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Provable bounds for noise-free expectation 
values computed from noisy samples
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Stefan Woerner    2 

Quantum computing has emerged as a powerful computational paradigm 
capable of solving problems beyond the reach of classical computers. 
However, today’s quantum computers are noisy, posing challenges to 
obtaining accurate results. Here, we explore the impact of noise on quantum 
computing, focusing on the challenges in sampling bit strings from noisy 
quantum computers and the implications for optimization and machine 
learning. We formally quantify the sampling overhead to extract good 
samples from noisy quantum computers and relate it to the layer fidelity, 
a metric to determine the performance of noisy quantum processors. 
Further, we show how this allows us to use the conditional value at risk of 
noisy samples to determine provable bounds on noise-free expectation 
values. We discuss how to leverage these bounds for different algorithms 
and demonstrate our findings through experiments on real quantum 
computers involving up to 127 qubits. The results show strong alignment 
with theoretical predictions.

Quantum computing is a new computational paradigm that promises to 
impact many disciplines, ranging from quantum chemistry1,2, quantum 
physics3 and material sciences4 to machine learning5–7, optimization8–12 
and finance13. However, leveraging near-term quantum computers is 
difficult due to the noise present in the systems. Ultimately, this needs 
to be addressed by quantum error correction, which exponentially sup-
presses errors by encoding logical qubits in multiple physical qubits14.

In near-term devices, implementing error correction is infeasible. 
We must find other ways to handle the noise. A promising approach to 
bridge the gap between noisy and error-corrected quantum comput-
ing is error mitigation. Here, we leverage multiple noisy estimates to 
construct a better approximation of the noise-free result. The most 
prominent examples are probabilistic error cancellation (PEC)15,16 and 
zero-noise extrapolation (ZNE)17. While error mitigation in general 
scales exponentially15, a combination of PEC and ZNE has been impres-
sively demonstrated recently in a 127-qubit experiment at a circuit 
depth beyond the reach of exact classical methods18,19. The rate of the 
exponential cost of error mitigation directly relates to the errors in 

the quantum devices. It is expected that these errors can be reduced 
to a level at which noisy devices with error mitigation can already per-
form practically relevant tasks even before error correction20. PEC and 
ZNE mitigate the errors in expectation values. While this finds many 
applications (for example, in quantum chemistry and physics), most 
quantum optimization algorithms8,10,21 and many quantum machine 
learning algorithms6,22 build directly on top of measured samples from 
a quantum computer. In optimization, having access to an objective 
value but not the samples corresponds to knowing the value of an opti-
mal solution but not how to realize it. Obtaining these samples is thus 
a key problem to scale sample-based algorithms on noisy hardware.

In this paper, we examine the impact of noise on sampling bit 
strings from a noisy quantum computer and quantify the required 
sampling overhead to extract good solutions—for example, in the 
context of optimization. It turns out that the sampling overhead is 
substantially lower than, for example, estimating expectation values 
via PEC. Furthermore, we connect our findings to the conditional value 
at risk (CVaR, also known as expected shortfall), an alternative loss 
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Fidelity estimation. Several quantum algorithms leverage fidelity 
estimation between two quantum states as a subroutine. In the follow-
ing, we first discuss how to leverage the CVaR bounds to approximate 
fidelities on noisy quantum computers and then how this impacts two 
concrete classes of algorithms: QSVMs and VarQTE.

Suppose we have n-qubit quantum circuits U and V that define 
|ψ〉 = U|0〉 and |ϕ〉 = V|0〉, respectively. A common approach to esti-
mate the state fidelity between |ψ〉 and |ϕ〉 is the compute–uncompute 
method given by

F(|ψ⟩ , |ϕ⟩) = ||⟨0|V†U|0⟩||
2. (2)

F is thus the probability of measuring |0〉 for the state V†U|0〉. This 
is also equal to the expectation value tr(ρH) for the state ρ = V†U|0〉 and 
the diagonal Hamiltonian H = |0〉 〈0|. Thus, we can use CVaR  to obtain 
an upper bound of the noise-free fidelity. Here the resulting random 
variable follows a Bernoulli distribution, as the expectation value counts 
the number of measured instances of |0〉 and ignores all other outcomes. 
Since the variance of the CVaR for a Bernoulli random variable scales 
with 1/α (Conditional value at risk), we can set α = 1/√γ and use  
equation (13) to upper bound the fidelity with a sampling overhead  
of √γ, compared with the γ2 required by PEC to obtain an unbiased esti-
mation. We demonstrate this on a concrete example in Experiments.

QSVMs leverage a quantum feature map to define a quantum 
kernel and provably outperform classical computers on certain tasks36. 
The quantum feature map is a parameterized quantum circuit that 
takes a classical feature vector x as an input to prepare a correspond-
ing quantum state |ϕ(x)〉. The corresponding quantum kernel is then 
defined via the Hilbert–Schmidt inner product of |ϕ(x1)〉 and |ϕ(x2)〉 
for two classical data points x1 and x2 from some training set, which is 
equal to F(|ϕ(x1)〉, |ϕ(x2)〉), and thus falls exactly into the case above.

VarQTE for real or imaginary time evolution assumes a given 
parameterized quantum state |ψ(θ)〉 and then projects the exact state 
evolution to the parameter evolution of the ansatz. This approximates 
the desired time evolution in the subspace that the ansatz can repre-
sent. The exact projection requires the evaluation of the quantum 
geometric tensor (QGT)29–31. However, this quickly becomes prohibitive 
as the number of parameters increases. Thus, multiple approximate 
variants of VarQTE have been proposed that work around the evaluation 
of the QGT32–34. Many of these approximations leverage the fact that the 
Hessian of the fidelity ∣〈ψ(θ)∣ψ(θ + δθ)〉∣2 with respect to δθ is propor-
tional to the QGT of |ψ(θ)〉 up to higher-order terms. They either use 
the simultaneous perturbation stochastic approximation to estimate 
the Hessian from evaluations of the fidelity as approximations of the 
QGT, or they construct alternative loss functions that directly leverage 
the mentioned fidelity without constructing an approximate QGT. In 
all variants, the parameter disturbances δθ are small, which implies 
fidelities close to one. Thus, this is in the regime where the noisy CVaR 
is very close to the noise-free expectation value, that is, the sweet spot 
of the introduced approximation.

Quantum optimization. Many (variational) quantum algorithms have 
been proposed to solve discrete optimization problems, such as quad-
ratic unconstrained binary optimization. Most of them have similar 
structures and interpret every measured bit string as a potential solu-
tion to the problem. Proposals that derive variable values from expecta-
tion values9,37 are, however, outside the focus of our work.

Consider a generic unconstrained binary optimization problem 
of the form

min
x∈{0,1}n

f(x), (3)

where f ∶ {0, 1}n ↦ ℝ is an objective function on n binary variables. For 
instance, a quadratic unconstrained binary optimization has f(x) = xTQx 

function introduced in ref. 23. We show that the CVaR is robust against 
noise and can generate meaningful results from noisy samples also 
for expectation values. The noise robustness of the CVaR had already 
been conjectured but had not been shown formally23. Our work closes 
this gap and shows that the CVaR evaluated on noisy samples achieves 
provable bounds on noise-free observables.

The CVaR offers important advantages over PEC and ZNE when 
bounds on expectation values are sufficient: unlike PEC, which requires 
costly noise learning15, the CVaR can be implemented using a much 
cheaper fidelity estimation protocol24 and requires less restrictive 
assumptions on the noise model. Additionally, the CVaR leads to a sub-
stantially lower sampling overhead than PEC. ZNE involves amplifying 
the noise to extrapolate to the zero-noise limit. This amplification can 
be achieved by repeating certain gates or calibrating special pulses, 
both difficult to scale, or by first learning the noise as in PEC18 and then 
amplifying it. Further, ZNE is usually heuristic without the theoretical 
guarantees of PEC or the CVaR. These properties render the CVaR a 
promising approach for extracting properties of expectation values and 
a practical loss function for training variational quantum algorithms23,25.

We demonstrate our theoretical results on a real quantum com-
puter applied to fidelity estimations on up to 100 qubits as well as 
optimization problems on up to 127 qubits, where we find close agree-
ment between the experiments and theory. In particular, this allows us 
to apply the known noise-free performance bounds for the quantum 
approximate optimization algorithm (QAOA) for MaxCut on 3-regular 
graphs8,26. Thus, our work results in provable performance guarantees 
for a variational algorithm on noisy hardware.

Results
Consider a noise-free quantum state ρ and the corresponding noisy 
quantum state ρ̃, when preparing ρ on a noisy quantum computer. 
There are different ways to model the noise and characterize its 
strength. A practical and efficient way is by estimating the layer fidelity 
(LF) of a circuit24, which essentially is equal to the probability of no 
error happening. Alternatively, assuming the Pauli–Lindblad noise 
model, it is possible to learn the noise explicitly15. The strength of the 
noise can be characterized by the parameter γ, which determines the 
cost to mitigate the noise using PEC, where 1/√γ represents the prob-
ability of no error, that is, is equal to the LF.

This allows us to relate the probability of sampling a bit string 
x ∈ {0, 1}n when measuring ρ (px) and ρ̃ ( ̃px) as

̃px ≥ px/√γ. (1)

In other words, taking √γ (or 1/LF) more samples guarantees that a 
noisy state generates bit strings with at least the same probability as 
the corresponding noise-free state.

Further, if we have a Hamiltonian H and are interested in the expec-
tation value tr(ρH), we can show that the CVaR at level α with α = 1/√γ 
allows us to generate provable lower bounds (and upper bounds, 
denoted by CVaR) on noise-free expectation values using only samples 
from the noisy state ρ̃. In the following, we discuss these results in the 
context of different algorithms and applications and demonstrate them 
on real quantum computers using up to 127 qubits. The theoretical 
details are provided in Methods.

Applications
We now discuss the presented theory on sampling probabilities and 
the CVaR in the context of different applications: first, fidelity-based 
algorithms, such as quantum support vector machines (QSVMs)5,27,28 as 
well as variational quantum time evolution (VarQTE)7,29–34, and second, 
quantum optimization8,10,21,23,35. These are illustrative examples; the 
theory presented here is applicable to many other domains, such as 
quantum chemistry and physics.

http://www.nature.com/natcomputsci
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with Q ∈ ℝn×n. In the case of quadratic unconstrained binary optimiza-
tion, we can apply a change of variables xi = (1 − zi)/2 for zi ∈ { −1, +1} and 
replace zi by the Pauli Zi matrix on qubit i and products zizj by Zi ⊗ Zj to 
define a diagonal Hamiltonian H and translate equation (3) into a 
ground-state problem38

min
|ψ⟩

⟨ψ|H|ψ⟩. (4)

As mentioned in Conditional value at risk, we can transform any 
generic function to a Hamiltonian where f(x) defines the diagonal ele-
ment of H at the position of the computational basis state |x〉 (ref. 21).

Most variational quantum algorithms for binary optimization are 
defined via a parameterized ansatz |ψ(θ)〉 with parameters θ ∈ ℝd, a 
loss function ℒ(θ) that maps parameter values to a loss value, and an 
optimizer to solve

min
θ∈ℝd

ℒ(θ). (5)

After the final parameters θ* are determined, the resulting state 
|ψ(θ*)〉 is measured and the sampled bit strings are used as potential 
solutions to the problem. Samples obtained during the execution of 
the algorithm can also be considered as solutions in case they achieve 
better objective values than the final samples.

If we set ℒ(θ) = ⟨ψ(θ)|H|ψ(θ)⟩  for some ansatz |ψ(θ)〉, we obtain  
the variational quantum eigensolver1. Further, if we define the ansatz as

||ψ(θ)⟩ =
p
∏
j=1

e−iHXβj e−iHγj |+⟩ , (6)

we obtain the QAOA8, where p defines the depth, and the angles 
βj, γj ∈ ℝ  are the variational parameters. H and HX = −∑n

i=1 Xi  with 
Pauli matrices Xi define a phase separating and a mixing Hamiltonian, 
respectively.

Our theoretical results (Methods) can be immediately applied 
to the QAOA. Suppose we already have a quantum circuit that, when 
executed and measured in an ideal noise-free setting, produces good 
solutions to a considered optimization problem. Then, when executed 
on a noisy device, a sampling overhead of √γ is sufficient to extract 
solutions of the same quality as in the noise-free case. In certain cases 
it might be feasible to determine θ* classically39–41 and only use the 
quantum computer to sample good solutions, since evaluating (local) 
expectation values might be easier than sampling from the full circuit. 
However, in cases where we must train the parameterized quantum 
circuit we can replace the expectation value by the CVaR23,25. Our results 
provide guidance on how to choose α and the required sampling over-
head to obtain good results from a noisy device. We illustrate this on 
concrete examples in Experiments.

Our results allow us to apply proven performance guarantees for 
the QAOA without noise to noisy hardware. For MaxCut on 3-regular 
graphs, the QAOA achieves a worst-case performance of 0.692 for p = 1 
(ref. 8), 0.7559 for p = 2 and (under certain assumptions) 0.7924 for p = 3 
(ref. 26). With a √γ sampling overhead these guarantees are recovered 
even in the noisy regime. Furthermore, for 3-regular graphs, we can 
always train the QAOA with p ≤ 3 classically by simulating at most 30 
qubits at a time11: that is, we can determine the optimal parameters via 
classical simulation and then sample good solutions with a √γ overhead 
from the quantum computer. Since γ grows exponentially with the 
circuit size the sampling overhead introduced to combat noise may 
exceed the cost of a brute-force search. A simple back of the envelope 
calculation, discussed in Supplementary Information, ‘Relation to 
brute-force search’, determines a minimum LF required to apply a 
depth-p QAOA.

The quantum alternating operator ansatz (QAOA′) is a generaliza-
tion of the QAOA8,42. The QAOA′ allows for constraints on the set of 
feasible solutions, such as a fixed Hamming weight (that is, a fixed 

number of ones in a bit string), which it enforces by starting in a super-
position of feasible states43,44 and changing the mixing Hamiltonian to 
preserve and interfere with such states45–47. More generally, the QAOA′ 
allows different mixing Hamiltonians and initial states to be used 
(unlike the original QAOA), and typically uses the same phase-separating 
Hamiltonian that encodes the classical optimization problem of  
interest. Thus, if the QAOA′ is executed noise free, all resulting samples 
must satisfy the given constraint. This is an example of a filter function 
ℱ  (for example, post-select on samples with the correct Hamming 
weight) that can help to improve the CVaR bounds on the correspond-
ing expectation value (Methods).

Experiments
We now demonstrate the introduced theory in the context of the dis-
cussed applications. First we show how to estimate state fidelities with 
the CVaR, and second we study two optimization problems from the 
literature. We run the circuits on the ibm_sherbrooke and ibm_kyiv 
quantum devices48 and find good sagreement between our theory and 
the experimental results.

Both ibm_sherbrooke and ibm_kyiv are 127-qubit superconduct-
ing qubit devices with echoed cross-resonance gates as two-qubit 
gates49. This gate is equivalent to a controlled NOT (CNOT) gate up 
to single-qubit gates. We let the transpiler map our CNOT gates to 
echoed cross-resonance gates and thus write about CNOT gates for 
better readability. All circuits are implemented in Qiskit50 and run 
using the SamplerV2 primitive of Qiskit IBM Runtime51 with enabled 
dynamical decoupling and Pauli twirling for CNOT gates. We use the 
built-in capabilities with XY4 dynamical decoupling and Pauli twirling 
with 64 randomizations per circuit, that is, the stated number of shots 
is distributed equally over all twirls. Further, we apply M3 measurement 
error mitigation52 to every experiment.

Fidelity estimation. As mentioned in Applications, estimating fidelities 
F(|ψ〉, |ϕ〉) for given quantum states |ψ〉 and |ϕ〉 is relevant for several 
algorithms, such as QSVMs and VarQTE. To demonstrate the introduced 
theory in this context, we consider the hardware-native ZZ Feature 
Map53 that has been introduced in the context of QSVMs5. More  
precisely, we consider n-qubit parameterized quantum states 
|ψ(x)〉 = U(x)|0〉, x ∈ ℝn, with the parameterized unitary U as illustrated 
in Fig. 1. Further, we randomly sample two data points x, y ~ U([0, 1]n) 
and aim to estimate F(|ψ(x)〉, ψ(x + δy)〉) for varying δ ∈ ℝ to illustrate 
the behavior of the theory for a representative range of parameter 
values.

We study this setting for a line of n = 50 qubits on the ibm_ 
sherbrooke device48. We evaluate the fidelity F(|ψ(x)〉, ψ(x + δy)〉) 
using the compute–uncompute method, that is, we prepare the state 
U†(x + δy)U(x)|0〉 and estimate the probability of measuring |0〉. The 
circuit is simple enough to classically simulate with a matrix product 
state (MPS) simulator for validation54.

The considered circuits have two distinct layers of CNOT gates 
with the LFs estimated as 0.7217 (starting on qubit 0, with 25 CNOT 
gates) and 0.7340 (starting on qubit 1, with 24 CNOT gates), which 
implies a total fidelity of 0.7217 × 0.7340 = 0.5397. We take the geomet-
ric average over the total number of CNOT gates and derive the CNOT 
fidelity as FCX = (0.5397)1/(25+24) = 0.9871. This allows us to compute the 
error per layered gate (EPLG)24 as 1 − FCX = 0.01288. Since both layers of 
CNOT gates appear four times in total in the compute–uncompute 
circuit, the overall circuit fidelity is 0.0787, which corresponds to 
γ = 161.0568. This allows us to use CVaR  to compute an upper bound 
on the state fidelity for different δ. While the CVaR would also allow us 
to compute a lower bound, this is usually equal or close to zero, and 
thus we omit it here. At the end of this section, we discuss when to 
expect tight bounds and when not.

We vary δ from −0.15 to 0.15 in steps of 0.005. To improve the 
hardware results, we leverage the symmetry of F, that is, we run 
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U†(x + δy)U(x)|0〉 as well as U†(x)U(x + δy)|0〉, with 10,000 shots each, 
and take the average of the resulting state fidelity estimates. Thus, we 
use 20,000 shots for each circuit. For each δ, we compute CVaR  with 
α = 0.0787. The upper bounds hold and provide a good estimate of the 
noise-free fidelities (Fig. 2, left column).

The variance amplification of the CVaR is only 1/α = √γ = 12.6908. 
By contrast, the variance amplification of PEC is γ2 = 25,939.3. Given the 
quality of the CVaR bounds shown here, PEC would thus require three 
orders of magnitudes more samples to obtain similar results—although 
with the guarantee of an unbiased estimator.

Suppose that exact values for some data points are given—for 
example, by a classically efficient Clifford simulation. Then, we can 
carry out a least-squares fit of the CVaR to the data by varying α. In the 
present case, since we know the exact state fidelities for each δ, we can 
test this and fit the CVaR to the ideal data. This results in α = 0.0849, 
which translates to an effective EPLG of 0.01250. This is slightly lower 
than the measured EPLG, which indicates that our experiment is sensi-
tive to most but not all errors that can occur. The results are shown in 
Fig. 2 (right column). This provides a very close approximation of the 
fidelity with substantially smaller overhead than PEC and may be used 
as a building block in the aforementioned algorithms.

Results for experiments with 100 qubits are reported in Supplemen-
tary Information, ‘100-qubit fidelity estimation’. There, we also find a nice 
agreement between theory and experiment; however, the confidence 
intervals are substantially larger due to the increasing sampling overhead.

It may seem surprising that the CVaR upper bounds for state fideli-
ties are very tight, while the CVaR lower bounds are trivial. The 

following discussion offers some insights into when these bounds are 
expected to be tight. We measure the fidelity between a noisy state 
prepared on hardware and the projector |0〉 〈0|. This projector is an 
observable with two eigenvalues: 0 and 1. The eigenspace of eigenvalue 
1 is one dimensional, corresponding to the eigenstate |0〉, while the 
eigenspace of eigenvalue 0 is highly degenerate, with a dimension of 
2n − 1 for n qubits, spanned by all computational basis states except |0〉. 
This makes it more likely for an error to move the state out of the eigens-
pace of eigenvalue 1 than out of the eigenspace of eigenvalue 0. More 
formally, consider a state ρ on n qubits with F(ρ, |0〉 〈0|) = f0. Further, 
consider a simplified illustrative noise model that maps ρ to 
̃ρ = 1/√γρ + (1 − 1/√γ)σ , where we assume that σ is a state with  

F(σ, |0〉 〈0|) = 0. Let us now define a random variable X ∈ {0, 1}, where 
we set X = 1 if measuring ̃ρ results in the all-zero bit string and X = 0 
otherwise. Then, it is easy to see that CVaR1/√γ(X) = f0, that is, we have 
not only an upper bound, but equality. By contrast, unless γ is very small 
and f0 is large, the lower bound CVaR1/√γ(X) is typically zero. Given the 
initial discussion, it can be seen that fidelity estimation resembles this 
idealized scenario. We generally expect F(σ, |0〉 〈0|) to be very small, if 
not zero, which explains why the upper bounds are very tight while the 
lower bounds are trivial.

Quantum optimization. In this section, we demonstrate the CVaR 
bounds for QAOA circuits. First we analyze smaller but deeper circuits, 
and second we analyze larger but shallower circuits. In both experi-
ments we determine the angles of the QAOA circuits classically, and 
only focus on the sampling behavior for fixed circuits.

q0 : H P (2.0 * x0)

q1 : H P (2.0 * x1)

q2 : H P (2.0 * x2)

q3 : H P (2.0 * x3)

q4 : H P (2.0 * x4)

P (2.0 * (π – x0) * (π – x1))

P (2.0 * (π – x2) * (π – x3))

P (2.0 * (π – x4) * (π – x5))

P (2.0 * (π – x1) * (π – x2))

P (2.0 * (π – x3) * (π – x4))

q5 : H P (2.0 * x5)

Fig. 1 | ZZ Feature Map5,53 for n = 6. A data point x is mapped to an exponentially higher-dimensional feature space by applying Hadamard gates H, phase gates P that 
depend on x, and CNOT gates.
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We start by examining the QAOA for MaxCut on a random 3-regular 
graph with 40 nodes, that is, 40 qubits, on ibm_sherbrooke. We take 
the problem instance from ref. 11 and optimize the parameters classi-
cally for the QAOA with p = 1 and p = 2 using light-cone simplifications. 
This allows us to evaluate the required noise-free 2-local expectation 
values by simulating maximally 14 qubits at a time11. The circuits and 
optimal parameters are further discussed in Supplementary Informa-
tion, ‘40-qubit QAOA circuits’.

The circuits are constructed such that they consist of only two dif-
ferent layers of CNOT gates on a line of 40 qubits, denoted by q0, …, q39. 
The first layer is composed of 20 CNOT gates on qubits (qi, qi+1) for i even 
and the second composed of 19 CNOT gates on (qi, qi+1) for i odd. Using 
the technique introduced in ref. 24, the measured LFs for these two lay-
ers are LF1 = 0.7510 and LF2 = 0.7919, respectively, which implies a total 
fidelity of LF = LF1 × LF2 = 0.5947. We take the geometric average over the 
total number of CNOT gates and derive FCX = LF1/39 = 0.9868 and a cor-
responding EPLG of 1 − FCX = 0.0132. We also define γCX = 1/FCX

2 = 1.0270. 
In total, the circuits for p = 1 and p = 2 have 461 and 922 CNOT gates, 
respectively, all in the form of the aforementioned layers. We can thus 
compute the sampling overheads for p = 1 and p = 2 as √γ1 = 465.3 and 
√γ2 = 216,539.2, respectively, which corresponds to α1 = 2.149 × 10−3 
and α2 = 4.620 × 10−6, respectively. A regularly measured EPLG evalu-
ated over a chain of 100 qubits is provided for ibm_sherbrooke in the 
IBM Quantum Platform48. At the time of the experiment the backend 
reported an EPLG of 0.028, that is, a little higher than our measured 
EPLG, which is expected, since we are restricted to 40 qubits. In any 
case, the EPLG reported by the backend is a good proxy to estimate 
the LF and resulting γ when executing a particular circuit on a device.

To apply the CVaR bounds, we run the circuits for p = 1 with 105 
shots and for p = 2 with 107 shots. This corresponds to 215 and 46 sam-
ples that remain to estimate the CVaR after sorting them and keeping 
the best α1 and α2 fraction, respectively. The data confirm that CVaRαp 
provides an upper bound (since MaxCut is a maximization problem) 
to the noise-free expectation values, as predicted (Fig. 3 and Table 1). 
The CVaR upper bound exceeds the noise-free value by 2.1% for p = 1 
and by 6.3% for p = 2.

We also use the noise-free expectation values obtained from the 
light-cone simulation to calibrate an α such that the CVaR matches the 
noise-free result exactly, denoted by αp′. This allows us to derive an 
induced effective γCX,p′ and compare it with the true γCX. We find that 

γCX,p′ is quite stable for the different p and substantially smaller than γCX 
(Table 1). This may imply that the observable of interest is not affected 
by all the errors that may occur. Crucially, this observation may allow 
us to calibrate α for a particular application and choose larger values 
than implied by the LF—for example, by running circuits of similar 
structure but with known noise-free results. This may reduce the sam-
pling overhead in certain scenarios while still achieving good results. 
However, in general, the lower/upper bounds proven in Methods will 
not hold anymore for α > 1/√γ.

Comparing the CVaRαp  and the best samples with the globally 
optimal solution, we find that they achieve approximation ratios of 
0.757 (CVaR) and 0.839 (best sample) for p = 1, and 0.859 (CVaR) and 
0.929 (best sample) for p = 2. All these numbers exceed the correspond-
ing theoretical performance lower bounds for the QAOA of 0.692 (p = 1) 
and 0.756 (p = 2) discussed in Applications.

We now show results of running the QAOA on higher-order spin 
glass models. Originally described in refs. 55,56, these models are 
designed for a heavy-hex connectivity graph57 of IBM Quantum’s Eagle 
devices48, such as ibm_sherbrooke and ibm_kyiv.

We define a minimization problem for the following cost Hamil-
tonian corresponding to a random coefficient spin-glass problem with 
cubic terms and a connectivity graph that is defined to be compatible 
with an arbitrary heavy-hex lattice graph G = (V, E) (Supplementary Fig. 3):

H = ∑
v∈V

dv ⋅ Zv + ∑
(i, j)∈E

di, j ⋅ Zi ⊗ Z j

+ ∑
l∈W

dl,n1(l),n2(l) ⋅ Zl ⊗ Zn1(l) ⊗ Zn2(l).
(7)

As G is a connected bipartite graph with vertices V = {0, …, n − 1}, 
it is uniquely bipartitioned as V = V2⊔V3 with E ⊂ V2 × V3, where Vi consists 
of vertices of degree at most i. With W ⊆ V2 in (7), we denote the subset 
of vertices in V2 of degree exactly 2. Each node l in W has two neighbors, 
denoted by n1(l) and n2(l). Thus dv, di,j and dl,n1(l),n2(l) are the coefficients 

Table 1 | QAOA results for 40 qubits on ibm_sherbrooke: the 
different results for p = 1 and p = 2 when running the QAOA on 
the introduced 40-qubit MaxCut instance

p = 1 p = 2

Global optimum 56

𝔼𝔼𝔼X̃] 30.1 30.1

𝔼𝔼𝔼X] 41.5 45.3

CVaRαp
42.4 48.1

fbest 47 52

Number of CNOT gates 461 922

√γp 465.3 216,539.2

αp 2.149 × 10−3 4.620 × 10−6

αp′ 4.510 × 10−3 1.200 × 10−4

γCX 1.0270

γCX,p′ 1.0237 1.0198

The table shows the noisy (𝔼𝔼𝔼X̃]) and noise-free (𝔼𝔼𝔼X]) expectation values as well as the CVaR 
estimates (CVaRαp), best sampled values (fbest) and the global optimal value. Further, it shows 
the total number of CNOT gates, the overall √γp for the circuits, the αp derived from the LF as 
well as the αp′ derived from calibrating the CVaR on the noise-free expectation values, and 
the corresponding γCX and γCX,p′ as defined in the main text.
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Fig. 3 | QAOA results for 40 qubits. The curve is the cumulative distribution 
function resulting from sampling the circuits for a MaxCut instance executed on 
ibm_sherbrooke for p = 1 with 105 shots (top) and p = 2 with 107 shots (bottom), 
both applying M3 measurement error mitigation. The vertical lines show the 
corresponding noisy expectation values (blue dashed), the noise-free 
expectation values evaluated using light-cone optimized classical simulation 
(cyan dashed–dotted), the CVaRαp (cyan dotted) and the globally optimal 
solution equal to 56 (green solid). The title shows the fitted αp′ and corresponding 
γCX′ (cf. main text) such that the CVaRα′p

 are equal to the noise-free expectation 
values (that is, cyan dashed–dotted line). Further, the titles show the number of 
CNOT gates (#CX) and the best sampled objective value (fbest) for p = 1, 2.
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representing the random selection of the linear, quadratic and cubic 
coefficients, respectively. The random coefficients are chosen from 
{+1, −1} with equal probability. An example of such a random 
higher-order Ising model is in Supplementary Fig. 3.

We use the qubits in V2 to compute and uncompute parities into, 
for the ZZ and ZZZ terms in which they are contained (cf. ref. 55). The 
unitaries e−iγZZ and e−iγZZZ are then realized with Rz(2γ) rotations on these 
parity qubits. Computing and uncomputing parities needs 1 + 1 and 
2 + 2 CNOT gates for the quadratic and cubic terms, respectively; how-
ever, the CNOT gates for ZlZn1(l) and ZlZn2(l) can be subsumed into the 
CNOT gates for ZlZn1(l)Zn2(l).

Furthermore, G as a bipartite graph of maximum degree 3 admits 
a 3-edge coloring due to Kőnig’s line coloring theorem, meaning that 
these 2 + 2 CNOT gates can be scheduled simultaneously for all terms 
in just 3 + 3 non-overlapping layers55. Depth-p QAOA circuits for these 
problems thus have a CNOT depth of only 6p, independent of the sys-
tem size n. Further circuit details are given in Supplementary Informa-
tion, ‘127-qubit QAOA circuits’.

Leveraging parameter transfer of QAOA angles for problems with 
the same structure but varying numbers of qubits allows us to obtain 
good angles for these 127-qubit QAOA circuits for p = 1, …, 5, without 
on-device variational learning58. Additionally, we utilize converged 
MPS simulations with a bond dimension of χ = 2,048 to verify that the 
fixed QAOA angles produce good expectation values58, for all circuits. 
The hardware-compatible circuits are run on the ibm_kyiv device. The 
optimal solutions of the higher-order Ising models were computed 
using CPLEX58,59.

As before, we only have a small number of unique layers of CNOT 
gates. Since we want to cover a graph of degree three, we need at least 
three layers (Supplementary Information, ‘127-qubit QAOA circuits’), 
with 144 CNOT gates in total. The measured LFs for the three layers are 
LF1 = 0.2190, LF2 = 0.1579 and LF3 = 0.2590. These fidelities are sub-
stantially smaller than for the 40-qubit circuits. The reason is that the 
qubits and gates on a 127-qubit device are not all the same; there are 
always some better and some worse. For 40 qubits, we could select the 
best line of 40 qubits (Supplementary Information, ‘40-qubit QAOA 
circuits’), while for 127 qubits we use the whole chip. From this we can 
again compute FCX = (LF1 × LF2 × LF3)1/144 = (0.008956)1/144 = 0.967784, 
EPLG = 0.032216 and γCX = 1.067683. The results for evaluating the circuit 
on ibm_kyiv, each with 2 × 105 shots, are provided in Fig. 4 and Table 2. 
With the substantially lower fidelities, the numbers of shots required 
to apply the analytic CVaR bounds are substantially higher and mostly 
impractical to run. However, as before, we see that the effective γCX is 
substantially smaller, even smaller than for the longer 40-qubit circuits. 
Further, we see that the best samples are improving from p = 1 to p = 5.

Finally, we use bootstrapping to confirm the scaling of the CVaR 
variance with respect to α. More precisely, we uniformly sample 105 
values from the results collected using ibm_kyiv and estimate the CVaR 
for the five values of αp′ reported in Table 2. We repeat this 104 times 
to estimate the variance of the resulting CVaR estimators. The results 
are provided in Extended Data Fig. 1 and are in line with the theory 
presented in Methods.

Discussion
The primary focus here was the errors occurring during circuit execu-
tion. However, other error sources, notably state preparation and meas-
urement (SPAM) errors, also affect performance on noisy devices. The 
methodologies developed in this paper can be adapted to account for 
SPAM errors by increasing sampling overhead instead of applying, for 
example, statistical measurement error mitigation, as we did here. The 
latter may allow us to mitigate certain errors with lower sampling over-
head but requires additional calibration circuits and possibly expensive 
classical post-processing. Investigating the impact of SPAM errors 
and comparing different mitigation strategies remains an intriguing 
direction for future research.

In addition, there are several promising research directions for 
studying the CVaR in an algorithmic context. These include using 
the introduced approach for state fidelity estimation as well as using 
the CVaR as a loss function—for example, in training of QAOA circuits 
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Fig. 4 | QAOA results for sampling a random hardware-compatible higher-order 
Ising model (minimization combinatorial optimization problem) on 127 
qubits. The resulting distributions from 127-qubit circuits executed on ibm_kyiv for 
p = 1, …, 5 (top to bottom). The cumulative distribution functions show the values of 
the resulting samples from 105 shots for every p. The vertical lines show the 
corresponding noisy expectation values (dashed blue), the noise-free expectation 
values evaluated using MPS simulation (cyan dashed–dotted) and the globally 
optimal solution equal to −188 (green solid). The titles show the fitted αp′ and 
corresponding γCX′ (cf. main text) such that the CVaRα′p

 are equal to the noise-free 

expectation values (that is, cyan dashed–dotted line). The corresponding αp′ are 
indicated by the horizontal dashed red line. Further, the titles show the number of 
CNOT gates (#CX) and the best sampled objective value (fbest) for p = 1, …, 5.
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on quantum devices. Additionally, filtering or post-selecting sam-
ples to strengthen the CVaR bounds for expectation values opens up 
opportunities to leverage natural symmetries or to model problems 
to introduce certain properties that can be leveraged accordingly.  
To conclude, the techniques introduced in this Article provide a alter-
native perspective on addressing noise in quantum computers across 
various domains and may help advance quantum computing toward 
useful applications.

Methods
Sampling from noisy quantum computers
Consider an initial n-qubit quantum state ρ0, a quantum operation 
𝒰𝒰(⋅) = U ⋅ U† and the resulting ρ = 𝒰𝒰(ρ0). On a real quantum computer, 
we usually have access not to the ideal operation 𝒰𝒰 but only to a noisy 
version 𝒰𝒰, which we model by 𝒰𝒰 𝒰Λ, where Λ denotes the noise opera-
tion and ∘ denotes the composition of operators; that is, we assume 
that 𝒰𝒰 applies first Λ and then 𝒰𝒰. We denote the resulting noisy state by 
ρ̃ = 𝒰𝒰(ρ0).

To simplify the presentation and to relate to existing literature, 
we assume the Pauli–Lindblad noise model15

Λ(ρ) = ∏
k∈𝒦𝒦

(wk (⋅) + (1 −wk)Pk(⋅)Pk)ρ. (8)

Here, 𝒦𝒦  denotes the index set for (local) Pauli error terms Pk, and 
wk = (1 + e−2λk )/2 for corresponding model coefficients λk that deter-
mine the strength of the noise. The assumption of Pauli noise can be 
justified by applying Pauli twirling60–62: see Supplementary Informa-
tion, ‘Pauli twirling’ for more details. However, our results also hold for 
more general ‘reasonable’ noise models with a non-zero probability 
that no error is occurring24.

In general, a quantum circuit is not a single operation 𝒰𝒰  but a 
concatenation of layers 𝒰𝒰i, i = 1, …, l. Their noisy versions are 𝒰𝒰i with 
corresponding noise models Λi. Crucially, this allows us to learn the 
noise model for each layer independently15. A common assumption is 
that the layers 𝒰𝒰i  consist of non-overlapping CNOT gates (or other 
hardware-native two-qubit Clifford gates) and that these layers are 
possibly alternating with layers of single-qubit gates. Single-qubit gates 
are assumed to be noise free since their errors are usually an order of 
magnitude smaller than those of two-qubit gates. Therefore, only the 
noise of the two-qubit gate layers is considered.

Assuming the above layer structure and that the noise model of 
the quantum processor is sparse allows us to efficiently learn the λk 
(ref. 15). A property of Λ that characterizes the overall strength of the 
noise is γ = e2∑kλk. This has a direct operational interpretation, since γ2 
defines the sampling overhead of applying PEC to mitigate the noise 
in the context of estimating an expectation value15,17.

Here, we first focus on sampling from noisy quantum computers 
instead of estimating expectation values. Suppose that we prepare a 
quantum state and afterwards measure the qubits. Then, the probabil-
ity of sampling a bit string x ∈ {0, 1}n is given by px = tr(ρ|x〉 〈x|) for the 

noise-free state ρ and by p̃x = tr(ρ̃ |x⟩ ⟨x|) for the noisy state ρ̃. The noise 
model introduced in equation (8) can also be interpreted as follows: 
with a probability of 1/√γ = ∏kwk we sample a bit string from ρ and with 
probability 1 − 1/√γ we sample from a state where at least one error has 
occurred. Here, we assume λk ≪ 1 such that we can leverage 
ex = 1 + x + 𝒪𝒪(x2) . It immediately follows that wk = e−λk + 𝒪𝒪(λ2k), and thus 
1/√γ = ∏kwk. Then, the law of total probability63 implies the lower bound:

p̃x ≥ px/√γ. (9)

In other words, if ρ is approximated by ρ̃ prepared through a noisy 
process characterized by γ, we need a multiplicative sampling overhead 
of √γ to guarantee at least the same probability of sampling x as for the 
noise-free state. Thus, as long as we are only interested in generating 
relevant bit strings that we can efficiently evaluate classically, we can 
deal with the noise by measuring √γ times more often. This is in contrast 
to the multiplicative sampling overhead γ2 introduced by PEC when we 
are interested in estimating expectation values. Interestingly, if we 
apply PEC and then determine only the sampling probabilities, without 
evaluating an expectation value, we find that the sampling probabilities 
are lower bounded by px/γ, that is, PEC ‘amplifies’ the noise to achieve 
an unbiased estimation of expectation values (see Supplementary 
Information, ‘PEC & sampling’ for more details).

The sampling overhead √γ can be derived from the learned noise 
model15. However, in the present context, we are not interested in the 
full description of the noise model, only in the probability of no error 
occurring, that is, in 1/√γ. Recently, ref. 24 introduced the LF, a metric 
to measure noise present in the hardware when executing a circuit. 
The LF also assumes the layered gate structure mentioned above and 
determines the resulting fidelity for each layer of gates. When assum-
ing the Pauli–Lindblad noise model, it holds that LFi = 1/√γi, where γi 
characterizes the noise of layer i. However, the LF does not require 
this assumption and also applies to more general noise models24. For 
multiple layers we can rewrite equation (9) as

p̃x ≥ px∏
i
LFi. (10)

Further, the LF has the advantage that it is very cheap to evaluate 
when compared with learning the full noise model. Thus, for a given 
circuit, the LF allows us to efficiently determine the sampling overhead 
to compensate for the noise.

Other types of error not mentioned so far are SPAM errors. SPAM 
errors can also be modeled as Pauli errors64–66, thus, in principle, one 
could also determine a probability of no error and compensate for 
SPAM errors by increasing the number of samples. However, there also 
exist other protocols to mitigate measurement errors—for example, via 
statistical corrections52,67. Within this Article, we apply the M3 readout 
error mitigation technique52. A systematic study of the pros and cons of 
alternative approaches to account for SPAM errors would be interest-
ing for future research.

Table 2 | QAOA results for 127 qubits on ibm_kyiv: the different results for p = 1, …, 5 when running the QAOA on the 
introduced 127-qubit spin-glass instance

p No. of CNOTs tr(ρH) tr(ρ̃H) fbest √γp αp αp′ γCX,p′

1 288 −79.79 −62.37 −136 1.247 × 104 8.021 × 10−5 0.3825 1.0067

2 576 −109.35 −74.56 −146 1.554 × 108 6.434 × 10−9 0.0564 1.0100

3 864 −125.37 −74.67 −146 1.938 × 1012 5.161 × 10−13 0.0043 1.0127

4 1,152 −137.22 −71.69 −150 2.415 × 1016 4.140 × 10−17 0.1 × 10−4 1.0148

5 1,440 −145.54 −66.39 −152 3.011 × 1020 3.321 × 10−21 1.5 × 10−5 1.0155

The table shows the number of CNOT gates per circuit, the noise-free (tr(ρH)) and noisy (tr(ρ̃H)) expectation values and the best sampled values (fbest). Further, it shows the overall √γp for the 
circuits and corresponding αp derived from the LF as well as the γCX,p′ and αp′ derived from calibrating the CVaR on the noise-free expectation values as defined in the main text.
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Conditional value at risk
Sampling from noisy quantum computers shows that we can sample 
bit strings of interest, x, that is, corresponding to the noise-free state 
ρ, by taking √γ times more samples from the noisy state ρ̃. However, 
we usually do not know which samples correspond to the noise-free 
state and which samples have been affected by noise. We now leverage 
these insights and show that the CVaR can provide provable bounds to 
noise-free expectation values from noisy samples. The CVaR has already 
been suggested as a loss function and observable in ref. 23, but on the 
basis of only intuition and without theoretical justification.

Consider an integrable real-valued random variable X with cumula-
tive distribution function FX ∶ ℝ → 𝔼0, 1] . Then, the (lower) CVaR at level 
α ∈ (0, 1] is defined as

CVaRα(X ) = α−1𝔼𝔼𝔼X|X ≤ xα]

+ xα(1 − α−1ℙ[X ≤ xα]),

where xα = inf{x ∈ ℝ ∶ FX(x) ≥ α}. In the case when FX(xα) = α, this defini-
tion simplifies to CVaRα(X) = 𝔼𝔼𝔼X|X ≤ xα], that is, we are considering the 
expectation of X when we are conditioning X to take values in its bottom 
α quantile. Accordingly, we define the upper CVaR as

CVaRα(X ) = −CVaRα(−X ). (11)

Therefore, we are considering the expectation of X conditioned 
on values in its upper α quantile. This allows us to prove the following 
lemma.

Lemma 1. Consider a random variable X with probabilities px = ℙ𝔼X = x] 
for x ∈ ℝ. Further, consider another random variable X̃  as well as a given 
constant C ≥ 1 such that p̃x = ℙ𝔼X̃ = x] ≥ px/C. Then we have

CVaRα(X̃ ) ≤ 𝔼𝔼𝔼X ] ≤ CVaRα(X̃ ), (12)

for all α ≤ 1/C. Thus, the lower and upper CVaRs of X̃  with α ≤ 1/C define 
lower and upper bounds, respectively, of the expectation value of X.

Proof. By monotonicity of CVaRα(X̃ ) in α, it suffices to show the claim 
for α = 1/C. Let x1 < … < xn denote the support of p̃. Take k ≤ n such that 
∑i≤k−1p̃xi < 1/C ≤ ∑i≤kp̃xi, then

CVaR1/C(X̃ ) = C∑
i≤k

xip̃xi + xk (1 − C∑
i≤k

p̃xi) .

Clearly, the p minimizing 𝔼𝔼𝔼X] = ∑xxpx and satisfying px ≤ C p̃x for 
all x is also supported on {x1, …, xn} and satisfies

pxi = C p̃xi for all i < k, and

pxk ≤ 1 − ∑
i<k

pxi = 1 − C∑
i<k

p̃xi .

From this, the claim is immediate by using the above to lower 
bound 𝔼𝔼𝔼X]. The upper bound follows by applying the lower bound to 
−X and −X̃  in place of X and X̃ . □Next, let us consider again a noise-free 
n-qubit quantum state ρ, its noisy version ρ̃ and the corresponding γ. 
Further, consider a diagonal Hamiltonian H, which can also be inter-
preted as a function h ∶ {0, 1}n → ℝ. Let us define the random variables 
X, X̃ ∈ {0, 1}n  as the result of measuring ρ and ρ̃, respectively. Then, 
Lemma 1 and equation (9) immediately imply

CVaRα(h(X̃ )) ≤ 𝔼𝔼𝔼h(X )] ≤ CVaRα(h(X̃ )), (13)

for all α ≤ 1/√γ. Since for a diagonal H we have tr(ρH) = 𝔼𝔼𝔼h(X )], equation (13)  
implies that the lower/upper CVaRs computed from the noisy samples 
ρ provide lower/upper bounds for the noise-free expectation value of 

ρ. Further, suppose that ρ is the ground state of the diagonal H. Then, 
h(X̃ ) cannot achieve any values smaller than tr(ρH) and the left inequal-
ity in equation (13) is an equality. Thus, the noisy lower CVaR is equal 
to the ground-state energy (similarly for the upper CVaR if ρ were to 
correspond to the maximally excited state of H). Further, we also know 
that if the noisy CVaR were to be equal to the ground-state energy the 
fidelity between the noise-free state ρ and the noisy state ρ̃ would be 
lower bounded by the considered α, that is, F(ρ, ρ̃) ≥ α.

Diagonal Hamiltonians arise, for example, in optimization prob-
lems or in the form of projectors |x〉 〈x|, as can be used, for example, 
for fidelity estimations. This is discussed in more detail in Applications. 
However, many applications also involve non-diagonal Hamiltonians, 
most prominently applications in quantum chemistry and physics1. 
Consider a non-diagonal Hamiltonian H = ∑iciPi, where Pi denote Pauli 
terms and ci the corresponding weights. Then, we can decompose H 
into a sum of Hamiltonians consisting of subsets of Pauli strings H = ∑jHj, 
where we assume that each Hj can be diagonalized. This can be achieved, 
for example, if all Pauli terms in Hj commute qubit-wise, in which case 
they can be simultaneously diagonalized via single-qubit Pauli rota-
tions68. Thus, we can assume that the Hj are diagonal without loss of 
generality. We define the corresponding functions h j ∶ {0, 1}

n → ℝ as 
well as noise-free and noisy random variables X j, X̃j, respectively, result-
ing from measuring the quantum states with the corresponding 
post-rotations to diagonalize the Hamiltonians Hj. This implies

∑
j
CVaRα(h j(X̃j)) ≤ tr(ρH)

≤ ∑
j
CVaRα(h j(X̃j)),

(14)

for all α ≤ 1/√γ, which extends the previous result to non-diagonal Ham-
iltonians. Note that, in contrast to diagonal Hamiltonians, we cannot 
draw conclusions anymore about the ground-state energy or the fidel-
ity between the noisy state and ground state. For instance, the lower 
bound in equation (14) can be strictly smaller then the ground-state 
energy.

The CVaR can be estimated using Monte Carlo sampling. The vari-
ance of this estimator depends on the type of distribution considered 
but is always bounded by 𝒪𝒪(1/α2). However, for instance, for normal and 
Bernoulli distributions it can even be shown that in the present context 
the analytic behavior of the variances of the CVaR for α → 0 is 𝒪𝒪(1/α), 
where for Bernoulli we assume that the success probability p satisfies 
p = 𝒪𝒪(1/√γ) , which is the relevant case here (cf. Applications). The 
derivation for the variance bounds for CVaR estimation is provided in 
Supplementary Information, ‘Variance of estimating the CVaR’. Thus, 
in these cases and for α = 1/√γ, the variance increases as 𝒪𝒪(√γ). This 
renders the CVaR a very promising noise-robust loss function for vari-
ational quantum algorithms. The variance is amplified substantially 
less than for PEC, where it increases as 𝒪𝒪(γ2). However, we need to recall 
that PEC comes with much stronger theoretical guarantees, that is, 
provides an unbiased estimator instead of a bound. Thus, depending 
on the application, the CVaR might not be applicable.

In the remainder of this section we discuss improvements to the 
lower and upper bounds for cases where we have more information 
about the noise-free state, that is, properties that the bit strings meas-
ured from the noise-free state must have but that might not persist 
under noise. Examples of such properties are particle preservation 
in quantum chemistry69,70 and constraint satisfaction in quantum 
optimization23.

Consider a function ℱ ∶ {0, 1}n → {0, 1} that determines whether a 
bit string x has a required property. Here, ℱ(x) = 1 indicates the pres-
ence of the property. Further, consider a given Hamiltonian H and, for 
simplicity, let us assume it is diagonal and defined by a function 
h ∶ {0, 1}n → ℝ. From this, we can construct a modified Hamiltonian HM

ℱ  
defined by the function

http://www.nature.com/natcomputsci
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hM
ℱ(x) = {

h(x) ifℱ(x) = 1,

M otherwise,
(15)

where M is a given constant. We thus have tr(ρH) = tr(ρHM
ℱ)  in the 

noise-free case for any M, since all noise-free samples x satisfy ℱ(x) = 1. 
Next, we assume constants Ml and Mu that satisfy Ml ≤ h(x) ≤ Mu for all 
x with ℱ(x) = 1. Samples with ℱ(x) = 0 must be affected by noise, which 
allows us to filter out samples where the noise destroys the required 
property. Although there might still be noisy samples that are feasible, 
the post-selection reduces the impact of noise. Owing to the equality 
of expectation values in the noise-free case and the choice of Ml and 
Mu, we immediately obtain

CVaRα(hMu
ℱ (X̃ )) ≤ 𝔼𝔼𝔼X ] ≤ CVaRα(hMl

ℱ (X̃ )), (16)

for all α ≤ 1/√γ. This can lead to substantially better bounds since we 
can leverage the additional information about the considered problem 
to filter out more noisy samples. For non-diagonal Hamiltonians (equa-
tion (14)), it is possible to define a filter function ℱj  for each Hj.

Another implication of our results is that the average over the 
post-selected noisy samples must lie between the lower and upper 
bounds resulting from the filtered CVaR due to the monotonicity of 
the CVaR with respect to α. Thus, the CVaR allows us to bound the bias 
that post-selection may introduce and provide a quality measure for 
the estimated expectation value.

Data availability
Source data for Figs. 2, 3 and 4 and Extended Data Fig. 1 are available 
from Zenodo (https://doi.org/10.5281/zenodo.13738011)71.

Code availability
Code to generate and execute all quantum circuits, to generate all data 
and to create all figures and tables presented in this Article is available 
from Zenodo (https://doi.org/10.5281/zenodo.13738011)71.
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Extended Data Fig. 1 | Variance of CVaR estimates. Variance of CVaR estimates: We draw 105 uniform samples from the original data to estimate the CVaR for  
α′p, p = 1, …5, cf. Table 2, and repeat this 104 times to get an estimate of the variance of the CVaR estimator. The dashed green line is fitted to the results and is in line  
with the predicted upper bound of 𝒪𝒪(1/α).
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