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ABSTRACT
The distribution of mammalian pests is altered by changes in global climate and land cover. Rattus norvegicus is a significant pest 
that contributes to the catastrophic decline of native species. Therefore, the studies identifying potentially suitable habitats for 
Rattus norvegicus and the impact of future climate change on the extent of such habitats are crucial. In this study, we determined 
the effects of key environmental and ecological variables on Rattus norvegicus in South Korea by considering multiple climate 
changes, land cover, and dispersal scenarios. The available presence locations with the least correlated variables and Maximum 
Entropy (MaxEnt) model along with multiple Shared Socioeconomic Pathways (SSPs) scenarios were utilized to project current 
and future habitat suitability. Additionally, three dispersal scenarios were incorporated into the model to enrich the analysis of 
potential future distribution. Mean diurnal temperature, elevation, and nighttime light were the three most important variables 
contributing to the species' distribution. The coastal and northern regions of South Korea constitute currently suitable habitats 
and are expected to exhibit a significant increase in the species' population under future climate projections. The results demon-
strate the potential expansion of Rattus norvegicus as a result of changes in climate and land cover and provide crucial insights 
into the species' environmental niches. This study highlights the potential areas for monitoring, early warning, and developing 
effective prevention and control strategies for Rattus norvegicus.

1   |   Introduction

Changes in global climate and land use have significant impli-
cations for terrestrial biodiversity, with profound future impacts 
expected worldwide (Newbold  2018). According to the Sixth 
Assessment of the Intergovernmental Panel on Climate Change 
(IPCC), the average global surface temperature is projected to 
rise by 1.5°C in the near term (2021–2040), with estimates indi-
cating potential warming of up to 4.4°C under high greenhouse 

gas (GHG) emissions scenarios by the end of the 21st century 
(Lee et al. 2023). The ecosystem of South Korea is highly vulner-
able to climate change, with a projected increase in the mean an-
nual temperature of 0.4°C per decade (Choi et al. 2018). Such a 
decadal trend would have far-reaching consequences for rodent 
expansion, which would negatively impact ecosystems, public 
health, and food security (Brugueras et al. 2020; Gholamrezaei 
et al. 2016; Elith, Kearney, and Phillips 2010; Burns, Johnston, 
and Schmitz 2003). Consequently, it is crucial to understand the 
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projected effects of climate change on rodent pest distributions 
to facilitate effective risk assessment and management inter-
ventions in this regard and implementation (Jacob 2021; Burns, 
Johnston, and Schmitz 2003). Proactive coping measures to mit-
igate the adverse impacts of pests, thus safeguarding environ-
mental and human health.

The brown rat (BR; Rattus norvegicus; Mammalia; Muridae) is 
a typical rodent pest that is widely distributed throughout the 
globe and, thrives in a variety of urban and rural environments 
(King, Foster, and Miller 2011; Wilson and ReedeR 2005). The 
studies on resource selection by BR have suggested an associa-
tion with wetland habitats, including lakes, ponds, rivers, and 
streams. Additionally, BR is often found in dense grasslands, 
scrub, damp forests, agricultural landscapes, and human sur-
roundings (Traweger and Slotta-Bachmayr  2005; Harper, 
Dickinson, and Seddon 2005). BR is a notorious pest that cause 
crop loss and serve as natural hosts for many zoonotic patho-
gens (Brown, Htwe, and Mulungu 2017; Bonnefoy, Kampen, and 
Sweeney 2008; Singleton 2003). It is associated with the trans-
mission of Seoul orthohanatavirus (hemorrhagic fever with renal 
syndrome) (Milholland et al. 2018; Kang et al. 2021), Hepatitis 
E virus (inflammation with hepatic failure) (Park et al. 2024), 
and Yersinia pestis (plague) (Mccormick  2003). It inhabits  the 
entire Korean Peninsula, predominantly coastal areas, agricul-
tural landscapes, and forests (Kim et al. 2013; Jo, Baccus, and 
Koprowski  2018). BR infestations cause catastrophic declines 
in the populations of native species worldwide (Harris  2009; 
Sanders and Maloney 2002; King, Foster, and Miller 2011; Banks 
and Hughes 2012; Jones et al. 2008; Saunier et al. 2024). In South 
Korea, several marine breeding birds including the Chinese 
crested tern (Thalasseus bernsteini), a globally critically endan-
gered species, have been disrupted by BR infestations on many 
uninhabited islands (Gang et  al.  2008; Park et  al.  2023; Kang 
et  al.  2022). Ensuring the accuracy and reliability of methods 
used to identify the presence, detection, and management of BR 
infestations are of utmost importance for the conservation of na-
tive species.

Species distribution models (SDMs) are empirical tools used to 
predict the spatial distribution of species in response to envi-
ronmental variables (Guillera-Arroita et al. 2015). These models 
implement statistical or machine learning algorithms for species 
occurrence coupled with relevant environmental data to simu-
late distribution of suitable habitat over space and time (Elith 
and Leathwick 2009). Various tools and packages are available 
for SDM application. The maximum entropy model (MaxEnt) 
is a high-performance algorithm that is used to determine the 
potential distribution of a species (Elith et al. 2011). This model 
is based on the Maximum Entropy theory, which can predict 
habitat suitability while utilizing occurrence-only species data 
only (Phillips, Anderson, and Schapire  2006; Pearson  2006). 
The robust outcomes and accurate assessments of the method 
across species have been proven on a global scale. Consequently, 
MaxEnt has been widely used to predict the potential distribu-
tions of rodent pests and perform associated risk assessments 
(Mohammadi et  al.  2019; Bennett and Richard  2021; Hamidi, 
Mohammadi, and Eskandarzadeh 2018; Lin et al. 2024). Many 
SDMs assume that species can colonize any suitable habitat 
irrespective of their original range, and unlimited dispersal 
(Pearson 2006; Liao et al. 2020). This assumption results in the 

under- or overestimation of species distributions (Engler and 
Guisan 2009). The consequent estimations of habitat suitability 
could vary significantly. The dispersal capability of an individ-
ual is a crucial factor in simulating a population's potential dis-
tribution because of climate change. To address this, we used 
the MigClim model, which enables the implementation of dis-
persal constraints in the SDM associated with climate parame-
ters (Engler, Hordijk, and Guisan 2012).

The aim of this study was to assess the impact of climate change 
on the current and potential future distribution of BR for two 
benchmark dates (“2030s” and “2050s”, as defined later), based 
on two Shared Socioeconomic Pathway (SSP) scenarios, namely 
SSP 1–2.6 and SSP 5–8.5 of the Coupled Model Intercomparison 
Project Phase 6 (CMIP6) of the IPCC, using MaxEnt applied in 
South Korea. To the best of our knowledge, a detailed distribu-
tion of BR considering bioclimatic, topographic, and habitat-
related variables has not been conducted previously. Thus, our 
main objectives were (1) to identify current habitat suitability, 
(2) to identify key environmental and ecological variables that 
determine BR distribution ranges, (3) to forecast the future 
distribution as a result of climate change for various dispersal 
scenarios, and (4) to predict the centroid shift in the potential 
future distribution. The inclusion of dispersal scenarios in mod-
eling provides a more realistic simulation of the potential distri-
bution in response to environmental and ecological factors. The 
potential risk areas for BR infestation have been identified, and 
these projections are crucial for the development and initiation 
of pest management and public health monitoring policies and 
strategies in South Korea.

2   |   Materials and Methods

2.1   |   Study Area

This study was conducted in South Korea, located in the cen-
tral part of northeast Asia, adjacent to the Sea of Japan to the 
east, the Yellow Sea to the west, and the East China Sea to the 
south (Figure 1). South Korea has a temperate climate with both 
continental and marine characteristics. The country is mostly 
mountainous in the northern and eastern parts and low and 
flat in the southern and western parts. The annual precipita-
tion ranges from 1200 to 1500 mm and is concentrated in the 
summer. The annual temperature fluctuates significantly, from 
−6°C to 3°C in the coldest month and 23°C to 26°C in the hot-
test month. South Korea is divided into three regions (northern, 
central, and southern) based on the warmth index (Kim, Lee, 
and Kim 2020). South Korea is rich in biodiversity and hosts 127 
mammalian species, including 21 rodent species (Jo, Baccus, 
and Koprowski 2018).

2.2   |   Species Occurrence and Environmental 
Variables

Species occurrence data were obtained from the Korean National 
Mammal Survey (Research  2013) and field-work resulting in 
1346 georeferenced points. Only one occurrence point was re-
tained within each 1 × 1 km grid to avoid clustering effects. We 
used the spatially rarefy occurrence data tool in SDMtoolbox 
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Pro 0.9.1 (Boria et al. 2014). In total, 415 presence points were 
acquired for the final projections (Figure 1 and Figure S1 and 
Table S1).

Environmental variables relating to climate, topography, and 
habitat influence the species distribution (Taylor et  al.  2016). 
Current and future 19 bioclimatic variables were downloaded 
from Worldclim version 2.1 (Fick and Hijmans  2017). Shuttle 
Radar Topography Mission (SRTM)-derived elevation data of the 
same resolution were downloaded for the topographic variables 
(Fick and Hijmans 2017). The slope and aspects were calculated 
using the downloaded elevation. Moderate Resolution Imaging 
Spectroradiometer (MODIS) annual landuse and land cover 
(LULC) data were downloaded from the Google Earth Engine 
(GEE) (Gray, Sulla-Menashe, and Friedl 2019), and barren, crop, 
grassland, forest, and water areas were extracted to create raster 
layers of the Euclidean distance from the nearest pixels. Annual 
Normalized Difference Vegetation Index (NDVI) data were 
downloaded from GEE (Gray, Sulla-Menashe, and Friedl 2019). 
Net primary productivity was downloaded from MODIS data 
(De Leeuw et al. 2019). Nightlight data (https://​www.​resdc.​cn) 
and global footprint data (WCS and CIESIN 2005) (https://​sedac.​
ciesin.​colum​bia.​edu) were included as anthropogenic variables. 
Coarse fragments (volumetric depth 0–10 cm) (Hengel 2018) was 
retrieved as soil-related variables. Future LULC A1B and A2 
were downloaded (https://​www.​resdc.​cn) and coupled with low 
and high GHG emissions scenario respectively (Li et  al.  2017; 
Baral et  al.  2023). When predicted data were unavailable, the 
variables were held constant across the scenarios. All variable 
data were downloaded at 30 arc-sec spatial resolutions, similar 

to those of bioclimatic variables. The spatial analysis function 
of ArcGIS Pro 3.2.0 was used to extract all the variables for the 
modeling.

2.3   |   Modeling of Habitat Suitability

A Spearman rank correlation test was performed to address 
multicollinearity. Highly correlated variables (r ≥ |0.75|) 
were excluded from the final distribution model (Naimi and 
Araújo 2016). Among the thirty-eight variables only nine highly 
uncorrelated variables were retained for the final projections 
(Table S2 and Figures S2 and S3). The projection of the species 
distribution models was conducted by using current climatic 
variables together with the climatic scenarios under GHG emis-
sions associated with SSP 1–2.6 and 5–8.5 representing low and 
high emissions scenarios respectively. Two time series averaged 
for the years: 2030s (2021–2040) and 2050s (2041–2060) were ap-
plied for the modeling.

To predict habitat suitability for BR, Maximum Entropy 
(MaxEnt) version 3.4.0 was used. MaxEnt is one of the best meth-
ods available SDM for presence-only data (Mateo et  al.  2010; 
Merow, Smith, and Silander Jr 2013) and exhibits superior pre-
dictability for non-linear relationships between response and 
predictor variables (Naimi and Araújo 2016; Phillips, Anderson, 
and Schapire 2006; Anderson et al. 2006). The model was im-
plemented with 70% of the available presence points, 2500 
randomly selected background points, and 10 replicates. The 
remaining 30% of the available presence points were used for 

FIGURE 1    |    Elevation bands, provincial boundaries, and presence points for MaxEnt model for brown rat (BR) in South Korea, and global location 
of South Korea (inset).

https://www.resdc.cn
https://sedac.ciesin.columbia.edu
https://sedac.ciesin.columbia.edu
https://www.resdc.cn
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model validation. Two metrics, the area of the curve (AUC) for 
receiving operating curve value (ROC), and the true skill statis-
tics (TSS) were used to validate the model (Allouche, Tsoar, and 
Kadmon 2006; Fielding and Bell 1997). The AUC is a threshold-
independent metric which enables the model to distinguish 
between random and background points (Lawson et  al.  2014; 
Austin 2007; Jiménez-Valverde, Lobo, and Hortal 2008). The TSS 
is based on probability threshold which measures the classifica-
tion performance (Allouche, Tsoar, and Kadmon 2006). We used 
the “sdm” package in R Studio software for projecting species 
distribution models under current and future scenarios (Naimi 
and Araújo 2016). The importance of each variable was estab-
lished by calculating Pearson's correlation coefficient between 
predicted and permuted values in the “sdm” package (Naimi 
and Araújo 2016). Permutation affects the prediction: the higher 
the importance of a variable, the lower will be the correlation. 
The relative variable importance was measured using pooled 
variable importance of all models (Thuiller et al. 2009).

2.4   |   Dispersal Simulation

Integrating dispersal scenarios into SDMs involves incor-
porating assumption regarding movement patterns across a 
species' environment. We utilized the R package “MigClim” 
to determine dispersal limits in the simulation of potential 
distributions under climate change (Engler, Hordijk, and 
Guisan 2012). This package implements dispersal constraints 
in the simulation of species distribution under specific cli-
matic and landscape change scenarios (Engler et  al.  2009). 
The package does not generate the data by itself but is highly 
compatible with models of habitat suitability (Engler, Hordijk, 
and Guisan  2012). In our dispersal projection, we used the 
parameters of the function “MigClim.migrate” (Table 1). The 
functional parameters included the current map of habitat 
suitability, map of future habitat suitability, envChgsteps, 
dispkernel, iniMatAge, PropaguleProd, rcThreshold, and rep-
licateNb. The remaining parameters were set to default val-
ues. Each model was replicated 10 times. All predictions were 
averaged for the final analysis. Following (Baral et al. 2023), 
we projected the dispersal as low (1 km), medium (5 km) and 
high (10 km) dispersal scenarios. The low dispersal scenario 

is equivalent to the minimum known dispersal distance of 
the species (Hartley and Bishop  1979; Villafañe, Muschetto, 
and Busch  2008; Heiberg, Sluydts, and Leirs  2012), medium 
dispersal scenario represents the maximum known distance 
traveled by BR (Taylor and Quy 1978) and high dispersal sce-
nario reflects an optimistic potential for extended movement 
(Gardner-Santana et al. 2009).

2.5   |   Centroid Shift

The shifting centroid of the potential distribution serves as a 
crucial marker of a population of organisms' innate adaptabil-
ity to climate change and their anticipation thereof. The SDM 
toolbox pro was used to perform a centroid shift in ArcGIS Pro 
3.2.0 to calculate centroids of current and potential future distri-
bution (Brown 2014). Through the application of this software, 
vector files were created that encompassed the magnitude and 
direction of temporal changes (Brown and Yoder 2015). Finally, 
we investigated the spatiotemporal changes in BR populations 
in South Korea by examining the centroid shifts.

3   |   Results

3.1   |   Model Performance and Influencing 
Variables

We used the MaxEnt model, utilizing 415 georeferenced points 
(Figure  1) with the nine highly uncorrelated variables to pre-
dict the potential and future distributions of BR in South Korea. 
The ten-fold cross-validation yielded a satisfactory AUC score of 
0.75 ± 0.05 and TSS score of 0.39 ± 0.02, indicating a reasonably 
effective performance of the habitat suitability model with no 
signification deviation in the predictions.

Among the nine variables incorporated in the MaxEnt model, 
mean diurnal temperature (relative importance = 17.9%), ele-
vation (15.8%), nighttime light (14.9%), normalized difference 
vegetation index (14.5%), precipitation of the wettest quarter 
(10.8%), and annual mean temperature (10.2%) constituted the 
six variables that were strong predictors of distribution and 

TABLE 1    |    Parameter setting for the MigClim model for low dispersal scenario (1 km).

Parameters Explanation Parameter Settings

envChgSteps The number of environmental change steps to perform 2

dispSteps The number of dispersal steps to perform 
within each environmental change step

20

dispkernel The probability of an occupied cell 
dispersing as a function of distance

1

iniMatAge The initial maturity age of newly colonized cells 1

PropaguleProd The probability of an occupied cell producing 
offspring as a function of time

c (0.1, 0.5, 0.9)

rcThreshold The threshold value above which a 
cell is considered suitable

570

replicateNb The number of times a simulation should be replicated 10
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habitat suitability of BR (Table 2). The cumulative contribution 
of these predictors was 84.1%. Annual precipitation, proportion 
of the deciduous forest and precipitation of coldest quarter were 
less important predictors of the distribution (Table 2).

3.2   |   Species Response Curves

Based on the response curve of the species, BR exhibited a 
preference for optimal temperatures ranging from 10°C to 
16°C, with a pronounced suitability observed in the 12°C 
to16°C for annual mean temperature (Figure 2). BR preferred 
a higher annual diurnal temperature than annual mean tem-
perature. The habitat suitability for BR varied gradually with 
annual precipitation, peaking between 1625 and 2125 mm. 
Additionally, BR exhibited a preference for precipitation of the 
wettest quarter exceeding 900 mm, whereas they favored pre-
cipitation of the coldest quarter of less than 100 mm. The BR 
preferred elevation below 500 m above sea level (asl). The re-
sponse curve for nighttime light indicated a strong preference 
for nightlight conditions between 10 and 50 nanowatt/sr/cm2 
(Figure 2). Furthermore, BR preferred NDVI values ranging 
from 0.3 to 0.6, and the suitability across the proportion of de-
ciduous forest reached its highest suitability between 25% and 
50% (Figure 2).

3.3   |   Species Distribution Modeling

The potential distribution of BR was predicted to be concen-
trated in the southern and western coastal parts of the main-
land and the islands of South Korea. The suitable habitat for BR 

covered 41.03% of the area of South Korea (Table 3) under the 
current climatic conditions. The coastal area and some parts of 
the middle-southeast regions were found to be suitable for the 
BR. In particular, areas near large coastline-based residential 
areas with grasslands and deciduous forests displayed large suit-
able areas (Figure 3).

In future climatic scenarios, the habitat suitability of BR 
was projected to increase across all scenarios, except in low-
emission scenarios for the near future (Table  3). In the low-
emission scenario (SSP1-2.6) for the 2050s, there is a notable 
expansion of habitat suitability in the north-east region con-
sisting of Gyeonggi-do and Chungcheongnam-do provinces, 
and in the northern region consisting of Gyeongsangnam-do 
province, whereas a contracting reduction is anticipated in the 
region for the 2030s (Table  3). For the low-emission scenar-
ios with unlimited dispersal, approximately 45% of the area of 
Korea would constitute suitable habitat for BR (Table 3). In the 
high-emission scenario (SSP 5–5.8) with unlimited dispersal, 
the area of suitable habitat for BR would increase significantly, 
surpassing the current scenario in the near future (Figure 3). In 
the high-emissions scenarios, the BR habitat is projected to ex-
pand by 35% relative to the current habitat by the 2050s. In the 
high-emission scenarios, the area of suitable habitat is expected 
to occupy an extensive proportion of the mid-northern regions 
by the 2050s (Table  3). Overall, 71.4% of the total area of the 
country would constitute suitable habitat by the 2050s under the 
high-emission scenarios.

The BR habitat displayed a range loss from the current projec-
tion for the 2030s under both SSPs 1–2.6 and 5–8.5 under low-
dispersal scenarios, indicating the contraction of suitable habitats 
in the northern and central regions of South Korea in the future 
(Table 3). In contrast, when the medium-dispersal scenario was 
implemented, there was no significant change in potentially 
suitable area as compared to the unlimited scenario (Table  3). 
In addition, in the high-dispersal scenario, the species could not 
reach new suitable regions (Table 3, Table S3, and Figure 4). The 
potential distributions were consistent with the general changes 
in suitable regions under limited dispersal scenarios (1, 5, and 
10 km). Importantly, dispersal distance did not have a significant 
impact on habitat suitability of BR in South Korea.

3.4   |   Centroid Shift

Trajectory changes in the suitable habitat for BR are depicted in 
Figure 5. Currently, the suitable habitat centroid is located to the 
north-east of Jeoksang-township (127°35′38.4″ E, 35°57′36″ N). 
Under SSP 1–2.6, there would be a notable shift in the centroid 
by 22.4 km toward the southern part of Cheoncheon-myeon 
by the 2030s. By the 2050s, the centroid would continue mov-
ing toward the southern part of Yongdan-myeon (127°29′6″ E, 
35°55′59″ N), by 18.97 km. The shifting rate would be higher by 
the 2030s at 1.12 km/year (Table S4). Under SSP 5–85, the cen-
troid would shift by 15.5 km toward the south in Jewon-myeon 
(127°35′13.2″ E, 35°6′7″ N) for 2030s and a further 7.89 km south-
west in Yangsan-myeon (127°37′55.2″ E, 36°9′43″ N) by the 
2050s. Although the centroid of BR habitat would be projected 
in various directions under different scenarios, a common trend 
was a shift toward higher latitudes, except the 2030s scenario.

TABLE 2    |    Relative importance of the predictor variables as 
predicted by the MaxEnt Model for brown rat (BR) presence in South 
Korea.

Variable
Relative 

Importance

Climatic

Bio02 (Mean diurnal temperature) 17.9

Bio16 (Precipitation of wettest 
quarter)

10.8

Bio01 (Annual mean temperature) 10.2

Bio12 (Annual precipitation) 6.0

Bio19 (Precipitation of coldest 
quarter)

5.8

Topographical

Elev (Elevation) 15.8

Habitat-related

Nightlight (Nighttime light) 14.9

NDVI (Normalized difference 
vegetation index)

14.5

Prop_deci (Proportion of deciduous 
forest)

5.9
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4   |   Discussion

The main objective of this study was to assess the impact of cli-
mate and land cover changes on the potential distribution of BR 
in South Korea. This study presents the first regional SDM for BR 

distribution and quantifies the effect of changes in climate and 
land-use by incorporating two Shared Socioeconomic Pathways 
(SSPs 1–2.6 and 5–8.5) scenarios using the MaxEnt model. In 
addition to the SDMs, we included three dispersal scenarios to 
provide insights into potential changes in species distribution. 

FIGURE 2    |    Response curves for the analyzed variables: (a) bio01: Annual mean temperature, (b) Bio02: Mean diurnal range, (c) Bio12: Annual 
precipitation, (d) Bio16: Precipitation of wettest Quarter, (e) Bio19: Precipitation of coldest quarter, (f) elev: Elevation, (g) ndvi: Normalized difference 
vegetation index, (h) nightlight: Nighttime Light, and (i) prop_deci: Proportion of deciduous forest. These curves project the distribution of brown rat 
(BR) using the Maximum Entropy (MaXEnT) model in South Korea.



7 of 12

The unlimited dispersal model presents an over-optimistic per-
spective on species distribution under future climate conditions, 
whereas, the limited dispersal model yields more accurate pro-
jections (Subba et al. 2018). This method has led to a more real-
istic identification of stable areas than of dynamic areas. These 
spatially explicit data are crucial for effective conservation strat-
egies and action plans (Subba et  al.  2018). Understanding the 
dynamics of habitat may aid in creating targeted conservation ef-
forts, optimizing resource allocation, and mitigating the adverse 
effects of climate change on species distribution.

Modeling potential distribution is a valuable tool for assessing 
habitat suitability and conducting pest risk analyses (Burns, 
Johnston, and Schmitz  2003). In our study, the MaxEnt 
model demonstrated a reasonably effective performance, with 

satisfactory AUC and TSS scores. However, the performance of 
the model was less effective than that of other rodent models 
(Lin et al. 2024; Ringani et al. 2022; Wen et al. 2022). This dif-
ference in effectiveness might be attributed to the complexity 
of the model when projecting at large number of localities over 
time and space (Boria et al. 2014; Lobo, Jiménez-Valverde, and 
Real  2008). Additionally, the amount of background data can 
significantly influence the model's performance of the model 
(Vanderwal et al. 2009). However, the performance of the model 
was consistent in the present study, reinforcing the importance 
of considering the number of localities and the size of the back-
ground in developing a robust model.

The future spatial expansion pattern of pest distribution be-
cause of climate change deserves attention. Our results showed 

TABLE 3    |    Suitable area for brown rat (BR) in South Korea predicted by MaxEnt model for all the modeled current and future changes, including 
dispersal scenarios. The area is rounded off to the nearest tenth.

Scenario Year Area under unlimited dispersal (km2)

Area under modeled dispersal 
scenarios (km2)

1 km 5 km 10 km

Current 2024 41,166

SSP 1–2.6 2030s 36,452 36,299 36,404 36,430

2050s 44,890 44,047 44,429 44,482

SSP 5–8.5 2030s 62,130 60,521 61,961 61,989

2050s 71,619 70,535 71,438 71,491

FIGURE 3    |    Current distribution of brown rat (BR) in South Korea predicted by the MaxEnt Model after the application of the Maximum True 
Skill Statistic threshold for presence.
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FIGURE 4    |    Projection of brown rat (BR) distribution under Shared Socioeconomic Pathways (SSP) (i): SSP 1–2.6, 2030s; (ii): SSP 1–2.6, 2050s; 
(iii): SSP 5–8.5, 2030s; (iv): SSP 5–8.5, 2050s and dispersal scenarios (a) unlimited, (b) 1 km, (c) 5 km, and (d) 10 km as predicted by MaxEnt Model in 
South Korea.

FIGURE 5    |    Centroid shift in the potential distribution of brown rat (BR) during the 2030s and 2050s under SPP 1–2.6 and SSP 5–8.5. (a) Centroids, 
and (b) The green point indicates the centroid of the distribution whereas the line indicates the direction and magnitude of the centroid shift from 
current to 2030s, and from 2030s to 2050s under SSP 1–2.6 and SSP 5–8.5.
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that the rodent pest BR is predominantly found in urban areas, 
coastal grasslands, agricultural landscapes, and forests. Future 
projections under unlimited dispersal scenarios predicted a 
potential expansion of the BR distribution. Notably, an excep-
tion occurred in the low-emission scenario for the near future, 
where the results obtained in the present study deviated from 
the trends observed in other projections. However, such anom-
alies in future SDM projections are common in regions where 
precipitation significantly influences distribution patterns. For 
example, Baral et al. (2023) reported such an anomaly in the dis-
tribution extrapolation of yellow monitor (Varanus flavescens) 
in Nepal, where precipitation during the wettest quarter was a 
crucial variable.

South Korea is expected to shift toward a subtropical climate 
(Kim, Lee, and Kim 2020). The future distribution of BR is ex-
pected to increase substantially under different climate change 
scenarios. A similar case was reported by Lin et  al.  (2024), 
who predicted the future distribution of the greater bandi-
coot rat (Bandicota indica). In that study, the species was also 
expected to experience significant habitat gain contributed, 
primarily driven by annual mean temperature. Comparable 
findings were reported by Mohammadi et  al.  (2019) in their 
projection of the future distribution of two desert jerboas 
(Jaculus blanfordi and Jaculus loftusi) in Iran. The results 
of those studies are similar to our conclusion (Bennett and 
Richard 2021; Ringani et al. 2022; Petrosyan et al. 2023). Most 
of the potential habitat will be occupied under any dispersal 
scenario indicating that pest problems will continue to be ex-
acerbated in all future scenarios.

MaxEnt identified six key variables influencing the potential 
distribution of BR in South Korea: three bioclimatic, one topo-
graphic, and two habitat-related variables. The most crucial 
factors were the diurnal temperature, elevation, and night-
time light. Temperature changes can directly affect the BR 
population, a factor that tends to dominate urban areas with 
cold climates, thus supporting our hypothesis (Cavia, Cueto, 
and Suárez 2009). Cold climates provide suitable growth rates 
and reproductive conditions for BR (Villarreal, Schlegel, and 
Prange 2007). Elevation, a key driver of species diversity and 
distribution patterns, can influence the climatic characteris-
tics of a habitat (Wu et al. 2013). BR preferred habitats below 
500 masl, where urban, agricultural landscapes and forested 
areas are common. Nighttime light ranked third in impor-
tance among the variables, highlighting the significance of 
the habitat-related variables in BR distribution. Nighttime 
light provides a unique perspective on urbanization and so-
cioeconomic dynamics, serving as a potential tool for under-
standing the associated environmental consequences (Zhao 
et  al.  2019). Our prediction indicated an inverse association 
with nighttime light, similar to the effect of artificial light at 
night on foraging behavior and vigilance in nocturnal rodents 
(Zhang et al. 2020). Decrease in annual precipitation and in 
precipitation during the wettest quarter greatly reduced the 
probability of BR occurrence, indicating that precipitation 
is an important constraint on their distribution. BR is likely 
to occur in wet environments, usually near water sources 
(Jo, Baccus, and Koprowski  2018; Harper, Dickinson, and 
Seddon  2005). Furthermore, the intermediate levels of plant 
productivity (NDVI: 0.3–0.6) and proportion of the deciduous 

forest preference showed that grasslands and edges of for-
ested areas are suitable for BR (Kim et  al.  2013; Jo, Baccus, 
and Koprowski 2018). Our finding suggested that maintaining 
higher nightlight intensity without disrupting other organ-
isms, and promoting the growth of healthy dense vegetation 
can prevent the expansion of BR in South Korea.

We observed that future distribution of BR will shift between 7.89 
and 22.40 km. The shifting rates and directions varied among 
the climatic scenarios, with the fastest shift occurring under 
SSP 1–2.6 for the 2030s, in an opposite direction compared with 
other scenarios. Moreover, the final shifts were roughly in the 
same direction and at higher elevation, as the total suitable area 
under different scenarios increased compared with the current 
period. The elevational shift was mainly influenced by tempera-
ture and precipitation (Rowe et al. 2015). The response curves 
showed that both temperature and precipitation significantly 
contributed for the potential distribution of BR in South Korea. 
Overall, the temperature indicators were the primary factors 
for predicting future distribution shifts under climate change. 
The projection of future range shifts for BR provides valuable 
insights, enabling relevant departments and decision-makers to 
proactively implement preventive measure and effectively moni-
tor the risks of native species extinction, agricultural losses, and 
zoonotic diseases transmission along these shifting pathways.

The MaxEnt model is highly accurate in determining the cur-
rent and future status of a species. However, our model was sub-
ject to certain uncertainties that should be addressed in future 
studies. Future bioclimatic variables are likely to vary among 
scenarios and climatic models, leading to different predictions 
when a single model is used. Therefore, the use of an ensem-
ble of all possible climatic models is recommended to minimize 
these discrepancies (Beaumont, Hughes, and Pitman  2008). 
Our model does not account for complex interactions with other 
drivers of species dynamics (Bean et al. 2014). Additionally, we 
adopted a fixed distance as a biologically relevant parameter to 
determine the potential movement of BR. The MigClim algo-
rithm is based on a cellular automaton and integrates seamlessly 
with the MaxEnt model (Engler and Guisan 2009). However, the 
algorithm requires several ecological parameters at the onset of 
the iterations. Obtaining comprehensive ecological knowledge 
is often challenging, and can affect model accuracy. Advanced 
spatially explicit dispersal models, such as agent-based mod-
els, may be appropriate for simulating these behaviors (Baral 
et al. 2023).

5   |   Conclusion

This study represents the first empirical examination of the eco-
logical niche modeling and expansion risk of BR in South Korea 
under both current and future climate and landcover change 
scenarios. Our projections identified a wide range of poten-
tially suitable habitats across the country, including urban re-
gions, coastal grasslands, agricultural landscapes, and forests. 
The key environmental variables influencing the distribution 
of BR are annual diurnal temperature, elevation, and night-
time light. Additionally, our findings provide comprehensive 
insights into the regions where this rodent pest is likely to ex-
pand under future climatic scenarios. These results can be used 
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to identify high-risk areas and to prioritize conservation efforts. 
Consequently, our findings could assist ecological managers in 
promptly implementing measures to prevent the future spread 
of BR in South Korea. This information is also valuable for de-
veloping action plans and ecosystem management strategies, as 
well as guiding future surveys and monitoring activities.
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