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Abstract

Background: Esophageal squamous cell carcinoma (ESCC) comprises 90% of all esophageal 

cancer cases globally and is the most common histology in low-resource settings. Eastern Africa 

has a disproportionately high incidence of ESCC.

Methods: We describe the genomic profiles of 61 ESCC cases from Tanzania and compare them 

to profiles from an existing cohort of ESCC cases from Malawi. We also provide a comparison to 

ESCC tumors in The Cancer Genome Atlas.

Results: We observed substantial transcriptional overlap with other squamous histologies via 

comparison with The Cancer Genome Atlas (TCGA) PanCan dataset. DNA analysis revealed 

known mutational patterns, both genome-wide as well as in genes known to be commonly 

mutated in ESCC. TP53 mutations were the most common somatic mutation in tumors from 

both Tanzania and Malawi but were detected at lower frequencies than previously reported in 
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ESCC cases from other settings. In a combined analysis, two unique transcriptional clusters 

were identified: a proliferative/epithelial cluster and an invasive/migrative/mesenchymal cluster. 

Mutational signature analysis of the Tanzanian cohort revealed common signatures associated with 

aging and cytidine deaminase activity (APOBEC) and an absence of signature 29, which was 

previously reported in the Malawi cohort.

Conclusion: This study defines the molecular characteristics of ESCC in Tanzania, and enriches 

the Eastern African dataset, with findings of overall similarities but also some heterogeneity across 

two unique sites.

Impact: Despite a high burden of ESCC in Eastern Africa, investigations into the genomics in 

this region are nascent. This represents the largest comprehensive genomic analysis ESCC from 

sub-Saharan Africa to date.
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INTRODUCTION

Esophageal cancer is the sixth leading cause of cancer mortality worldwide (1). 

Adenocarcinoma and squamous cell carcinoma are two histologic subtypes of esophageal 

cancer, which have distinct biologic characteristics, geographical distributions, and risk 

factors (2). Esophageal squamous cell carcinoma (ESCC) is rare in the United States but 

comprises 90% of all esophageal cancer cases globally. There is significant geographic 

variation in the incidence of ESCC, with a majority of cases occurring in developing 

countries. Specific regions in Iran, central Asia, north-central China, southern Africa, East 

Africa, and southern South America, are impacted by a disproportionately high incidence of 

esophageal cancer (2).

The eastern coast of Africa, from Ethiopia to South Africa, has recently gained increased 

attention for its disproportionately high incidence of ESCC (3–6). Esophageal cancer is the 

leading cause of cancer mortality amongst males in Kenya, and the highest rates of ESCC 

mortality have been reported in Malawi (1). A disproportionately high number of patients 

younger than 40 at diagnosis has been described across a number of sites in East Africa 

(3,7–9). The high incidence of young-onset ESCC, as well as the geographic distribution 

along the eastern corridor of Africa, suggests plausible contribution of genetic susceptibility 

and/or a unique environmental or infectious risk factor(s).

Etiologic, genetic, and genomic studies of ESCC in Asian, European, and American 

populations have been extensive, but investigations into ESCC in sub-Saharan Africa are 

nascent by comparison. The few available studies on this topic have implicated possible 

contributions to the high incidence from thermal injury due to consumption of hot 

beverages, alcohol use, poor oral hygiene, low soil selenium levels, indoor air pollution 

from biomass burning and other environmental exposures, or possible infectious causes 

(4,10–17). Findings from a prior study conducted in Tanzania reported an association of 
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low socioeconomic status with increased risk for ESCC, suggesting the contribution of some 

undetermined exposure or constellation of exposures (18).

Global collaborative studies in cancer genomics have potential to identify specific 

mutational signatures that may shed light on causal factors and opportunities for cancer 

prevention (19). While The Cancer Genome Atlas (TCGA) Network and International 

Cancer Genome Consortium (ICGC) comprehensively analyzed common malignancies in 

Western countries, ESCC is a relatively rare diagnosis in the United States and Europe. 

While earlier studies point to global heterogeneity in the genomic characteristics of ESCC, 

these have not included analyses of African ESCC tumors. Analyses from China and 

Japan have demonstrated frequent mutations in genes commonly aberrant in squamous 

cell cancers, including TP53, RB1, CDKN2A, PIK3CA, NOTCH1, and NFE2L2 (20–23). 

Mutation of the tumor suppressor gene TP53 is the most frequent genetic alteration in ESCC 

and esophageal adenocarcinoma alike, with higher rates in ESCC and mutation profiles 

known to vary widely across geographic areas (24–27).

A previous systematic review of studies on the genetics of ESCC in African populations 

included only 23 studies; almost all were candidate gene studies with only a single study 

from Malawi including whole-exome sequencing (28). The recent whole-exome sequencing 

and RNA transcriptomic analysis of 59 ESCC tumors in Malawi reported a high proportion 

of tumors without TP53 mutations and identified a unique tumor mutation signature 

interpreted as consistent with an unknown carcinogenic exposure (29). We hypothesized 

that detection of a novel mutational signature could be indicative of a carcinogenic exposure 

unique to eastern Africa, particularly if findings from Malawi were replicated in ESCC 

tumors from Tanzania.

The high societal burden in eastern Africa of this deadly and understudied disease 

emphasizes the need for a comprehensive molecular analysis of ESCC in this region, as 

identification of distinct mutational signatures (30) could point to potentially modifiable 

risk factors, including possible environmental exposures or infectious etiologies. Thus, we 

aimed to evaluate the somatic mutation rate, mutational patterns, copy number profiles, and 

recurrently mutated genes in tumor specimens obtained from ESCC patients in Tanzania. 

We aimed to compare the molecular characteristics of this disease from two representative 

sites in eastern Africa to molecular characteristics of ESCC tumors in TCGA, in effort to 

outline similarities and differences. Finally, in order to evaluate the possible heterogeneity of 

the disease within eastern African, we compared results from our Tanzanian cohort to those 

from the previously described cohort from Malawi.

MATERIALS AND METHODS

Study Design and Population

Muhimbili National Hospital (MNH) is the national referral and teaching hospital affiliated 

with Muhimbili University of Health and Allied Sciences (MUHAS) in Dar es Salaam, 

Tanzania. This prospective study recruited sequential patients with a suspected diagnosis of 

ESCC who sought care at MNH. From May 2016 to February 2018, all patients ≥18 years 

old who presented to MNH with symptoms of dysphagia who were planned to undergo an 
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endoscopy due to concern for a diagnosis of esophageal cancer were considered eligible for 

participation. Non-permanent residents of Tanzania, and pregnant or lactating women were 

not eligible. Written informed consent was obtained from all participants prior to endoscopy. 

Informed consent was obtained in Swahili, the national language of Tanzania. Only those 

with endoscopic findings consistent with malignancy were considered for inclusion in the 

study protocol. Patients who were not found to have endoscopic findings consistent with 

malignancy at the time of endoscopy did not undergo biopsies for research purposes and 

were excluded from all subsequent study procedures. All biopsy specimens underwent 

pathologic review at the Central Pathology Lab at MNH, and a subset of cases underwent 

confirmatory pathologic review at the University of California, San Francisco (UCSF). The 

first 61 cases with biopsy confirmed ESCC histology were included in this analysis.

Ethics Statement

The study was approved by institutional review boards at UCSF (15–18275) and MUHAS 

(2018–08-22/AEC/Vol.XII/91, amendment of 2018–04-03/AEC/Vol.XII/84). A standardized 

Material Transfer Agreement, governing the transfer of tangible research materials between 

two organizations was ratified by UCSF and MUHAS prior to transfer of materials. 

Guidelines for shipment of Biologic Substances Category B (UN 3373) were adhered to. 

Human studies approval for the study conducted in Malawi was previously granted by the 

Malawi National Health Sciences Research Committee and the University of North Carolina 

Internal Review Board, granting permission for submission of data to dbGaP.

Data Collection

Demographic, clinical, and pathologic variables were abstracted from the medical records. 

In addition, each patient participated in an in-person questionnaire. Data were collected 

regarding educational level, occupational history, family history of illnesses, prior or 

ongoing tobacco and/or alcohol use, and environmental exposure.

Biospecimen Collection and Processing

The specimen collection and processing workflow from Tanzania is summarized in Figure 

1. If a tumor was visualized at the time of endoscopy, up to six core biopsies were 

obtained. Initially, we used both PAXgene Tissue Container (QIAGEN) and RNAlater 
(Thermo Fischer Scientific Inc.), both of which allowed for flexible transport of specimens 

from Tanzania and resulted in preserved genetic integrity and expression profiles in the 

first 10 samples (see Supplementary Figure S1). Based upon these results, RNAlater was 

used exclusively thereafter, and all specimens included in this analysis were preserved in 

RNAlater.

Tumor specimens were immediately added to 10 ml of RNAlater at the time of collection. 

We processed all biopsy specimens to be <0.5 cm thick in order to ensure proper diffusion of 

RNAlater through the tissue. Each case was de-identified with a unique study identification 

number. Specimens were batched and shipped once per week at room temperature from Dar 

es Salaam, Tanzania to San Francisco, California using a commercial shipping service.
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RNA and DNA extraction

Nucleic acids were extracted from tumor samples using the Qiagen AllPrep method and 

were quantified using Pico/RiboGreen. RNA integrity was evaluated using an Agilent 

bioanalyzer. DNA and RNA quantity were measured by nanodrop method, and DNA 

was further confirmed by picogreen method, yielding measures of total DNA and RNA 

acquired (ug). Saliva was collected in the Oragene DISCOVER OGR-500 tube as a source 

of germline DNA. Extraction of DNA from saliva samples was performed using the PrepIT 

L2P extraction kit from Oragene, and DNA was quantified using PicoGreen.

Whole genome sequencing

DNA sequencing libraries were prepared for both tumor and matched-normal samples with 

the KAPA Hyper prep kit. Sequencing was performed on the Illumina HiSeq or NovaSeq 

platform to a target depth of 60x coverage for tumor samples and 30x depth for normal 

samples. DNA sequencing reads were aligned to the UCSC hg19 build of GRCh37 using 

default parameters for “bwa mem -M” version 0.7.5, secondary alignments were removed 

with samtools, duplicates were marked with samblaster 0.1.21, and GATK version 2.3 was 

used for INDEL realignment and quality recalibration. Small variants were called with 

previously described methods (31).

RNA sequencing

RNA isolations with RIN>7 were incorporated into two independent libraries from each 

tumor sample using the KAPA Stranded RNA-seq with RiboErase kit, followed with 

sequencing on Illumina HiSeq or NovaSeq to a target of 200 million 150bp paired reads. 

RNA-seq read data were aligned to a RefSeq transcriptome using bowtie2 version 2.2.6 with 

options “-k 200 --dpad 0 --gbar 99999999 -mp 1,2 --np 1 --score-min L,0,0.1 --no-mixed 

--no-discordant --sensitive -I 1 -X 1000”. Gene level quantification of TPM was estimated 

with RSEM version 1.2.25. For assessing expression of variants found in DNA, local 

alignment was performed with bowtie2 with parameters “-z -k 5 --sensitive-local”.

We deployed the quantile normalization procedure (32) to bring various RNA-Seq datasets 

into a common expression space. We performed quantile normalization for each individual 

gene, excluding zero quantifications from both target and source distributions, adding them 

back in after the transformation. We transformed the source distribution’s data for each 

gene to a chosen target distribution by matching quantiles for each value. In the case of the 

samples from Tanzania, we used a set of clinical formalin-fixed, paraffin-embedded (FFPE) 

samples (n = 1,699) as the target distribution (33). In the case of Malawi samples, we used 

the Tanzanian samples (n = 61) as the target distribution.

RNA transcript quantification was computed as an average number of reads per base within 

each transcript. In order to assess gene expression, we obtained transcript per million (TPM) 

from RSEM output of RNA sequencing data. We summarized per-gene expression as a sum 

of TPM for all isoforms of a given gene. We quantified all genes that have at least one 

isoform that begins with NM_ (mRNA RefSeq category) to compose the final expression 

matrix of protein coding genes. For consistency in relative RNA quantification between 

samples, we applied rescaling to gene-wise TPM values in sample-wise manner, so each 
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sample’s TPMs sum up to 1 million. This step allowed for a more uniform and interpretable 

comparison of expression levels across samples. The RNA sequencing coverage and quality 

statistics for each sample are summarized in Supplementary Table 1.

Analysis of a previously published dataset from ESCC cases in Malawi

Whole-exome DNA sequencing was previously performed on 59 untreated ESCC tumor 

specimens and paired normal DNA from Malawi, along with whole-transcriptome RNA 

sequencing at 100 million 48bp paired reads using previously described methods (29). We 

accessed publicly available data from dbGaP (study accession number phs001448).

t-Distributed Stochastic Neighbor Embedding (t-SNE) data projection and visualization

We utilized t-SNE methods (34) to project high-dimensional RNA-Seq data for the joint 

cohort of Tanzania, Malawi, TCGA and clinical FFPE samples into two-dimensional space. 

We first selected 3,000 most varying genes across the joint dataset and then applied Rtsne 

function from Rtsne R package with the following parameters: perplexity = 200, verbose = 

TRUE, eta = 500, check_duplicates = FALSE.

Mutation Detection using RNA

RNA and DNA Integrated Analysis (RADIA) is a published method to improve somatic 

mutation detection by analyzing the patient matched normal and tumor DNA along with 

the tumor RNA-Seq data to identify “RNA Rescue” mutations (31). Using patient-matched 

normal and tumor DNA along with tumor RNA, RADIA identified RNA editing events 

across the entire transcriptome.

MutSigCV

We next used MutSigCV (version 1.41) (35) with default coverage, covariate setting for 

background mutation adjustment to identify genes harboring more mutations than would be 

expected by the sample-specific background rate, in order to generate a list of significantly 

mutated genes. MAF files (read quality >=10) format from either the Tanzania and Malawi 

cohorts were used as input, the q<0.1 was considered statistically significant. Analyses 

were performed on the high-performance computing clustering at the Helen Diller Family 

Comprehensive Cancer Center at UCSF.

RNA-Seq cluster solution (k = 2)

In effort to further evaluate whether advanced molecular profiling could divide ESCC from 

East Africa into discrete subsets that are associated with biologic features, we performed 

a clustering analysis. We used Consensus Clustering R package (36), with hierarchical 

clustering, to scan a range of solutions from k = 2 to k = 10. Based on the average silhouette 

width for each cluster solution, k = 2 was the best solution, closely followed by k = 3 and k 

= 6 as the next best. This pattern remained irrespective of whether the whole transcriptome 

(WT) or top 3,000 (3k) most variable gene features were used to cluster samples. When 

comparing WT and 3k clusters for same-k solutions, almost all samples consistently fell 

into the same clusters, indicating high consistency in cluster solutions regardless of the 

feature space based on which the solutions are produced. We then compared k = 2 (average 
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silhouette score = .87), k = 3 (average silhouette score = .83), and k = 6 (average silhouette 

score = .79) cluster solutions based on 3k. We found that two major clusters of samples 

(n = 94, out of total N = 120, 78%) persisted in every one of these solutions. In fact, 

these samples cluster together in every k = 2 through k = 10 solution. Using two-sided 

binomial test, we estimate that between 70% and 85% of samples in any sample size would 

cluster into these two clusters. Breaking k = 2 solution into more clusters only separates 

the remaining 26 samples into smaller and smaller groups, without affecting the two major 

groups of samples. Our final solution is k = 2 based on the 3,000 most variable genes.

Pathway enrichment analysis for gene clusters

As described in the previous section, our final RNA-Seq clustering solution is based on 

3,000 most varying genes. Gene clustering was performed using hierarchical clustering 

method. Two major gene clusters were observed. Genes in each cluster were compared 

against MSigDB (37) and significant pathways were selected based on hypergeometric 

test significance (FDR <= 0.1). We computed per-gene t-test for RNA-Seq cluster 1 vs. 

2 contrast. We then analyzed resulting per-gene t-statistic values using GSEA desktop 

application (38). Pathways with family-wise error rate (FWER) ≤0.05 were selected for 

plotting.

Statistical analysis

Statistical analyses were performed according to each bioinformatics method as described 

by relevant citations. Differences among clinical and environmental characteristics and 

subtypes were calculated using Chi-squared test or t-test. Age was considered as a 

continuous variable, using a t-test. All other variables were categorical variables, and Chi-

squared test was used. A p-value of <0.05 was considered significant. Bonferroni multiple 

hypotheses correction was applied.

Data availability

Data generated for the Tanzania cohort in this study are publicly available in dbGaP 

at phs003217. Data generated for the Malawi cohort are publicly available in dbGaP at 

phs001448.

RESULTS

Patient Cohort

We recruited 200 patients with histologically confirmed ESCC into a parent study in Dar es 

Salaam, Tanzania. We performed whole-genome sequencing on the first 61 tumors with a 

histologic confirmation of ESCC, which met quality criteria. The median age was 49 (range 

30–86). The majority were male (67%), and 15% were younger than 40 years old. Patient 

characteristics are presented in Table 1.

Mutation Detection and Copy Number Events in Tanzanian Tumors

We detected 4,159 somatic nonsynonymous mutations with a Q score >10 in 61 ESCC 

samples from Tanzania using Mutect. The median number of mutations was 68.18 (+/− 
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61.55) per sample. We found 3,876 single-nucleotide variants (missense, nonsense, silent) 

vs. 283 insertion-deletion (INDEL) mutations.

Genes mutated in >5% of Tanzanian samples appear in Figure 2A. We identified nine genes 

as significantly mutated using MutSigCV: TP53, CDKN2A, HRCT1, ANKLE1, UBXN11, 
ATXN3, TMPRSS13, and TBP (q<0.1). A total of 15 genes were significantly mutated 

in samples from Malawi with this q-value cut-off (see Figure 2B). To remove potential 

false positives, we applied MutSigCV to merged Mutation Annotation Format (.MAF) files 

from the two populations and identified TP53, CDKN2A, HRCT1, ANKLE1, UBXN11, 
ATXN3, TMPRSS13, and TBP as significantly mutated in ESCC. The differential patterns 

between the Tanzanian and Malawian datasets of mutations occurring in ≥5 samples in each 

are shown in Figure 2C. To further characterize biological function of these genes and to 

evaluate the capability of RADIA to rescue low-confidence DNA calls, RNA expression 

levels of these genes were evaluated in both cohorts and appear in Supplementary Figure S2.

TP53 Mutation Detection and Rescue

The TP53 mutation rate originally reported in the Malawi cohort was 78% (46 out of 59 

samples) (29). We initially detected TP53 mutation in 62% of samples from Tanzania, based 

on DNA calls alone (38 out of 61 samples). However, RNA rescue added eight mutation 

calls in seven unique samples. One of those calls occurred in a sample that already had a 

distinct TP53 mutation call, based on DNA, and two calls occurred in the same sample. 

Therefore, use of RNA sequencing (RNAseq) reads resulted in detection of TP53 mutations 

in an additional six samples in which mutations were not initially detected using DNA 

calls alone. Malawi samples were not analyzed in this manner; thus, a direct comparison 

is not available. The overall TP53 mutation rate and rescue in the Tanzanian samples is 

summarized in Figure 3.

Catalog of Somatic Mutations in Cancer (COSMIC) Signatures

Mutational signatures offer clues to the oncogenic process(es) shaping tumor initiation. 

We used WGS data to assign COSMIC mutational signatures to each tumor. Signature 

frequencies in specimens from Tanzania appear in Figure 4. COSMIC mutational signature 5 

was the most common, consistent with other reports in squamous cell cancers.

RNA Expression

Figure 5A presents a scatterplot of t-Distributed Stochastic Neighbor Embedding (t-SNE) 

projection of pan-cancer RNAseq expression data composed of clinical (n=1,699) (33) and 

TCGA (n = 10,471) samples. Each point represents a single sample. The colors reflect the 

sample’s annotated cancer type. Tanzania and Malawi datasets cluster with ESCC and other 

squamous tumors in this background cohort, indicating that Tanzania and Malawi tumors 

are most similar to other malignancies with squamous histology and most similar to other 

esophageal tumors.

Alternative splicing of TP63 into the Delta isoforms define many squamous cell types and 

is common ubiquitous in ESCC. We examined alternative splicing of TP63 using RNAseq 

data. Figure 5B confirms TP63 Delta isoforms are highly expressed across most samples, 
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consistent with previously described analysis of Malawi cohort RNAseq data. This robust 

expression of TP63 is also consistent with findings from TCGA.

Consensus Clustering of samples based on RNA transcription examines intrinsic subtypes 

in larger sample collections (36) revealed two major RNAseq subtypes. To avoid noise 

affecting clustering solution, we performed our clustering analysis based on gene expression 

data for the 3,000 genes with highest variance across the combined Tanzania and 

Malawi datasets. Final RNAseq clustering solution is shown in Figure 4C; both Tanzania 

and Malawi samples were used, annotated by the dataset and cluster color tracks. We 

re-clustered the data using whole transcriptome profiles and also examined alternative 

clustering approaches, to evaluate robustness of our clustering solution. The two major 

sample clusters in the final solution were consistently identified across choices of k 

(k=2:10). Using sample proportion estimates from two-sided binomial test we estimate that 

78% (95% confidence interval: 70–85%) of samples in any sample size fall into these two 

major clusters under any solution. Our final solution is k = 2, based on the silhouette score 

and the sample composition analysis. Two major gene clusters are annotated by different 

dendrogram colors (blue vs. green), and the list of pathways enriched in these gene groups 

are listed on the right side of Figure 4C.

Figure 4D depicts the differential pathway enrichment analysis results for the two 

sample clusters in the RNAseq solution, using Gene Set Enrichment Analysis (GSEA) 

method on the whole transcriptome (38). Subtype 1 (proliferative/epithelial cluster) is 

characterized by epithelial cell differentiation, keratinization, epidermal development, 

cellular metabolic pathways, drug metabolism, adipogenesis and fatty acid metabolism, 

estrogen signaling, the p53 pathway, and inflammatory mediator regulation. Subtype 2 

(invasive/migrative/mesenchymal cluster) was characterized by epithelial to mesenchymal 

transition, extracellular matrix, focal adhesion, KRAS signaling, inflammatory response, 

TNFA vs. TNFKB signaling, IL2/STAT5 signaling, chemokine signaling, hypoxia, MAPK 

signaling, and PI3K signaling.

To determine significant associations of clinical features with the RNAseq subtypes, 

we tested associations of clinical and environmental variables with the two subtypes. 

These variables included age (as a continuous variable), gender, smoking history, 

pesticide exposure, HIV status, tumor purity, and tumor ploidy. No statistically significant 

associations of any of these factors with the individual clusters were identified. We also 

tested for statistically significant associations of molecular markers in Tanzania cohort with 

these two clusters and found that two RNA editing events in TGM5 and GBP6 genes are 

highly enriched in cluster 1 (p-value <e-16). TGM5 is involved in maintenance of epidermis 

and GbP6 has previously been lined to aggressiveness of tumorigenesis in head and neck 

squamous tumors (39).

DISCUSSION

This work provides an unprecedented and comprehensive genomic profiling of ESCC 

tumors from two countries in eastern Africa. The primary analysis was conducted using 

whole-genome sequencing of 61 histologically confirmed ESCC tumors from Tanzania to 
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determine molecular signatures, RNA expression profiles, and RNA editing events. We 

also performed a secondary analysis, comparing data from Tanzanian ESCC tumors to an 

existing dataset of 59 ESCC Malawian patients for whom whole-exome sequencing and 

RNAseq data was publicly available. Comparing ESCC cases from sub-Saharan Africa 

with other squamous cell carcinomas, including ESCC cases from TCGA, demonstrated 

substantial transcriptional overlap between squamous histologies.

ESCC tumors included in TCGA originated from North America, Eastern Europe, Vietnam, 

and Brazil. In this sample of ninety tumors, significantly mutated genes included TP53, 

NFE2L2, MLL2, ZNF750, NOTCH1 and TGFBR2 (40). In TCGA, ESCC tumors resembled 

squamous cell carcinomas from other organs, and molecular features were notably distinct 

from those of the esophageal adenocarcinoma tumors. Similarly, ESCC tumors from 

both Tanzania and Kenya clustered with ESCC tumors from TCGA and squamous cell 

carcinomas from other origins, including head and neck, lung, and uterus. Moreover, our 

work demonstrated that the molecular characteristics of ESCC tumors from Tanzania and 

Malawi are similar to ESCC tumors from Japan and China (20–23).

DNA analysis revealed known mutational patterns, both genome-wide as well as in known, 

commonly mutated genes. TP53 is the most commonly mutated gene in squamous cell 

cancers from many tissues of origin. Our analysis found TP53 mutations to be the most 

common somatic mutation in ESCC tumors from both sites in eastern Africa. Based 

upon the subset of tumors without TP53 mutations reported in the original publication 

of the cohort from Malawi, we initially hypothesized that TP53 mutations may have been 

under-represented due to inability to detect somatic mutations missed by conventional DNA 

mutation callers (29). To address this, we utilized an iterative “rescue” process, RADIA 

(31). RNA rescue mutations have low support in the DNA but strong support in the RNA 

and are typically missed by traditional DNA mutation calling algorithms that only examine 

the DNA. The inclusion of the RNA increases the power to detect somatic mutations at 

low DNA allelic frequencies (31) or when tumor purity is low (41). RNA rescue identified 

TP53 mutations in six additional cases from Tanzania, resulting in an overall mutation rate 

of 72%. RNA editing events, including nonsynonymous events that have been shown to 

have significant differential editing in cancer specific subtypes, stages, and overall survival 

were detected (42). RNA editing of MDM2 3’UTRs in the miRNA target sites essential for 

binding was common (43) and we speculate this could be a contributing factor to a decrease 

in TP53 gene expression.

Nonetheless, our final frequencies of detection of TP53 mutations in the cohorts from 

Tanzania and Malawi were strikingly similar (72% vs. 78%), even despite methodologic 

differences. Even with employment of the RADIA technique to improve somatic mutation 

detection, this study corroborated prior findings from Malawi that a subset of ESCC tumors 

in Eastern Africa are notable for the absence of the TP53 mutation. By comparison, the 

TP53 mutation is nearly ubiquitous in ESCC tumors from Western countries, Japan, and 

China. (24,25) Variations in mutation frequency according to ethnicity have been previously 

reported in ESCC, with TP53 mutations occurring more frequently in Asian ESCC patients 

than in Caucasians (44). In a small cohort of African-American ESCC cases (n = 10), TP53 
was found to be mutated in only 50% of samples (45). Further investigation, with expanded 
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sample sizes, is warranted to determine the true prevalence of the TP53 mutation in ESCC 

cases from sub-Saharan Africa and in individuals of African descent.

In the combined analysis, two unique clusters were identified: a proliferative/epithelial 

cluster and an invasive/migrative/mesenchymal cluster. We were only able to recapitulate, 

and not fully, the subtypes reported by Liu et al. when clustering on whole transcriptome 

(29); however, when clustering was performed on 3,000 most varying genes, the third group 

did not persist as a separate subtype. When combining the Tanzania and Malawi data sets, 

clusters associated with the Malawi RNA-seq subtype 2 is comprised only of Malawi 

samples. Our results support a finding of two subtypes that are molecularly different. 

These two subtypes likely reflect the relative differentiation states of squamous epithelium, 

distinct cells of origin, variations in contaminating non-neoplastic epithelium. Alternatively, 

differences in immune infiltration could also account for these clusters. Single cell analyses 

of sorted populations may bring further insights into these alternative potential explanations.

Efforts are ongoing to identify an unidentified carcinogen, or a constellation of carcinogens, 

that are contributing to the high incidence of ESCC affecting the eastern corridor of 

Africa. Risk factors traditionally associated with this disease in western populations, 

including tobacco and alcohol use, do not seem to be solely responsible for the unusually 

high incidence in this population, with a significant proportion of patients identifying as 

never-smokers. Our use of whole-genome sequencing empowered exhaustive profiling of 

underlying mutational processes. However, mutational signature analysis from the Tanzanian 

cohort did not detect any specific mutagenic insult beyond the aging and cytidine deaminase 

activity (APOBEC) pathway. While a unique signature 29 was identified in a small number 

of tumors from Malawi, this finding was not replicated in the cohort from Tanzania. 

Additionally, we did not observe a significant frequency of signature 17 as previously 

reported in the Malawi cohort. These differences could possibly be due to technical 

differences in the input data from the two unique sites.

Several limitations of this study must be mentioned. The two cohorts are notable for 

significant methodologic differences in specimen collection and processing. The Malawi 

specimens were collected as frozen tumors while Tanzania tumors were collected and 

processed in RNAlater medium (Thermo Fischer Scientific Inc.) to facilitate transport at 

room temperature. The Malawi specimens were selected for polyadenylation, while the 

Tanzania tumors were processed using ribosomal depletion, designed to enrich the whole 

spectrum of RNA transcripts, irrespective of polyadenylation status. Thus, our comparison 

of these two groups may be subject to some technical artifacts specific to one technique 

vs. the other; nonetheless, our findings in clustering based on RNAseq and overall TP53 
mutation rate were comparable between the two cohorts, supporting the overall similarity 

of the samples on a larger scale. In addition, we did not evaluate whether there was any 

association of the two unique transcriptional clusters that were identified in the Tanzanian 

cohort with clinical outcomes Because >90 percent of patients present with very advanced 

disease in this context and available therapies were limited in Tanzania during the study 

period, this modest sample size would like have been inadequately powered to detect a 

meaningful difference in survival.
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Substantial inequities exist in the access to genomic sequencing in resource-constrained 

settings (19). Specifically, clinical applications of these endeavors are not routinely 

available. Moreover, genomic analyses are costly in the face of myriad needs affecting 

cancer patients in resource-constrained settings and also rely heavily on transport of 

specimens to distant laboratories equipped with the analytic resources. Therefore, it is 

particularly important that this study is interpreted as part of a broader research portfolio and 

efforts which collectively aim to understand the etiology of ESCC in sub-Saharan African 

and to identify risk factor(s) which can be targeted by prevention and early detection efforts. 

In a low-resource setting, ‘translational genomic studies’ must be accompanied by and 

interpreted along with data from traditional epidemiologic studies and in the context of a 

broader public health perspective.

In conclusion, this combined analysis is a first report of a multi-site genomic analysis of 

ESCC from sub-Saharan Africa. Parallel studies were undertaken in Malawi and Tanzania 

with a goal to enhance the understanding of the molecular profiles of ESCC tumors in 

Eastern Africa. The findings from the current study did not fully recapitulate the finding 

of three subtypes previously reported from Malawi (29) but rather we identified two 

molecularly unique subtypes which were in part consistent with the findings previously 

published by Liu et al. While the unique findings from these two cohorts may suggest that 

ESCC is a heterogeneous disease, even within a circumscribed geographic region, this result 

also highlights the importance of collaborative studies to enrich both numbers and diversity 

from within the African continent.

We sought to identify factors causal for the high incidence of this disease in eastern Africa 

in order to inform development of preventive and early detection interventions. Our results 

further highlight the need for collaborative investigation; thus, future studies must include 

efforts to corroborate these findings in ESCC tumors from other sites in eastern Africa that 

are similarly impacted by a high incidence of this disease. Our future work will include 

a pathogen-finding analysis using the RNA sequencing data from Tanzanian specimens. A 

multi-site genome-wide association study to evaluate the possible contribution of genetic 

susceptibility that could explain the geographic clustering of this disease predominantly 

along the eastern corridor of the African continent is also underway.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Workflow for ESCC specimens from Tanzania.
Stepwise progression from recruitment of participants, specimen fixation, shipment, DNA 

and RNA extraction, and molecular analyses.
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Figure 2. Summary of recurrently mutated genes.
Each column represents one patient sample, and columns are ordered according to gene 

mutation frequency. The overall frequencies of synonymous and non-synonymous mutations 

are summarized at the top of the figure. Percentage of the cohort harboring a mutation(s) in a 

given gene is depicted at the bottom left of each figure.

(2A) Somatic point mutations in the Tanzania cohort (n=61).

(2B) Somatic point mutations in the Malawi cohort (n=59).

(2C) Significantly mutated genes in the Tanzania and Malawi cohorts.
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Figure 3. TP53 mutation rate and rescue in Tanzania and Malawi cases.
For cases from Tanzania, RNA and DNA Integrated Analysis (RADIA) was used to improve 

somatic mutation detection by analyzing the patient matched normal and tumor DNA along 

with the tumor RNA-Seq data to identify “RNA Rescue” mutations. The plot along the 

bottom of the figure shows all positions at which somatic variants in TP53 were detected.

Van Loon et al. Page 18

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. COSMIC Signatures in the Tanzania cohort.
Mutational signature frequencies in specimens from Tanzania, ordered by frequency. 

COSMIC mutational signature 5 was the most common, consistent with other reports in 

squamous cell cancers.
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Figure 5. Transcriptomic analysis of esophageal squamous cell carcinoma from Tanzania and 
Malawi.
(5A.) t-SNE projection of pan-cancer RNA-Seq data, showing that both the Tanzania and 

Malawi datasets cluster with other squamous tumors from a combined cohort of clinical and 

TCGA.

(5B.) Heatmap of expression levels of six different TP63 isoforms, three Delta and three TA, 

in which columns represent individual samples in Tanzania and Malawi datasets and rows 

represent individual isoforms.

(5C.) Final clustering solution (k=2), based on expression of the 3,000 most varying genes 

across combined Tanzania and Malawi datasets.

(5D.) KEGG pathways from Gene Set Enrichment Analysis results for cluster 1 versus 

cluster 2 contrast, based on whole transcriptome.
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Table 1.
Characteristics of patients with esophageal squamous cell carcinoma from Tanzania 
(n=61)

N %

Gender

Male 41 67.2

Female 20 32.8

Age

<40 9 14.8

>=40 52 85.2

HIV status

Positive 5 8.2

Negative 32 52.5

Not reported 24 39.3

Smoking status

Current 16 26.2

Former 19 31.1

Never 26 42.6

Alcohol consumption

Yes 31 50.8

No 30 49.2

Cooking site

Indoors in a separate building 26 42.6

Indoors without chimney 13 21.3

Other 1 1.6

Outdoors 21 34.4

Burnt tongue or mouth in past year

Yes 21 34.4

No 40 65.6
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