for considering the broader issue, we highlight how risk will 
shift over time to different age classes that may suffer different bur-
den of disease during an endemic state. Such a shift will be not only 
very strong if immunity is long-lived but also of great public health 
significance if immunity to reinfection wanes, yet previous expo-
sure attenuates severity of disease.

By highlighting a wide range of scenarios, our model framework 
is a robust scaffolding to help improve preparedness and mitigation 
of the current and future pandemics. Furthermore, our RAS SIRS 
model makes critical contributions to understanding how the highly 
variable social context, particular demography, and age-structured 
mixing patterns may modulate current and future disease burden. 
Building upon our framework (including the detailed and documented 

Fig. 4. Fraction of deaths from all infections. (A to H) Same as Fig. 3 but for deaths from both primary and nonprimary infections.
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code provided in the Supplementary Materials), health authorities 
will have a powerful and flexible tool to conceptualize future age 
circulation, strengthening context-specific preparedness and deploy-
ment of interventions. The model will handily accommodate addi-
tional uncertainties/variabilities as evidence is accumulated in the 
coming months and years.

Our RAS model makes several assumptions. First, we focus on 
the infection-blocking immunity. Incorporating realistic immunity 
efficacy with respect to susceptibility, transmission, and severity is 
an important direction for expansion. Second, we assume a general 
formulation for the epidemic model. This should be considered as 
the starting point for the extension to encompass disease-specific 
mechanisms. Furthermore, we assume a homogeneous susceptibility 
to infection, clinical fraction, and infection versus case-fatality ratio 
across age classes. Relaxing our assumptions by explicitly consider 
age-specific heterogeneities (8, 16, 17) is an important future direc-
tion. Last, we assume an exponential decay of immunity within each 
age class, which leads to a Gamma distributed loss over time. We 
believe that this is a realistic model that still needs to be further 
refined with the mounting clinical and empirical studies (see Sup-
plementary Text for details of the assumptions and directions for 
further extensions).

MATERIALS AND METHODS
Model parameterization
Transition rates
In the base model, we assume an 80-year life expectancy and thus a 
birth rate i = 1/80 year−1 at which people are born to the youngest 
group in a population of size Ni (i.e., i is 0 for all i > 1). We assume 
ai to be the age-specific rate of aging with a 1-year duration (i.e., ai = 
1 for all i). i is a rate of natural mortality, which is assumed 0 for all 
age classes until the rectangular age end point (i.e., i = 0 for all i). 
1/ is the average duration of infection, which in the analysis is 
taken to be 7 days (18). We further explore its variability on epide-
miological trajectories (see the “Sensitivity analyses” section). In the 
RAS model with country-specific population pyramid and contacts 
over age, we retain the assumption of zero mortality across ages be-
low the maximum age, the same birth rate to the youngest group 
and the same aging rate across countries, as this will result in a 
broadly consistent age structure (appropriate to human demogra-
phy where transients play out extremely slowly).
Estimating the reproduction number
The reproduction number is a critical parameter for our model 
projections. Social distancing is well documented to affect trans-
missibility (19), and many countries implemented such interventions 
during the buildup of the virgin epidemic. Given this, we assume 
that the effective reproduction number, i.e., the level of trans-
missibility, on day t, Rt, is linked to the reduced mobility on that 
day, mt, via

  log( R  t   ) = log( R  0   ) −   m  t    

where R0 is the basic reproductive number in the absence of behavioral 
changes and  is the transmission rate. Reduced mobility leads to 
reductions in the effective reproduction number. When the reduc-
tion of mobility/mixing is 0%, R0 provides the baseline transmissi-
bility parameter. We use China as the reference point.

We used daily confirmed cases in China (20) and extract mobility 
from the Baidu database (21) in the period of 1 January to 5 March 2020. 
With these cases, we estimate Rt using a 14-day sliding time window 
using EpiEstim package (22), assuming a mean of 5.1 days and SD 
of 5.3 days of the serial interval (23). We then exclude estimates of 
Rt before 15 January 2020 in subsequent analysis, given the limited 
number of cases and thereby large uncertainty of Rt. We also trim 
the estimates of Rt after 20 February 2020 (i.e., 4 weeks after lock-
down on 23 January 2020) when mobility rebounded but was not a 
strong correlate of reductions in Rt since then. With estimates of Rt 
and mobility data from 15 January to 20 February 2020 (fig. S12), 
we establish the transmissibility-mobility association and estimate 
R0 using generalized linear model with a negative binomial link 
function. Note that we do not tend to explicitly fit the documented 
cases or optimize every transmission parameter; instead, we capture 
R0 to characterize the overall basic transmissibility. The estimated 
R0 is subsequently used as the baseline to simulate dynamics of 
COVID-19 in the age-structured SIRS model framework (see below). 
Furthermore, we examine how different demographies are predicted 
to modulate country-specific R0’s away from the early Chinese base-
line (see the “Variation of transmissibility among countries” section 
in Supplementary Text).
Demographics and age-structured social mixing patterns
To fully characterize the long-term age circulation across the globe, 
we select 11 countries across a broad range of demographic and 
social mixing patterns. The countries cover Asia (China, Japan, and 
South Korea), Europe (Spain, United Kingdom, France Germany, 
and Italy), North America (United States), South America (Brazil), 
and Africa (South Africa). For these countries, we collected age 
pyramids from the statistics of the United Nations (24) and country/
age-specific number of contacts from Prem et al. (25). We further 
annualized these data to generate the finer age profile into the 
1-year age brackets necessary for model predictions (fig. S13).
Age-specific IFR
Pilot studies have shown an increased IFR with age. We collect the 
posterior estimates of IFR from Verity et al. (17) and subsequently 
project them onto the 80 age groups in our study to predict burden.

Model projections
Given the RAS SIRS equations defined in Eqs. 1 to 5, we numerically 
integrate the model to predict dynamics of COVID-19 for the next 
20 years using a variety of scenarios spanning a range of current 
unknowns. For each scenario, simulation was initialized with 1% 
infections and 0.1% recovered individuals, i.e., Sp(0) = 0.989, Ip(0) = 
0.01, R = 0.001, and Snp(0) = Inp(0) = 0.

For initial insights, we studied the base model using a rectangu-
lar demography (i.e., in the absence of infection, everybody is ex-
pected to live to the age of 80, resulting in a rectangular age pyramid 
and constant population size) and homogeneous mixing (i.e., indi-
viduals have equal probability of contact with individuals of all other 
ages) under four different durations of immunity, i.e., the short-lasting 
immunity assumed as (i) short-lived (3 months) or (ii) 1 year and 
the long-lasting immunity assumed as (iii) 10 years or (iv) perma-
nent (or lifelong). Notably, in the scenarios where reinfection is 
possible, functional immunity to disease may still vary (8, 10, 11). 
Given this, we explicitly consider two scenarios that differ in the 
severity of reinfections. We first assume an independence of disease 
severity from previous exposure, so the burden of disease depends 
on the sum of both primary and nonprimary infections. Alternatively, 
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we assume that previous immunity may mitigate disease severity. In 
which case, milder reinfections are assumed of no contribution to 
shaping the epidemiological trajectories, and thus, public health 
burden depends on age profiles of primary infections.

Next, we contextualize the transition in age circulation for the 
11 selected countries (see the “Demographics and age-structured 
social mixing patterns” section). We add greater demographic and 
social complexity to the base model, by initiating the population 
with country-specific age pyramids and social mixing patterns ob-
tained as described above. We then simulate the models with a 
broadly consistent age structure where transients play out extreme-
ly slowly by retaining the assumption of zero mortality across ages 
below the maximum age and the same birth rate to the youngest 
group across countries (see the “Transition rates” section). This 
helps titrate how these variables may lead to varying patterns among 
countries. Relative risk among age groups is defined as the infected 
fraction in each age group relative to that in a population as a whole. 
To assess plausible transitions toward endemicity, we estimate rela-
tive risk in the 1st, 10th, and 20th year following emergence (here-
after as the virgin epidemic, medium-term, and probable endemic 
phases, respectively). Last, we project the trajectories of deaths in 
the selected countries under a variety of immune scenarios. The 
population-level fraction of deaths, i.e., burden of mortality, is esti-
mated by multiplying the age-specific infected fraction with IFR. We 
assumed an invariant IRF for primary and nonprimary infections. 
Consistent with the above assessment of changing age structure, we 
examine the scenario with different duration of immunity and pos-
sible mitigation of illness due to previous exposure. To evaluate the 
relative importance of demography and social mixing pattern, we 
further simulate the model by using the assumed homogeneous 
mixing patterns (see the “Relative effect of demographies and social 
mixing patterns” section in Supplementary Text).

Sensitivity analyses
We validate our findings and insights by examining the uncertainty 
that may arise from the assumed duration of infection and model 
formulation. More specifically, we investigate the dynamics of dis-
ease burden by assuming an array of the average duration of infec-
tion, including 5, 9, and 11 days. In addition, we formulate a SEIRS 
model by explicitly incorporating the exposure (E) component and 
asymptomatic infections
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lost immunity

   −  a  i    R  i   −    i    R  i    (10)

    
d  S i  

np 
 ─ dt   =   R  i   +  a  i−1    S i−1  np   −       i    S i  

np  
⏟

   
nonprimary infection

   −  a  i    S i  
np  −    i    S i  

np   (11)

    
d  E i  

np 
 ─ dt   =  a  i−1    E i−1  np   +    i    S i  

np  −      E i  
np  

⏟
   

latency
   −  a  i    E i  

np  −    i    E i  
np   (12)

   
d  I i  

np,sym 
 ─ dt   =  a  i−1    I i−1  np   +    2     E i  

np  −     I i  
np,sym  

⏟
   

recovery
    −  a  i    I i  

np,sym  −    i    I i  
np,sym   (13)

   
d  I i  

np,asym 
 ─ 

dt
   =  a  i−1    I i−1  np,asym  + (1 −    2   )   E i  

np  −     I i  
np,asym  

⏟
   

recovery
    −  a  i    I i  

np,asym  −    i    I i  
np,asym   (14)

For simplicity, we assume that the average duration of incuba-
tion () is 6.4 days (26), the infectiousness of asymptomatic (1) is 
half (50%) of that of symptomatic infections, and the proportion of 
asymptomatic infections (2) is 40% (27). The force of infection on 
susceptibles in age class i is defined by     i   =  ∑ j  n     C  ij  ( I i  

p,sym  +  
I i  
np,sym  +    1  ( I i  

p,asym  +  I i  
np,asym  ) ) /  N  i   , where superscripts sym and asym 

denote the symptomatic and asymptomatic infections, respectively. 
 is the baseline rate of transmission given by  = R0, and Cij is the 
normalized contact rate between age groups i and j. We simulate the 
model and estimate the age-specific risk in the scenario of the rect-
angular demography and homogeneous mixing.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/33/eabf9040/DC1
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