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Spatial Isoforms Reveal the Mechanisms of Metastasis

Yin Yin, Yuhao Wang, Xiao Yu, Yang Li, Yahui Zhao,* Yanfeng Wang,* and Zhihua Liu*

In esophageal squamous cell carcinoma (ESCC), lymph node (LN) metastasis
is associated with poor survival. Emerging evidence has demonstrated
elevated CD8+ T-cell levels in metastatic LNs following immunotherapy and
increased chemoresistance. However, the underlying regulatory mechanisms
of CD8+ T cells in chemoresistant/metastatic patients have not been
elucidated. Given that metastasis is linked to aberrant splicing patterns,
transcripts with alternative splicing forms also play a critical role. With spatial
transcriptomics (ST), spatial isoform transcriptomics (SiT), single-cell RNA
sequencing (scRNA-seq), and T-cell receptor (TCR) sequencing, the spatial
isoforms are analyzed quantitatively in human solid tumors and LNs. These
isoforms are classified according to expression and spatial distribution
patterns and proposed that the temporal heterogeneity in isoforms is
attributed to isoform biogenesis dynamics. C1QC+ tumor-associated
macrophages (TAMs) contribute to the formation of metastases in the context
of both immunotherapy and chemotherapy. Additionally, CD74 isoforms can
be targeted by mRNA drugs, such as antisense oligonucleotides (ASOs) and
RNA interference (RNAi), to prevent chemoresistance and metastasis. Overall,
this work suggests that C1QC+ TAMs interact with CD8+ CXCL13+ Tex cells
via enrichment with the CD74 isoform in the ESCC ‘s metastatic lymph node.

Y. Yin, Y. Wang, X. Yu, Y. Li, Y. Zhao, Z. Liu
State Key Laboratory of Molecular Oncology
National Cancer Center
National Clinical Research Center for Cancer
Cancer Hospital
Chinese Academy of Medical Sciences and Peking Union Medical College
Beijing 100021, China
E-mail: zhaoyh@cicams.ac.cn; liuzh@cicams.ac.cn
Y. Wang
Department of Comprehensive Oncology
National Cancer Center/National Clinical Research Center for Cancer
Cancer Hospital
Chinese Academy of Medical Sciences and Peking Union Medical College
Beijing 100021, China
E-mail: wangyf@cicams.ac.cn
Z. Liu
Institute of Cancer Research
Henan Academy of Innovations in Medical Sciences
Zhengzhou, Henan 450000, China

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/advs.202402242

© 2024 The Author(s). Advanced Science published by Wiley-VCH
GmbH. This is an open access article under the terms of the Creative
Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.

DOI: 10.1002/advs.202402242

1. Introduction

Esophageal squamous cell carcinoma
(ESCC) is characterized by oncogenic
splicing events.[1–3] Esophageal cancer (EC)
was the seventh most common cancer
worldwide and the sixth leading cause of
cancer death in 2020.[4] EC can be classified
into two subtypes: esophageal adenocar-
cinoma and ESCC. ESCC accounts for
85% of EC cases.[5] The 5-year survival rate
of ESCC patients is nearly 10–15%, and
≈50% of ESCC cases occur in China. In
recent studies, CD8+ CXCL13+ exhausted
T (Tex) cells have been reported to be
predictors of immune checkpoint blockage
(ICB) therapy response. A meta-analysis
correlated CD8+ CXCL13+ T cells with
favorable ICB outcomes.[6] The CXCL13+

T-cell abundance increases after combina-
tion therapy and decreases after therapy
with paclitaxel alone.[7] Moreover, as the
most abundant immune population in the
tumor microenvironment (TME), tumor-
associated macrophages (TAMs) suppress
the activities of cytotoxic T cells at both
primary and metastatic sites.[8,9] Through

losing the protective function of homeostasis, TAMs arise from
tissue-resident macrophages (TRMs) localized at a tumor site and
from bone marrow (BM)-derived monocytes that are recruited
to tumors. TAMs are highly heterogeneous, and the significance
and therapeutic potential of their diversity are evolving.

However, these studies did not include ESCC patients and did
not examine the regulatory role of alternative splicing (AS). In-
vestigating the TME spatially could help elucidate the mecha-
nisms linking chemoresistance and metastasis, particularly in
the lymph node (LN), to guide optimal ESCC treatment strate-
gies. As an emerging field of drug discovery, AS is being tar-
geted as a major therapeutic strategy.[10] Several hallmarks of
cancer initiation and metastasis, such as unlimited proliferation,
evasion of growth-suppressing signals, dysregulated metabolic
processes, and cellular phenotypes, are associated with aberrant
splicing patterns.[11] Although previous studies have comprehen-
sively profiled the landscape of AS in ESCC, the spatial distribu-
tion of isoforms is unclear.[12] With the emergence of single-cell
RNA sequencing (scRNA-seq) and spatial transcriptomics, the
relationships between expression heterogeneity across various
cell types, states and locations, and oncogenesis have been easily
resolved.[13–15] However, comprehensive analysis of splice vari-
ation via short-read sequencing is limited; although exon junc-
tions can be observed, identifying the resolution of full-length
isoforms is extremely challenging. Recently, several studies have
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revealed the characteristics of isoforms and identified differen-
tial isoform usage by combining scRNA-seq with spatial tran-
scriptomic (10X) long-read sequencing technology (PacBio or
Oxford Nanopore sequencing (ONT)).[16–19] Spatial isoform tran-
scriptomics (SiT) is an unbiased method based on spatial in
situ capture used to detect and quantify the spatial expression
of splicing variants through combination with third-generation
sequencing.[19]

Our study utilized SiT, scRNA-seq, and T-cell receptor (TCR)
analyses of tumor and LN tissues to demonstrate that the tem-
poral heterogeneity of the spatial CD74 isoform correlates with
the expanded enrichment of C1QC+ TAMs and CD8+ CXCL13+

Tex cells in LN metastasis of ESCC. We hypothesized that
the thyroglobulin type-1 domain, which alters the secondary
structure and solvent accessibility, promotes the enrichment of
C1QC+ TAMs and CD8+ CXCL13+ T cells. Moreover, we revealed
that C1QC+ TAMs potentially inhibit the cytotoxicity of CD8+

CXCL13+ Tex cells via the MIF-CD74 ligand-receptor pair. Fur-
thermore, targeting the CD74 isoform could potentially disrupt
this interaction, thereby preventing metastasis and chemoresis-
tance in ESCC.

2. Results

2.1. Characterization of Isoform Expression Patterns in ESCC

To study the relationship between the isoform level and
chemotherapy response, we designed a similar workflow to com-
pare the spatial transcriptomics data of the Illumina sequencing
and ONT sequencing methods (Figure 1A). We focused on three
samples from one patient: a tumor sample before chemother-
apy (Before), a tumor sample after chemotherapy (After), and a
lymph node sample after chemotherapy (AfterLN). All three sam-
ples were subjected to single-cell sequencing with TCR. Based
on a previous SiT workflow, full-length 10X Genomics Visium
cDNA libraries were split for Illumina sequencing and ONT
sequencing.[19] We generated 320–410 million reads per sample
from Illumina sequencing and 45–83 million reads per sample
from ONT sequencing (Table S1, Supporting Information). The
average read quality and read length of all the samples were simi-
lar (Figure S1A, Supporting information). The majority of the se-
quences of all samples had a quality score from 10 –16. The high-
est sequencing saturation in the three samples was>90% (Figure
S1B, Supporting Information). The maximum read length of the
three samples reached 338 kb, and the average read length ranged
from 753 bp to 970 bp. With the aid of short-read sequencing data,
UMI, and spatial barcode assignment were performed for long-
read sequencing.[19] Post-correction of barcodes and UMIs, we
retained ≈46% of the raw reads (Figure S1E, Supporting Infor-
mation). Importantly, the Pearson correlation for both UMI and
gene levels exceeded 0.93 across all three samples (Figure S2A,
Supporting Information). Our comprehensive analysis unveiled
a rich landscape of isoforms: a total of 87277 unique isoforms
originating from 59700 genes were identified in the three sam-
ples (Table S1, Supporting Information). Additionally, a mean
of 763 isoforms per spatially barcoded spot were observed in
all three samples (Table S1, Supporting Information). Notably,

the AfterLN sample exhibited the highest density of isoforms
per spot (Figure S1C,D,F, Supporting Information), suggesting
distinct molecular heterogeneity in this lymph node specimen
(Figure S1C,D,F, Supporting Information). Spatially clustered re-
gions were termed niches. We compared the niche clustering
patterns derived from gene-level short-read data with those ob-
tained from isoform-level long-read data. Clustering from gene-
level short-read data was similar to clustering from isoform-level
long-read data (Figure S2B,C, Supporting Information). All niche
similarities of samples were from 58.7% to 76.3%.

To achieve a comprehensive understanding of isoform dynam-
ics, we initiated a systematic classification based on the relation-
ship between isoforms and their corresponding genes, as well as
their spatial distribution patterns: 1) multi-all: isoforms with var-
ious “alternate isoforms” for a corresponding gene that are dis-
tributed to all spatial niches; 2) multi one: isoforms with various
“alternate isoforms” for a corresponding gene that are uniquely
expressed in one spatial niche; 3) multi others: isoforms with var-
ious “alternate isoforms” for a corresponding gene that are dis-
tributed to two or more spatial niches but not all spatial niches;
and 4) single: an isoform that is the only isoform of a corre-
sponding gene. In all the samples, “single” isoforms represented
≈25% of all the isoforms. Additionally, most of the isoforms
were categorized as “multi others” (Figure 1B). Next, we classified
the isoforms according to their expression pattern: 1) metastasis
negative: expression decreased in metastatic LNs; 2) metastasis
positive: expression increased in metastatic LNs; 3) resistance:
expression in tumors increased after chemotherapy; and 4) treat-
ment target: expression in tumors decreased after chemotherapy.

Among all the isoforms of the Before sample, nearly 25% were
“single” isoforms, while 75% were “multi all”, “multi one”, and
“multi others”. Furthermore, ≈0.9% of the isoforms were dis-
tributed uniquely in only one niche (Figure 1B). However, af-
ter the chemotherapy, both After and AfterLN samples decreased
their “single” isoform percentage. Our findings shed light on the
alternative splicing level within an ESCC tumor and lymph node
(LN) after chemotherapy.

Among the 15% most highly expressed “multi all” isoforms,
we identified isoforms with all four different expression pat-
terns (Figure 1C). Notably, these isoforms predominantly orig-
inate from the small ribosomal subunit (RPS) and large riboso-
mal subunit (RPL) families (Figure 1D). Our attention was drawn
to the RPS9 isoforms (RPS9-201, RPS9-202, RPS9-204), which
consistently exhibit increased expression levels across all sam-
ples (Figure 1E; Figure S3, Supporting Information). Since al-
ternative RNA splicing is known to be involved in the regula-
tion of ribosomal functions,[20] taken together, these findings and
our observations of RPS9 isoform structures suggested that there
is temporal heterogeneity in ribosomal biogenesis that leads to
increased expression of the isoforms.

Collectively, by applying SiT, the characterization of isoform
expression patterns in ESCC was achieved. We can track isoform
variations at the near-cellular level, unraveling their spatial dis-
tribution and functional roles. Our findings underscore the im-
portance of SiT for its power to explore the dynamic nature of
carcinogenesis and metastasis, with implications for cellular
adaptation and response to chemotherapy.
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Figure 1. Overview of workflow and spatial isoform information. A) Illustration of the overall workflow. B) Overview of the spatial isoform class distribu-
tion in each sample. P value was calculated by a chi-square test, n (Before) = 21 413, n (After) = 32 618, n (AfterLN) = 33 246. C) Heatmap of isoform
expression in each sample. The left side indicates the potential clinical marker types of the isoforms. D) Sankey diagram of the top 15% most highly
expressed “multi all” isoforms. The flows show the isoform distribution across the three isoform characteristics. The colors indicate the potential clinical
marker types of the isoforms. E) RPS9 isoform spatial distribution and expression level in each sample. All isoforms were stacked in a 3D format. The
colors indicate the expression levels of the isoforms.
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2.2. C1QC+ TAMs Exert Cytotoxicity Suppression on CD8+

CXCL13+ Tex Cells through the MIF-CD74 Ligand-Receptor Pair

To elucidate the cellular dynamics during ESCC metastasis and
the pre- and posttreatment periods, we cataloged all the cells
into seventeen cell lineages. Based on the canonical marker data,
two B-cell clusters, basophils, CD4+ naïve T cells, CD4+ Tfhs,
CD4+ Tregs, CD8+ CXCL13+ Tex cells, CD8+ Tcms, CD8+ Tems,
endothelial cells, fibroblasts, monocytes/macrophages, and five
plasma cell clusters were identified (Figure 2A; Figure S4A, Table
S4, Supporting Information). Plasma cell cluster 3 was expressed
only in the tumor sample after chemotherapy, while plasma
cell clusters 4 and 5 were expressed only in the lymph node
sample after chemotherapy (Figure 2B). Additionally, we found
that >10% of the cells were monocytes/macrophages before
chemotherapy, while the percentage of monocytes/macrophages
decreased to <5% after chemotherapy (Figure S4B, Supporting
Information).

Since TAMs have been reported to suppress cytotoxic T
cells, we further clustered monocytes/macrophages into C1QC+

TAMs and FCN1+ other monocytes/macrophages based on
the canonical markers (Figure 2C; Figure S5A,B, Supporting
Information).[8] After differential gene expression analysis be-
tween C1QC+ TAMs and FCN1+ monocytes/macrophages, in ad-
dition to clustering markers, such as C1QC, C1QB and C1QA,
other genes, such as CD74, APOE, HLA-DRA1, HLA-DRB1,
HLA-DPB1 and HLA-DQB1, were significantly upregulated in
C1QC+ TAMs (Figure 2D). Notably, we explored whether the pos-
itive regulation of T-cell activation and antigen processing and
the presentation of exogenous peptide antigens via MHC class II
were two significantly upregulated pathways (Figure 2E).

Next, we examined the function and ratio of T cells. Among
all T-cell subtypes, CD8+ CXCL13+ Tex cells expressed the
cytotoxicity-related genes GZMA, GNLY, PRF1, GZMB, and
NKG7. CD8+ CXCL13+ Tex cells also expressed the exhaustion
markers LAG3, TIGIT, PDCD1, HAVCR2, and CTLA4 (Figure
S6A, Supporting Information). In addition, CD8+ CXCL13+ Tex
cells expressed high levels of CXCL13. Compared with those in
other T cells, the genes expressed in CD4+ Tfh cells were more
highly enriched in proliferation-related pathways, such as those
related to DNA repair, E2F targets, and the G2/M checkpoint.
CD8+ CXCL13+ Tex cells expressed higher levels of proteins in
the Notch signaling pathway and WNT-beta-catenin signaling
pathway after chemotherapy (Figure S6B, Supporting Informa-
tion). Then, we compared the ratio of CD8+ CXCL13+ Tex cells
among the three samples. The ratio of CD8+ CXCL13+ Tex cells
decreased after chemotherapy (Figure 2F).

We next evaluated the effect of cell‒cell communication on
the function of CD8+ CXCL13+ Tex cells. As a critical commu-
nicator in both the extracellular and intracellular compartments,
macrophage migration inhibitory factor (MIF) can initiate cel-
lular proliferation and prostaglandin E2 production through in-
tracellular transduction cascades after signaling with CD74.[21]

Additionally, MIF has been shown to promote T-cell exhaustion
regulation.[22] To validate the impairment of MIF expression, we
then compared the cytotoxicity of CD8+ CXCL13+ Tex cells in
high-MIF-expressing and low-MIF-expressing cells. Our findings
revealed that CD8+ CXCL13+ Tex cells exhibited diminished cy-

totoxicity when MIF expression levels were elevated (Figure 2G).
Additionally, CD8+ CXCL13+ Tex cells had the highest score in
the human leukocyte antigen (HLA)-independent activating re-
ceptor pathway, HLA-dependent activating receptor pathway, and
HLA-independent inhibitory receptor pathway, implying CD8+

CXCL13+ Tex cells may tightly interact with antigen-presenting
cells (APCs) such as TAMs (Figure 2H,I). Therefore, we per-
formed cell-cell interaction analysis and found that C1QC+ TAM
strongly interacted with CD8+ CXCL13+ Tex. Accordingly, we as-
sumed that cell-cell communication may play a key role in the
function of CD8+ CXCL13+ Tex cells and that high cell-cell com-
munication through MIF may impair the cytotoxicity of CD8+

CXCL13+ Tex cells.
By exploring the ligand‒receptor interactions and cell‒cell in-

teractions between each cluster, we confirmed that C1QC+ TAMs
strongly interacted with CD8+ CXCL13+ Tex cells (Figure 2J).
Among all ligand-receptor interactions between C1QC+ TAMs
and CD8+ CXCL13+ Tex cells, MIF- (CD74+CD44) was the first-
ranked interaction (Figure 2K).

In summary, our investigation highlights the pivotal role of
the MIF-CD74 ligand-receptor interaction in shaping the tumor
microenvironment. C1QC+ TAMs could suppress the antitumor
response by decreasing the cytotoxicity of T cells.

2.3. Metastatic Lymph Nodes Exhibit Expansive Enrichment of
T Cells and Macrophages Through Multiple Centers

To fully understand the spatial niches and cell distributions in tu-
mors and metastatic LNs, we classified all spatial transcriptomic
spots into different spatial niches (Figure 3A; Figure S7A, Sup-
porting Information). We assigned the cell types to each niche
through deconvolution by using corresponding single-cell tran-
scriptomics and ESCC single-cell data from Xiannian et al.[23] By
calculating the number of different spatial niches that one spatial
spot has in the nearest 6 neighboring spatial spots, we achieved
the statistical analysis on the contact frequency of each sample.
Our results showed that the contact frequency between all niches
was low in the tumor sample before chemotherapy while spatial
niches kept a high level of contact frequency in the tumor and
lymph node after chemotherapy (Figure 3B).

To determine whether spatial niches exhibited similar expres-
sion patterns and cell ratios, we next found that niche 6 in the
Before sample, niche 6 in the After sample, and niche 3 in
the AfterLN sample exhibited similar epithelial cell expression
patterns (Figure S7B, Supporting Information). Moreover, the
malignant marker EPCAM was highly expressed in these three
niches (Figure S7B, Supporting Information).

To assess the suppressive effect of chemotherapy on malignant
epithelial cells, we analyzed the copy number variation (CNV)
events in the malignant epithelial cells in each sample (Figure
S8A, Supporting Information). Similarly, the levels of amplifi-
cation and deletion of malignant epithelial cells decreased af-
ter chemotherapy in the ESCC tumor. However, the amplifica-
tion and deletion levels of malignant epithelial cells in the LN
were similar to pre-treatment levels. These results confirmed that
chemotherapy is effective at inhibiting a high level of CNV events
in ESCC tumors but not in chemoresistant LNs.
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Figure 2. C1QC+ TAMs suppress the cytotoxicity of CD8+ CXCL13+ Tex cells through the MIF-CD74 ligand-receptor pair. A) TSNE of cell type clustering
of single-cell transcriptomic data. B) TSNE of sample clustering of single-cell transcriptomic data. C) UMAP plot of the cell type clustering of TAMs
after Harmony analysis. The isoform spatial distribution and expression level in each sample are shown. The colors indicate the expression levels of the
isoforms. D) Volcano plot of genes with differential expression between C1QC+ TAMs and FCN1+ TAMs. Top 15 genes with the highest log2fold change
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After confirming the presence of malignant epithelial spatial
niches, we found that the ratio of malignant epithelial cells was
similar in all the samples (Figure S8B, Supporting Information).
However, immune cells (CD3D+) existed in all spatial spots in the
AfterLN sample, while <75% of the spatial spots had immune
cells in the Before and After samples (Figure S8C, Supporting
Information).

Furthermore, to explore metastasis features in detail, we con-
structed a set of metastasis-associated genes (MAGs), which in-
cluded FTL, TMBIM6, CALD1, ITGB1, DSTN, FABP4, ACTB,
HSP90AA1, KRT8, RDH10, KRT7, HNRNPA2B1, HSPG1,
HSPA1A, TPM2, TLN2, PLEC, MX1, HSPA1B, ATP2B4 and
CSRP1 (Figure S9A, Supporting Information). To validate the
classification power of the MAG set, we performed gene set en-
richment analysis (GSEA) on the HRA003107 dataset.[24] The
MAG scores calculated by GSEA showed significant differ-
ences between the two groups of ESCC patients with different
metastatic conditions; specifically, metastatic ESCC patients had
higher MAG scores (Figure S9B, Supporting Information). In ad-
dition, the overall survival (OS) of patients in the high-MAG-score
group and the low-MAG-score group significantly differed. ESCC
patients with higher MAG scores had lower survival probabilities
(Figure S9C, Supporting Information). These genes were highly
related to cell-substrate junctions and focal adhesion (Figure
S9D, Supporting Information).

To further investigate the enrichment of CD8+ CXCL13+

Tex cells and C1QC+ TAMs, we performed RNAscope in
situ hybridization for the CD74, C1QC, and CXCL13 mRNAs
(Figure 3C). In both the LN and tumor, colocalization of the
CD74, C1QC, and CXCL13 mRNAs was observed (Figure 3D).

To evaluate spatial niche crosstalk, we evaluated niche-niche
interactions (Figure 3E; Figure S9E–J, Supporting Information).
Niche frequency and niche-niche interactions had no direct re-
lationship. The niches with the most niche-niche interactions
in each sample included fibroblasts (Figure S9E,G,I, Support-
ing Information). In metastatic LNs, most ligand‒receptor pairs
are related to the collagen family, which includes genes such as
COL1A1, COL1A2, and COL3A1, which are markers of cancer-
associated fibroblasts (CAFs). Collagen signatures have been
proven to be useful for metastasis prediction.[25,26] Additionally,
ITGB1 was one of the identified MAGs. Then, we further deter-
mined the spatial distribution of the COL1A1-ITGB1 pair in the
three samples. After chemotherapy, COL1A1-ITGB1 interactions
in the tumor and LN began to occur in T-cell- and macrophage-
containing niches (Figure S10, Supporting Information).

Since the number of niches, including T cells and
macrophages, increased in the LN, we further investigated
the spatial trajectory of all niches in the AfterLN sample. Since
niches 4, 5, and 6 contained both macrophages and T cells, we

inspected the spatial trajectory among niches 4, 5, and 6. We
found that niche 4 is the pseudoroot of all T-cell-included niches
and that niche 4 started to transition to niche 5 and niche 6
(Figure 3F). Additionally, upon macrophage enrichment, T cells
started to expand and differentiate from multiple centers in the
AfterLN sample (Figure 3G). These findings support that the
enrichment of CD8+ CXCL13+ Tex cells and C1QC+ TAMs in
the LN not only occurs more often than in the tumor but also
expands through multiple start points within the LN.

In brief, tumors and LNs exhibited similarities and differ-
ences after chemotherapy in spatial TME. Chemotherapy demon-
strates efficacy in suppressing a substantial number of CNV
events within ESCC tumors. However, its impact on chemore-
sistant LNs remains limited. In addition, interactions between
COL1A1 and ITGB1 commence within specific niches contain-
ing both T cells and macrophages in tumors and LNs. Further-
more, metastatic lymph nodes exhibit extensive enrichment of T
cells and macrophages across multiple centers.

2.4. The Elevated CD74 Isoform Ratio Signifies the Enrichment of
CD8+ CXCL13+ Tex cells and C1QC+ TAMs

To elucidate the role of alternative splicing in the spatial rela-
tionship between CD8+ CXCL13+ Tex cells and C1QC+ TAMs,
we identified the spots that included these two cell types. More-
over, CD74 exists in two major isoforms: CD74-201 and CD74-
202. We grouped spatial spots into four groups: 1) High (CD74-
202 / CD74-201 > 15), 2) Medium (1 < CD74-202 / CD74-201
≦ 15), 3) Low (CD74-202 / CD74-201 ≦ 1), 3) Others (no CD74-
201 or no CD74-202 and CD74-201) (Figure 4A,B,H,I). In the
Before sample, there was no spot containing both cell types
while there was no spot with a high CD74-202/CD74-201 ra-
tio (Figure S11A–C, Supporting Information). However, in the
After and AfterLN samples, the enrichment of CD8+ CXCL13+

Tex cells and C1QC+ TAMs occurred (Figure 4C,D,J,K). Interest-
ingly, the C1QC+ TAMs occupied most of the spots in the Af-
terLN samples. Moreover, in both After and AfterLN samples,
the CD74-202/CD74-201 ratio groups could significantly indicate
the enrichment of CD8+ CXCL13+ Tex cells and C1QC+ TAMs
(Figure 4E,L). >73% and >85% of spots in high CD74-202/CD74-
201 ratio group were enriched with CD8+ CXCL13+ Tex cells and
C1QC+ TAMs enrichment. Also, there was a significant differ-
ence in enrichment scores among all ratio groups (Figure 4F,M).
In enrichment spots, the CD74-202/CD74-201 ratio was also sig-
nificantly higher than in other spots (Figure 4G,N). Addition-
ally, CD8A, CXCL13, C1QC, and CD74 expression in the high,
medium, and low CD74-202/CD74-201 ratio groups differed sig-
nificantly (Figure S11D,G, Supporting Information). Spots with

for both cell types are labeled. CD74 is bolded. E) Gene Ontology pathway enrichment of genes with differential expression between C1QC+ TAMs and
FCN1+ TAMs. The colors indicate the cell types. Important pathways are shown in bold. F) CD8+ CXCL13+ Tex cell ratio in each sample. G) Boxplot
representing the cytotoxicity GSVA score between CD8+ CXCL13+ Tex cells with high MIF expression (> mean MIF expression) and low MIF expression
(< mean MIF expression) in CD8+ CXCL13+ Tex cells. P value was calculated by an unpaired two-tailed Student’s t-test, n (high MIF expression) = 260, n
(low MIF expression) = 153. H) Dot plot representing the HLA-independent activating receptor score and the HLA-dependent activating receptor score
for each T-cell type. I) Dot plot representing the HLA-independent inhibitory receptor score and the HLA-dependent inhibitory receptor score for each
T-cell type. J) Cell crosstalk diagram for all cell types. The width of the line indicates the strength of the interaction. The size of each cell type dot indicates
the cell number. The color of each cell type dot indicates the cell type. K) Lollipop plot of the top 10 ligand-receptor pairs between CD8+ CXCL13+ Tex
cells and C1QC+ TAMs. The colors indicate the ligand-receptor pairs.
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Figure 3. Metastatic lymph nodes in ESCC exhibit expansive enrichment of T cells and macrophages. A) Spatial transcriptomic spots of all three samples:
Before, After, and AfterLN. The colors indicate the niches of each sample. B) Boxplot of the contact frequency of spatial niches in each sample. P value
was calculated by an unpaired two-tailed Student’s t-test, n (Before) = 21 413, n (After) = 32 618, n (AfterLN) = 33 246. C) CD74, C1QC, and CXCL13
expression were labeled by RNAscope in situ hybridization. Left: HE; Middle: 10X RNAscope; Right: 20X RNAscope. DAPI: blue, C1QC: green, CD74:
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a high CD74-202/CD74-201 ratio didn’t overlap with spots hav-
ing only C1QC+ TAMs or spots having only CD8+ CXCL13+ Tex
cells (Figure S11E,F,H,I, Supporting Information).

To further validate the positive relationship between the CD74-
202/CD74-201 ratio and the enrichment of CD8+ CXCL13+ Tex
cells and C1QC+ TAMs, we performed the same SiT sequenc-
ing and analysis pipeline on 13 tumor samples extracted from 13
ESCC patients. In the validation samples, 71.4% of spots in the
high CD74-202/CD74-201 ratio group were enriched with CD8+

CXCL13+ Tex cells and C1QC+ TAMs enrichment (Figure 4O).
Similar to the After and AfterLN samples, a significant difference
in enrichment score existed between the low CD74-202/CD74-
201 ratio group and the medium CD74-202/CD74-201ratio group
(Figure 4P). In all spatial spots of the 13 samples, the CD74-
202/CD74-201 ratio of enrichment spots was significantly higher
than in other spots (Figure 4Q). Therefore, we proposed that the
occurrence of the elevated CD74 isoform ratio that signifies the
enrichment of CD8+ CXCL13+ Tex cells and C1QC+ TAMs gen-
erally exists in the tumor and lymph node of ESCC patients.

Moreover, we performed BaseScope in situ hybridization for
the CD74-201 isoform and the CD74-202 isoform (Figure 4R).
Similar to the RNAscope results, the CD74-202/CD74-201 ratio
in the LN significantly exceeded that in the enrichment fraction
of the tumor. Additionally, the CD74-202/CD74-201 ratio in the
LN was ≈30%, which is near the enrichment cell fraction of the
CD74, C1QC, and CXCL13 mRNAs (Figure 4S). However, while
the CD74-201 isoform was detected in both LN and tumor sam-
ples, the CD74-202 isoform remained undetected in the tumor
sample (Figure 4T).

To further explore the reason for the predictive power of the
CD74 isoform, we investigated the structural differences between
the two isoforms. We examined the secondary structures of the
two isoforms and predicted their 3D structures by using Al-
phaFold2 (Figure S12A,B, Supporting Information). Both iso-
forms had MHC class II-associated invariant chain domains. The
CD74-201 isoform displayed an additional thyroglobulin type-1
domain, leading to alterations in secondary structure and sol-
vent accessibility (Figure S12C–F, Supporting Information). Our
AlphaFold2-predicted 3D structure revealed similarities in the
shared amino acids, while the CD74-201 isoform exhibited an
additional beta-strand and helix formed by extra amino acids.
However, the CD74-201 isoform had an additional thyroglobu-
lin type-1 domain, which changed the secondary structure and
solvent accessibility (Figure S12C–F, Supporting Information).
Our AlphaFold2-predicted 3D structure revealed similarities in
the shared amino acids, while the CD74-201 isoform exhibited
an additional beta-strand and helix formed by extra amino acids.

In aggregate, high consistency occurred between the elevated
CD74 isoform ratio and the enrichment of CD8+ CXCL13+

Tex cells and C1QC+ TAMs after chemotherapy, attributable to
structural differences in CD74 isoforms. Notably, the CD74-
202/CD74-201 ratio in LNs significantly surpassed that observed
in the enrichment fraction within the tumor.

2.5. The CD74 Isoform Ratio Exhibits a Positive Correlation with
T-cell Fate and Clonal Diversity

To verify the CD8+ T-cell trajectory, we performed single-cell tra-
jectory analysis and pseudotime reconstruction (Figure 5A,B).
Both CD8+ CXCL13+ Tex cells and CD8+ Tem cells arose after
CD8+ Tcm cells. CD8+ Tem cells exhibited different transition
states. Additionally, along with the CD8+ T-cell trajectory, the ex-
pression levels of CCL4, CCL5, CD8A, and GZMK tended to in-
crease, while CXCL13 was expressed only in CD8+ CXCL13+ Tex
cells and some CD8+ Tcm cells (Figure 5C). To explore the rela-
tionship between clonal space homeostasis of T cells and CD74
expression, we performed single-cell RNA T-cell receptor (TCR)
sequencing. Information on TCR clonality and diversity was as-
signed to each cell. All cells were classified by the abundance
of the corresponding clonotype (Figure S13A, Supporting Infor-
mation). Among all the T cells, CD8+ CXCL13+ Tex cells were
the only cell type with hyper-expanded clonotype abundance. The
abundance of the clonotype in most CD4+ naïve T cells was low
(rare), while the abundance of the clonotype in CD4+ Tfh cells
was high. Examination of the clonal overlap between each T-cell
subtype revealed that CD8+ CXCL13 Tex cells were strongly re-
lated to CD8+ Tcm cells, while CD4+ Treg cells were strongly
related to CD4+ Tfh cells (Figure S13B–D, Supporting Informa-
tion). The above results revealed that high exhaustion and low
proliferation were positively related to high TCR diversity. Ad-
ditionally, concomitant with the increase in TCR colonality and
diversity, CD74 expression increased. We validated that TCR sig-
naling and CD74 expression are positively related to T-cell fate
and are sufficient to promote the proliferation of T cells.

To further validate the relationship between the CD74 isoform
ratio and T-cell fate, we analyzed the same changes in expression
trends in the spatial expression data (Figure 5D,E). Transition-
ing from a low to a high ratio, there was a consistent elevation
in the expression levels of CCL4, CCL5, CD74, CD8A, CXCL13,
and GZMK. This expression pattern closely mirrored that of the
CD8+ CXCL13+ Tex trajectory. Consequently, we proposed that
the CD74 isoform ratio is also positively related to TCR clonality
and T-cell fate.

2.6. C1QC+ TAMs Play an Immunosuppressive Role through
MIF-CD74 + CD44 in Other Epithelial Cancers

To validate the interaction between C1QC+ TAMs and FCN1+

monocytes/macrophages, we utilized three single-cell datasets:
1) GSE139829, 2) GES12814 and 3) GSE203067. The GSE139829
and GSE12814 datasets were obtained from TISCH2.[27–30] For
the GSE123814 dataset, uveal melanoma (UVM) samples from
eleven patients were subjected to single-cell sequencing.[27] De-
spite a high metastasis rate, uveal melanoma was insensitive
to immune checkpoint therapy. Three patients in this dataset
had metastases, while eight patients had primary tumors only.

pink, CXCL13: red, Merge: white. D) Boxplot of the colocalization of the cell fraction with CD74, C1QC, and CXCL13 expression between the tumor
and LN samples when the enrichment calculation cutoff is 0.6. P value was calculated by an unpaired two-tailed Student’s t-test. E) Circular plot of the
cell-cell interactions between niches in the three samples. The colors indicate the niche. The area of each bond indicates the frequency of interaction. F)
Spatial trajectory of subclusters in niches 4–6. Arrows show the direction of the trajectory. G) Tree plot of the trajectory of subclusters in niches 4–6.
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Figure 4. The CD74 isoform ratio revealed enrichment of CD8+ CXCL13+ T cells and C1QC+ TAMs. A,H) Spatial distribution of the CD74-201 isoform
and CD74-202 isoform in the After and AfterLN samples. The colors indicate the expression levels. B,I) Spatial distribution of the ratio of CD74-202
isoform expression/CD74-201 isoform expression in the After and AfterLN samples. The color level indicates the ratio of CD74-202 /CD74-201 isoform
expression. C,J) Spatial distribution of C1QC+ TAMs, CD8+ CXCL13+ Tex cells in the After and AfterLN samples. D,K) C1QC+ TAMs and CD8+ CXCL13+
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The macrophages in the original annotation were clustered as
C1QC+ TAMs, FCN1+ monocytes/macrophages, or other mono-
cytes/macrophages (Figure S14A, Supporting Information).
C1QC+ TAMs represented ≈5% of all cells (Figure S15A, Sup-
porting Information). Like those in ESCC, UVM TAMs could be
clearly split by C1QC and FCN1 expression, and CD8+ CXCL13+

Tex cells expressed CXCL13 (Figure S14D,G, Supporting Infor-
mation). Although there was no significant difference in the
C1QC+ TAM and CD8+ CXCL13+ ratio between primary patients
and metastatic patients, the ratio of these two cell types exhibited
the same trend in both groups and was greater in metastatic pa-
tients (Figures S14J,M, S15D,G, Supporting Information). How-
ever, CD74 expression did not differ between primary patients
and metastatic patients (Figure S14P, Supporting Information).
Like in ESCC patients, UVM patients’ C1QC+ TAMs interacted
strongly with CD8+ CXCL13+ Tex cells (Figure 6A).

For the GES12814 dataset, advanced basal cell carcinoma
(BCC) samples from eleven patients were subjected to scRNA-
seq before and after anti-PD-1 therapy.[28] We clustered the cells
originally annotated as monocytes/macrophages into three types
of TAMs: C1QC+ TAMs, FCN1+ monocytes/macrophages, and
other monocytes/macrophages (Figure S14B, Supporting Infor-
mation). C1QC and FCN1 were found to be distinct markers for
TAM clustering (Figure S14E, Supporting Information). CXCL13
was highly expressed in CD8+ CXCL13+ Tex cells (Figure S14H,
Supporting Information). CD8+ T cells were the most abun-
dant cells in all the samples (Figure S15B,E,H, Supporting In-
formation). Furthermore, the C1QC+ TAM ratio increased in
the responsive patients before treatment and after treatment,
and CD8+ CXCL13+ Tex cells exhibited the same trend (Figure
S14K,N, Supporting Information). Remarkably, there were no
C1QC+ TAMs in the untreated tumors of responsive patients. Be-
fore treatment, nonresponsive patients had a significantly greater
C1QC+ TAM ratio than responsive patients. Moreover, CD74 ex-
pression showed trends similar to those of C1QC+ TAMs. CD74
expression levels increased in responsive patients after treat-
ment. Compared with responsive patients, nonresponsive pa-
tients had significantly greater CD74 expression levels (Figure
S14Q, Supporting Information). Furthermore, C1QC+ TAMs
from BCC patients interacted frequently with CD8+ CXCL13+

Tex cells (Figure 6B).
We analyzed twelve ESCC patients from the single-cell RNA-

seq dataset GSE203067, which included four primary tumor
samples, four adjacent normal tissue samples, three lymph

nodes with metastasis samples, and one lymph node with-
out metastasis sample.[30] CD8+ CXCL13+ T cells accounted
for 12% of the total cells in this cohort (Figure S15C, Sup-
porting Information). We reclustered the cells originally an-
notated as monocytes/macrophages into three populations of
TAMs: C1QC+ TAMs, FCN1+ monocytes/macrophages, and
other monocytes/macrophages (Figure S14C,F, Supporting In-
formation). C1QC and FCN1 served as distinct markers for defin-
ing these TAM clusters (Figure S14F, Supporting Information).
C1QC+ TAMs were found at a higher ratio in the ESCC LNM
cohort than in the other patient cohorts (Figure S15F–I, Sup-
porting Information). CXCL13 was highly expressed in CD8+

CXCL13+ Tex cells (Figure S14I, Supporting Information). More-
over, the ratio tended to be greater in lymph nodes harboring
metastases than in those without metastases (Figure S14L, Sup-
porting Information). Studies with larger sample sizes are war-
ranted to validate whether C1QC+ TAMs are truly enriched in
lymph nodes during ESCC progression. Additionally, the levels of
CD8+ CXCL13+ Tex cells and CD74 expression in C1QC+ TAMs
showed similar trends (Figure S14O,R, Supporting Information).
Critically, C1QC+ TAMs from ESCC lymph nodes in this dataset
interacted frequently with CD8+ CXCL13+ Tex cells (Figure 6C).

In all three scRNA-seq datasets, MIF-(CD74+CD44)
ranked as the highest-probability ligand–receptor interac-
tion (Figure 6D–F). Four interactions recurred across datasets:
MIF, CD99, ITGB2, and MHC-II (Figure 6G). Analysis of the
TCGA-ESCC and HRA003107 cohorts showed that C1QC+

TAM marker expression was negatively correlated with patient
survival, as determined by the gene set variation analysis (GSVA)
score (Figure 6H). C1QC+ TAMs were also associated with a
higher tumor grade and a later stage in both cohorts (p < 0.05)
(Figure 6I,J).

Collectively, the analyses of the UVM, BCC, and ESCC datasets
validated the interaction between C1QC+ TAMs and CD8+

CXCL13+ Tex cells across epithelial cancers, despite their distinct
origins. CD74 expression in C1QC+ TAMs and the C1QC+ TAM
ratio may reveal the responses to PD-1 blockade and metastasis.
The recurrent interactions identified present valuable opportuni-
ties for further mechanistic interrogation.

3. Conclusion

Chemotherapy is one of the standard treatments for ESCC.
However, this treatment approach faces significant challenges,

Tex cells’ enrichment score distribution in the After and AfterLN samples. E,L) Pie charts of C1QC+ TAMs and CD8+ CXCL13+ Tex cells enriched in low,
medium, and high CD74-202/CD74-201 ratio groups in the After and AfterLN samples. P values were calculated by a chi-square test. In the After sample,
n (low) = 57, n (medium) = 237, n (high) = 27. In the AfterLN sample, n (low) = 324, n (medium) = 969, n (high) = 15. F,M) Boxplots of enrichment
scores in low, medium, and high CD74-202 isoform expression/CD74-201 ratio groups in the After and AfterLN samples. P value was calculated by an
unpaired two-tailed Student’s t-test G,N) Boxplots of CD74-202 /CD74-201 ratio in enrichment spots (enrichment score > 0) and other spots in the After
and AfterLN samples. P value was calculated by an unpaired two-tailed Student’s t-test. O) Pie charts of C1QC+ TAMs and CD8+ CXCL13+ Tex cells
enriched in low, medium, and high CD74-202/CD74-201 ratio groups in the validation samples. P value was calculated by a chi-square test, n (low) =
82, n (medium) = 199, n (high) = 7. P) Boxplots of enrichment scores in low, medium, and high CD74-202 isoform expression/CD74-201 ratio groups
in the validation samples. P value was calculated by an unpaired two-tailed Student’s t-test. Q) Boxplots of CD74-202 /CD74-201 ratio in enrichment
spots (enrichment score > 0) and other spots in the validation samples. P value was calculated by an unpaired two-tailed Student’s t-test. R) Detection
of the CD74-202 and CD74-201 isoforms in the tumor and LN samples labeled by BaseScope hybridization technology. Left: HE; middle: 10X BaseScope;
right: 20X BaseScope. Dark purple elements indicate counterstained nuclei. CD74-201: pink, CD74-202: turquoise. S) Boxplot of the ratio of CD74-202
to CD74-201 between tumors and LNs. P value was calculated by an unpaired two-tailed Student’s t-test. T) Boxplot of the CD74-202 count between
tumors and LNs. P value was calculated by an unpaired two-tailed Student’s t-test.
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Figure 5. CD74 expression is positively related to T-cell fate and clonal diversity. A) UMAP of the cell type clustering of T cells in single-cell transcriptomic
spots. The colors indicate the cell type. B) Pseudotime plot of T cells in single-cell transcriptomic spots. The colors indicate the pseudotime. C) Changes
in CCL4, CCL5, CD74, CD8A, CXCL13, and GZMK expression levels with pseudotime. The colors indicate the cell types. D,E) Expression of CCL4, CCL5,
CD74, CD8A, CXCL13, and GZMK according to the direction indicated by the arrow in the After and AfterLN groups. The arrows indicate a low-to-high
ratio.
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Figure 6. C1QC+ TAMs play an immunosuppressive role through MIF-CD74+CD44 in other epithelial cancers. A–C) Cell crosstalk diagram of all cell
types in the GSE139829 dataset, GSE123814 dataset, and GSE203067 dataset. With respect to the GSE203067 dataset, only LN samples are shown. The
width of the line indicates the strength of the interaction. The size of each cell type dot indicates the number of cells. The color of each cell type dot
indicates the cell type. D–F) Lollipop plot of the top 10 ligand-receptor pairs between CD8+ CXCL13+ Tex cells and C1QC+ TAMs in the GSE139829,
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primarily related to drug resistance and the propensity for metas-
tasis. Although one recent study explored the molecular mecha-
nisms of chemoresistance through scRNA-seq, the TME of LNs
has seldom been studied.[31] Moreover, the interplay between spa-
tial heterogeneity, chemoresistance, and metastatic potential re-
mains an intriguing puzzle.

In our research, we harnessed the power of SiT. Our study not
only identified isoforms as predictors of clinical outcomes and
metastasis, but it also revealed the diverse isoform spatial dis-
tributions. Nevertheless, the temporal order of alternative splic-
ing may result in identical expression level changes for the same
isoforms. A prior study highlighted how alternative splicing can
modulate ribosomal composition, ultimately shaping the spa-
tial phenotype of cancer cells.[20] Additional evidence has proven
the strong relationship between alternative splicing and patient
survival.[20,32] This underscores the temporal heterogeneity inher-
ent in isoform biogenesis, which contributes to the observed spa-
tial heterogeneity in isoforms.

Strikingly, through SiT, our exploration unveiled a distinct dis-
tribution of CD74 isoforms across various regions, each show-
casing unique patterns of enrichment. The two CD74 isoforms
exhibited different distributions, and the ratio of the two iso-
forms was strongly related to the enrichment of C1QC+ TAMs
and CD8+ CXCL13+ Tex cells. Considering the enrichment of
C1QC+ TAMs and CD8+ CXCL13+ Tex cells, the role of alterna-
tive splicing was examined.

Previous studies have demonstrated that TAMs engage CD8+

T cells and participate in spatiotemporal interactions, which may
be enhanced under hypoxic conditions.[9] TAMs play a pivotal role
in the intricate landscape of cancer immunity. Notably, the sup-
pressive effect of TAMs on CD8+ T cells has not been definitively
determined in a spatial context.[21] High numbers of TAMs are as-
sociated with poor prognosis of a variety of solid tumor types.[33]

The immunosuppressive role of TAMs in cancer progression and
dissemination has been widely reported in many studies.[34,35]

In the context of LNs, a recent study revealed the emergence
of immunosuppressive APOC1+ APOE+ macrophages charac-
terized by C1QA expression.[35] Consistent with the findings of
a previous study, our study similarly observed a preference for
exhausted T cells for C1QC+ TAMs. Narrowing down from the
antigen-specific synaptic contacts described in a previous study,
we indicated that the MIF-CD74 ligand–receptor pair is the key
player in the C1QC+ TAMs – CD8+ CXCL13+ Tex cell axis.[9] We
showed that C1QC+ TAMs predict a poor prognosis in ESCC pa-
tients and show high enrichment with CD8+ CXCL13+ Tex cells
in LN and tumor samples after chemotherapy.

In contrast to other TAMs, C1QC+ TAMs exhibited greater
CD74 expression. Elevated CD74 expression has been associ-
ated with adverse prognosis, disease progression, and metasta-
sis in multiple cancer types.[36–38] Beyond its role in chaperon-
ing MHCII, cell surface CD74 also functions as a receptor for

MIF.[39] Our study showed that C1QC+ TAMs colocalized with
CD8+ CXCL13+ Tex cells through MIF-CD74. Furthermore, MIF-
CD74 was always the highest probability ligand-receptor pair
in the ESCC, BCC, and UVM cohorts. According to a previous
report, blocking MIF-CD74 signaling in macrophages can re-
store antitumor immune responses in patients with metastatic
melanoma.[40] Additionally, in a mouse xenograft model, inhi-
bition of the MIF-CD74 interaction significantly suppressed tu-
mor growth.[41] Therefore, MIF-CD74 may play an important role
in the spatial codependency between C1QC+ TAMs and CD8+

CXCL13+ Tex cells, and this role is shared with several epithelial
cancer types.

CD74 isoforms were proven to be related to MIF and pa-
tient survival. Macrophage-released endogenous CD74 inhibits
melanoma cell growth and stimulates apoptosis under IFN-𝛾
stimulatory conditions by inhibiting the MIF/CD74/AKT survival
pathway.[39] Structural analysis using AlphaFold2 revealed that
both isoforms possessed MHC class II-associated invariant chain
domains. However, the CD74-201 isoform contains an additional
thyroglobulin type-1 domain, which was predicted to change the
secondary structure and solvent accessibility. Hence, we hypoth-
esized that CD74-201 might confer an advantage in T-cell recruit-
ment based on its unique structure.

To validate our conclusions and extend their applicability, fur-
ther analysis involving larger cohorts is imperative. Also, the
pseudotime analysis R package was used for inferring cellular dy-
namic trajectories and quantifying the cell fate in this research.
The experimental constraints need to be addressed for assess-
ing the gene expression along with the cell fate. In addition, al-
though isoform quantitative analysis identified the key CD74 iso-
form, the general alternative splicing mechanism at the spatial
level has not been determined. To unravel these underlying reg-
ulatory processes, we advocate for the utilization of additional
R packages or bioinformatic tools specifically tailored for spa-
tial isoform information. Additionally, SiT still has shortcomings,
such as low UMI labeling and low numbers of barcoded reads,
which represent only 60–70% of the total reads. However, fur-
ther spatial isoform sequencing technology with increased accu-
racy is needed. CD74 is also expressed in other cell types, includ-
ing epithelial cells, within lymph node metastases of ESCC.[37]

Therefore, further exploration is needed to gain deeper insights
into the potential regulatory mechanisms of CD74 in shaping the
lymph node tumor microenvironment during metastasis. Eluci-
dating the functions of CD74 in different immune and epithelial
cells could provide new insight into its role in coordinating the
metastatic niche.

In addition, our findings may contribute to the develop-
ment of personalized metastasis diagnosis, mRNA drug ther-
apy, and mRNA-based molecular imaging. Antisense oligonu-
cleotides (ASOs) are small, synthetic, single-stranded nucleic
acid polymers that offer the ability to selectively target specific

GSE123814, and GSE203067 datasets. The colors indicate the ligand-receptor pairs. G) Venn diagram of the top ligand‒receptor pairs between CD8+

CXCL13+ Tex cells and C1QC+ TAMs in our ESCC dataset, the UVM (GSE139829) dataset, the BCC (GSE123814) dataset and the ESCC (GSE203067)
dataset. H) Kaplan–Meier curves for OS in the 90 patients in the TCGA-ESCC cohort stratified according to high (n = 44) and low (n = 46) GSVA scores
for the C1QC+ CD74+ TAM marker. I) Boxplot of the GSVA score of the C1QC+ CD74+ TAM marker in the 154 patients in the HRA003107 cohort for the
T1 (n = 5), T2 (n = 77), T3 (n = 62) and T4 (n = 10) tumor stages. P value was calculated by an unpaired two-tailed Student’s t-test. J) Boxplot of the
GSVA scores of the C1QC+ CD74+ TAM marker in the 155 patients in the HRA003107 cohort for grades G1 (n = 22), G2 (n = 84) and G3 (n = 49). P
value was calculated by an unpaired two-tailed Student’s t-test.
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isoforms. ASO drugs possess the unique advantage of target-
ing virtually any genetic component, even those traditionally
deemed intractable or resistant to drug intervention, including
small molecules and antibodies. Additionally, ASOs have other
benefits, such as rapid production, long-term effects, usefulness
for rare diseases, and no risk of genotoxicity.[42] Moreover, ASOs
play an important role in molecular imaging. As an emerging
technique, molecular imaging allows in situ visualization, cat-
egorization, and exploration of molecular biological processes
within living organisms using modalities such as positron emis-
sion tomography (PET), magnetic resonance imaging (MRI), or
computed tomography (CT).[43,44] Specific oligonucleotide imag-
ing can be leveraged for therapy monitoring and evaluating treat-
ment effectiveness.[45]

4. Experimental Section
Experimental Design: To investigate the spatial isoform distribution in

ESCC patients after chemotherapy, systematic research was conducted.
ScRNA-seq, TCR, and SiT (spatial isoform transcriptome) sequencing
were performed on tumor tissues and LN tissues from one patient with
metastasis and chemoresistance. The analysis of single-cell and spatial
transcriptome profiles focused on three main aspects: technique accessi-
bility and data quality of SiT for solid tumors; single-cell transcriptomic
profiling (cell clustering, cell-cell interaction analysis, TCR profiling, and
pseudotime analysis); and spatial transcriptomic profiling (spatial gene ex-
pression pattern, spatial cluster interaction analysis, pseudotime analysis,
spatial isoform classification, isoform distribution pattern, and isoform
spatial relationship analysis). Validation was performed in four parts: SiT
validation data from 13 tumor samples from 13 patients; RNAscope and
BaseScope in situ validation in patients’ tissues; scRNA public database
validation based on thirty-four patients with three epithelial cancer types;
and bulkRNA public database validation based on 245 patients with ESCC.
This study was reviewed and approved by the relevant ethics committees,
including the Institutional Review Boards of Shanxi Medical University and
the independent ethics committee of the National Cancer Center, Cancer
Hospital, Chinese Academy of Medical Sciences (CHCAMS) (2016LL106,
ChiCTR2000040034). Written informed consent was obtained from each
participant.

10X Single-cell RNA Sequencing and TCR: scRNA-seq was performed
by using the 10X Chromium Single-cell 5′ v2 Kit (10X Genomics, Pleasan-
ton, CA) following the manufacturer’s protocol. Sequencing libraries were
prepared according to the manufacturer’s protocol. Sequencing was per-
formed on a HiSeq 4000 platform (Illumina, Inc., San Diego, CA). The
raw sequencing data were processed with the CellRanger pipeline (ver-
sion 7.0.0, 10X Genomics) and mapped to the hg19 reference genome to
generate matrices of gene counts by cell barcodes. Additionally, the TCR li-
brary was generated from single-cell V(D)J sequencing. The raw single-cell
V(D)J sequencing data were processed with the CellRanger pipeline (ver-
sion 7.0.0, 10X Genomics) and mapped to vdj_GRCh38_alts_ensembl-
7.0.0.

10X Genomics Visium Spatial Library Construction: We followed the SiT
pipeline with some modifications. Hematoxylin and eosin (H&E) staining
of tumor sections was performed first. A Visium Spatial Tissue Optimiza-
tion Slide & Reagent Kit (10X Genomics, Pleasanton, CA, USA) was used
to optimize permeabilization conditions for tumor and LN tissue samples.
Spatially barcoded full-length cDNA was generated using a Visium Spatial
Gene Expression Slide & Reagent Kit (10X Genomics) following the manu-
facturer’s protocol. The cDNA amplification temperatures, times, and cy-
cles used were listed in Tables S2 and S3 (Supporting Information). A frac-
tion of each cDNA library was subjected to nanopore sequencing, whereas
10 μL was subjected to fragmentation, adapter ligation, and indexing ac-
cording to the 10X Genomics Visium library preparation protocol.

Oxford Nanopore Sequencing and Illumina Sequencing: cDNA was am-
plified through PCR with KAPA HiFi HotStart ReadyMix (KK2602, Merck)

for 10 cycles following the kit instructions. The samples were then cleaned
with Beckman Coulter SpriSelect Beads (Cat# B23318) at a 0.6x ratio, af-
ter which the cDNA was eluted in 50 μL of nuclease-free water. The size
distribution was checked using an Agilent Fragment Analyzer Large Frag-
ment Kit (Cat# DNF-464-0500). An Oxford Nanopore-compatible library
was produced using 500 ng of cDNA derived from 10x Genomics Visium
following the Genomic DNA by Ligation protocol (SQK-LSK109) from Ox-
ford Nanopore with the following modifications. End repair was carried out
by omitting NEBNext FFPE DNA Repair, and the incubation times were
extended to 10 min at 20 °C and 10 min at 65 °C. The loading input for
PromethION was increased to 150 fmol, sequencing was carried out for
20 h, and base calling was performed using Guppy (version 3.2.10).

Illumina Sequencing Data Processing: For short-read sequencing, the
sequencing data were processed using SpaceRanger software (version
1.1.0) with default parameters and mapped to the human genome (hg38).
Gene expression was quantified based on the unique molecular identifier
(UMI). For quality control, low-quality spots whose gene count was <1000
or whose mitochondrial gene ratio was >5% were removed.

Oxford Nanopore Data Processing: Nanopore reads were processed ac-
cording to the SiT protocol, which refers to the scNaUmi-seq protocol,
with slight modifications.[46] All reads were scanned for poly(A/T) tails
and 3′ adapter sequences to determine the orientation of the reads and
strand specificity. The scanned reads were subsequently aligned to the
human genome (hg38) with minimap2 (version 2.17) in spliced align-
ment mode.[47] Spatial barcodes and UMIs were subsequently assigned
to nanopore reads using the strategy and software previously described
for single-cell libraries. The consensus sequence per molecule (UMI)
was computed according to the number of available reads for the UMI
using the ComputeConsensus sicelore-2.0 pipeline (https://github.com/
ucagenomix/sicelore). Consensus cDNA sequences were aligned to the
human genome (hg38) built with minimap2 (version 2.17) in spliced
alignment mode. SAM records matching known genes were analyzed for
matching Gencode vM24 transcript isoforms (same exon makeup). To as-
sign a UMI to a Gencode transcript, a full match was required between
the UMI and the Gencode transcript exon-exon junction layout authoriz-
ing a two-base margin of added or lacking sequences at exon boundaries
to allow for indels at exon junctions and imprecise mapping by minimap2.

Spatial Multiassay Storage: Raw gene expression matrices generated
by Space Ranger were processed using R (version 4.1.0) and the Seurat
package (version 4.2.1).[48] We created Seurat objects for each sample
with different assays for the analysis as follows: i) “Spatial” containing
gene-level raw short-read data from the Space Ranger output, ii) “ISOG”
containing the gene-level Nanopore long-read data, and iii) “ISO” contain-
ing isoform-level transcript information where only the molecules where
all exons were observed were kept.

Differential Splicing Detection and Isoform Classification: The Seu-
rat FindMarkers function (logfc.threshold = 0.25, test.use = “Wilcox”,
min.pct = 0.1) was used to detect genes showing at least two isoforms
as markers of different brain regions via the nanopore isoform-level “ISO”
assay. The results were filtered for nonmajority isoforms, i.e., not the iso-
form showing the highest bulk expression, requiring a Bonferroni-adjusted
P value of ≤0.05. We classified the isoforms into four types based on the
relationship between the isoform and the corresponding gene and spa-
tial distribution pattern: 1) multi all: isoforms with various “alternate iso-
forms” for a corresponding gene that were distributed to all spatial niches;
2) multi one: isoforms with various “alternate isoforms” for a correspond-
ing gene that were uniquely expressed in one spatial niche; 3) multi others:
isoforms with various “alternate isoforms” for a corresponding gene that
were distributed to two or more spatial niches but not all spatial niches;
and 4) single: an isoform that was the only isoform of a corresponding
gene.

3D Isoform Expression Patterns: To observe all the isoforms of RPS9 in
the same 3D plot, the expression data for the three isoforms from the Seu-
rat object was first extracted and combined into one assay. Then, the tissue
sections were masked and aligned into the Seurat object by using the Cre-
ate3DStack function to create the 3D stack from the aligned images. The
FeaturePlot3D function of the STutility package was used for visualizing
the stacked isoforms in 3D.[49]
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Transcriptome Correlation: We computed and minimized the physical
distance between spots to define the pair of spots showing the smallest
distance between sections. We then computed the whole-transcriptome
correlation per pair of spots using the cor.test function of the Stats R pack-
age with gene-level short-read (spatial assay) and long-read (ISOG assay)
UMI count matrices.

Single-cell RNA-seq Data Processing: After alignment and quantifica-
tion through CellRanger, the following quality control procedure was ap-
plied. Cells with <500 UMIs and above 4000 UMIs were filtered out. Ad-
ditionally, cells with more than 5% mitochondrial gene expression were
filtered. Doublets were identified and filtered using the DoubletFinder
package.[50] Batch effects derived from different samples were adjusted
using the Harmony package.[51]

Dimension Reduction and Unsupervised Clustering: By using the Nor-
malizeData, FindVariableFeatures, and ScaleData functions, the counts
were normalized. Dimension reduction was performed by the RunPCA
function. For visualization, the dimensionality was further reduced by us-
ing the runUMAP function.

Contact Frequency Calculation: The six closest spatial spots to any
given spatial spot were defined as their spatial spot neighbors. Spatial
niches were clustered through previous unsupervised clustering. Each
spot was labeled with its spatial niche. For each spatial spot, contact fre-
quency was defined as the number of different spatial niches in its spatial
spot neighbors. Therefore, the number of neighboring spatial niches were
counted that differed from their own spatial niche for each spot. This fre-
quency was computed for each spatial spot across all samples. The boxplot
was generated to compare the contact frequency of spatial spots in each
sample by ggplot2 R package.[52]

Cell Type Annotation: All the clusters were annotated by known marker
genes (COL1A1, COL1A2, CD19, MS4A1, CD79B, CD79A, CST3, LYZ,
HPGDS, MS4A2, CD3E and MZB1). In monocytes/macrophages, clusters
were annotated based on previously published markers (FCN1, S100A9,
S100A8, FCGR3A, LST1, LILRB2, IBHBA, IL1RN, CCL4, NLRP3, EREG and
IL1B for FCN1+ monocytes/macrophages; LYVE1, PLTP, C1QC, C1QB and
C1QA for C1QC+ TAMs).

Differential Gene Expression Analysis and Single-cell TCR Analysis: All
differential gene expression analyses and marker gene identification were
performed with the Seurat R package. The differentially expressed genes
for each cluster compared with those for all other cells were identified
using the FindAllMarkers function. We annotated the Seurat object with
clonal abundance with the scRepertoire R package.[53] A volcano plot was
generated using the EnhancedVolcano package.[54]

Gene Ontology (GO) Enrichment Analysis: GO enrichment analysis
was performed using the clusterProfiler (version 4.2.2) R package, and a
Benjamini–Hochberg-adjusted p < 0.01 was considered to indicate statis-
tical significance. We used the dot plot function to visualize the enrichment
results.[55]

Gene Set Variation Analysis: The hallmark pathway gene sets were ex-
ported from the MSigDB database. The GSVA score was calculated based
on the top 50 C1QC+ TAM marker gene signatures in the TCGA-ESCC co-
hort. Group classification was based on the mean GSVA score. The GSVA
score was calculated by the GSVA package.[56] For T cells, the gene set
scores were calculated using the AddModuleScore function of the Seurat
package. The module genes used were GZMA, GZMA, GZMH, GZMM,
GZMK, GNLY, PRF1 and CTSW (for cytotoxicity), KIR2DL1, KIR2DL3,
KIR3DL1, KIR3DL2, LILRB1 and LAG3 (for HLA-dependent inhibitory re-
ceptor); PDCD1, SIGLEC7, CD300A, CD96, TIGIT and HAVCR2 (for HLA-
independent inhibitory receptor); KIR2DL4, CD160 and KLRC2 (for HLA-
dependent activating receptor); and NCR3, NCR1, KLRK1, CRTAM and
FCGR3A (for HLA-independent activating receptor).

Single-cell Trajectory Analysis and Cell–Cell Interaction Analysis: We used
human ESCC single-cell sequencing data from Zhang, Xiannian, et al. as
a reference dataset.[23] We filtered and retained relevant marker genes of
the reference dataset with an AUC > 0.8. For each dataset, 100 cells were
randomly sampled from all major cell types as input for the subsequent
deconvolution analysis. For each sample, spatial spots were deconvoluted
using SPOTlight (version 0.99.11).[57]

CNV Estimation: We applied the InferCNV R package (version 1.10.1)
using a moving average of 100 analyzed genes to estimate CNVs in each
spot and at each analyzed gene/chromosomal location.[58] For each sam-
ple, the niche with the highest CNV level was used as an independent
reference.

Spatial Trajectory Analysis and Niche-Niche Interaction Analysis: All lig-
and‒receptor interaction analyses and spatial trajectory analyses were per-
formed with stlearn. We imported the clustering and annotation data for
all the samples from Seurat. We ranked the top 50 interacting pairs with
the strongest interaction. We constructed a trajectory tree of niches that
included CD8+ CXCL13+ Tex cells and C1QC+ TAMs. By manually indicat-
ing a “pseudo” trajectory from a low CD74 isoform ratio to a high CD74
isoform ratio, a gene expression change pattern was constructed by using
SPATA2.[59]

Enrichment of CD8+ CXCL13+ Tex Cells and C1QC+ TAMs Identification
and Enrichment Score Calculation: CD8+ CXCL13+ Tex cells and C1QC+

TAMs were located by filtering the spots with marker expression > 0
(CD8A, CXCL13, CD3E, PDCD1 for CD8+ CXCL13+ Tex, C1QC, LYZ, CD74,
APOE, CSF1R for C1QC+ TAM). The enrichment was defined as spots and
its nearest 6 spots contained CD8+ CXCL13+ Tex cells and C1QC+ TAMs.
The enrichment score was calculated as the number of spots in the near-
est six spots containing different cell types. If the spots containing both
CD8+ CXCL13+ Tex cells and C1QC+ TAMs, The enrichment score repre-
sents the sum of scores calculated separately for CD8+ CXCL13+ Tex cells
and CD8+ CXCL13+ Tex cells C1QC+ TAMs interactions.

Isoform Characterization and Protein Structure Prediction: The isoform
domain annotations of the CD74 isoforms were obtained from Pfam.[60]

The secondary structure and solvent accessibility annotation were ob-
tained from PredictProtein.[61] The protein structures of the CD74 iso-
forms were predicted from the AlphaFold2 Colab notebook.[62]

Survival Analysis and Clinical Information Correlation Analysis: RNA-
seq and clinical data were obtained from HRA003107 (WGS &
RNA-seq, https://ngdc.cncb.ac.cn/gsa-human/browse/HRA003107) and
TCGA-ESCC. The survival curve was plotted using the survminer (version
0.4.9) R package.[63] The GSVA score was calculated based on the top 50
C1QC+ TAM marker gene signatures in the TCGA-ESCC cohort. Group
classification was based on the mean GSVA score. The GSVA score was
calculated with the GSVA package.[56]

Detection of Colocalized Cells by RNA In Situ Hybridization: RNAscope
analysis of tissues was performed using an RNAscope Reagent Kit (Ad-
vanced Cell Diagnostics, Hayward, CA, USA). The RNA integrity of each
sample was quality controlled with an RNAscope probe specific for C1QC,
CXCL13, and CD74 RNA. The samples were counterstained with DAPI.
Representative images were digitally obtained using Vectra Polaris Flu-
orescence Whole Slide Scanning (PerkinElmer, Shelton, CT, USA). Tis-
sue imaging analysis was performed by inForm (PerkinElmer, Shelton,
CT, USA). Group comparisons of two isoforms between tumor and LN
samples were performed using one-way and two-way analyses of variance
(ANOVAs) with repeated measures comparisons when needed.

Detection of the CD74 Isoform by BaseScope: The BaseScope Duplex
assay from Advanced Cell Diagnostics was used to detect the specific
CD74 mRNA by in situ hybridization. Hydrogen peroxide, Protease IV
treatment, and RNA in situ hybridization were performed using the
BaseScope Duplex reagent kit (Advanced Cell Diagnostics, Newark, CA,
USA). Specific CD74-201 and CD74-202 BaseScope probes were designed.
The samples were counterstained with hematoxylin Gills I (GHS132-1 L;
Sigma) diluted to 50% in water (30-second staining) and ammonium hy-
droxide 28–30 WT% (205840025; Acros Organics, Geel, Belgium) diluted
to 0.02% in water (30-second staining). Images were obtained using an
Aperio AT2 scanner (Leica; zoom ×40) and analyzed with ImageScope
software (Leica). The positive Pixel Count v9 program of ImageScope soft-
ware was used for quantitative analysis of the relative area covered by each
signal. Group comparisons of two isoforms between tumor and LN sam-
ples were performed using one-way and two-way ANOVAs with repeated
measures comparisons when needed.

Statistical Analysis: All statistical analyses were performed in R. Pre-
processing of data was described in the previous method section. Numer-
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ical results were reported as the means± SEMs. A t-test was used to as-
sess the statistical significance of differences between means. p < 0.05
was defined as the threshold for statistical significance. The Benjamini–
Hochberg (BH) method was used for P value correction in multiple tests.
Detailed statistical methods in this paper can be found above.
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