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Ladder fuels rather than canopy volumes
consistently predict wildfire severity even
in extreme topographic-weather
conditions
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Drivers of forest wildfire severity include fuels, topography and weather. However, because only fuels
can be activelymanaged, quantifying their effects on severity has become an urgent research priority.
Here we employed GEDI spaceborne lidar to consistently assess how pre-fire forest fuel structure
affected wildfire severity across 42 California wildfires between 2019–2021. Using a spatial-
hierarchical modeling framework, we found a positive concave-down relationship between GEDI-
derived fuel structure andwildfire severity, marked by increasing severity with greater fuel loads until a
decline in severity in the tallest and most voluminous forest canopies. Critically, indicators of canopy
fuel volumes (like biomass and height) became decoupled from severity patterns in extreme
topographic and weather conditions (slopes >20°; winds > 9.3 m/s). On the other hand, vertical
continuity metrics like layering and ladder fuels more consistently predicted severity in extreme
conditions – especially ladder fuels, where sparse understories were uniformly associated with lower
severity levels. These results confirm that GEDI-derived fuel estimates can overcome limitations of
optical imagery and airborne lidar for quantifying the interactive drivers of wildfire severity.
Furthermore, these findings have direct implications for designing treatment interventions that target
ladder fuels versus entire canopies and for delineating wildfire risk across topographic and weather
conditions.

Wildfires are an essential ecosystem process that maintains forest pro-
ductivity, biodiversity, function, and resilience1. Throughout the pre-
European Western US, frequent fires were a common phenomenon,
including those set intentionally by Indigenous Peoples2,3. However, ele-
vated tree densities compared to the pre-industrial baseline after more than
a century of intensive fire suppression as well as pervasive climate warming
have contributed to wildfires of increasing size and severity4–6. This trend
toward historically uncharacteristic high-severity fires has resulted in
wildfire regimes that are more destructive to forest ecosystems and more
dangerous to human communities7,8. The occurrence of larger, more severe
wildfires has also had an acute effect on post-fire forest transitions.Whereas
mixed-severity wildfires in fire-adapted systems may result in pyrodiverse
landscape mosaics that enable multi-scale biodiversity, habitat, and

ecological resilience9–11, large high-severity fires are associated with arrested
long-term forest regrowth and even type conversion from forest to non-
forest due to their impact on microclimate, soil conditions and seed bank
viability12,13.

The drivers of wildfire severity are complex and interconnected, but
can be described as an interaction among three primary factors: fuels,
topography and weather14. While fuels and topography are conceived as
bottom-up forces with localized effects, weather conditions and climatic
trends are top-down controls that operate at broader spatial scales15,16.
Ultimately, the relative influence of top-down versus bottom-up controls on
fire behavior is context-dependent and contingent onchance factors14. Some
studies have found the accumulation of dense fuel loads to be the most
important factor driving high-severity fire8,17. Other studies have found
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climate change andweather conditions tooverwhelm fuel loads todominate
fire behavior6,18. However, unlike weather and climate conditions, only fuels
can be actively managed; for instance via mechanical thinning or cultural
burns2,19,20. Therefore, quantifying the influence of forest fuel structure on
fire severity has been identified as a top wildfire research priority with direct
bearing on critical forest management planning and policy decisions21.

Research into the role of fuel structure in driving landscape patterns in
burn severity has generally been restricted to 2D optical imagery (i.e.
satellite-derived canopy cover), which fails to characterize the sub-canopy,
or to the few instances where airborne lidar scanning (ALS) is sufficient in
extent and timely in relation towildfires22. However,ALS’s limited coverage,
relatively high costs and slow data delivery times, in addition to incon-
sistency among flight lines, sensor specifications and data products have
hindered its widespread adoption for inference into generalized trends
across fires, regions, and years23,24. Otherwise, some researchers have
employed simulations or modeled datasets on fuels, such as those from
LANDFIRE, though these data lack the vertical precision and temporal
cadence for application to local-scale management and specific time
periods25. These data limitations have greatly constrained the research
community’s ability to consistently assess the empirical relationship
between forests fuels andburn severity across regions, aswell as our ability to
infer how fuels interact with weather and topography (hereafter, “topo-
weather”) to drive severity patterns in widely varying contexts.

In this vein, the Global Ecosystem Dynamics Investigation (GEDI)
spaceborne lidar is novel for its ability to provide consistent samples of
3-dimensional fuel structure across broad spatial extents and over multiple
years26,27. GEDI is a waveform lidar sampling instrument installed on the
International Space Station (ISS). Each GEDI waveform corresponds to a
discrete 25m diameter footprint on the Earth surface that characterizes the
vertical distribution of vegetation biomass from the ground to the top of the
canopy. With progressive orbital acquisitions since April 2019, the spatial
coverage of these waveform samples has increased to include over 7 billion
high-quality filtered footprints between 52 degrees south and north latitudes.
Geographically distributed GEDI samples can be used to derive large-scale,
multi-year estimates of vegetation structure that provide actionable infor-
mation for estimatingwildfire fuel loads previously unattainablewith satellite
optical imagery or piecemeal ALS datasets. While GEDI does not provide all
aspects of fuel properties needed to predict wildfire behavior, such as pre-fire
moisture content and foliar chemical composition, it does provide readily-
applicable analogues to traditional wildfire fuel structure parameters such as
canopy height, canopy bulk density (CBD) and canopy fuel load (CFL)28,29.

Critical to assessing the role of fuel structure in drivingwildfire severity
across regions and years is a thorough accounting for how the relationship
changes across topographic,weather, and climateconditions15. For example,
fire weather is a dominant top-down control on burn severity, as quantified
by indicators related to pre-fire vegetation water stress and fuel moisture
conditions like vapor pressure deficit (VPD)30 and evapotranspiration
(ET)31.As for topography,flatter areas inmountainous terrain tend tobe less
sun-exposed and therefore cooler, moister, and less susceptible to fire
regardless of fuel distributions, though this relationship may be reversed
depending on context19. With increasing slope comes a tendency towards
increasing severity, especially with uphill fire spread32, until slopes are so
steep (e.g. sheer cliffs) that they function as firebreaks33. Similarly, high
winds may facilitate contagion via crown spread and ember cast6. Despite a
relative degree of clarity on how fuels, topography and weather work in
isolation to drive wildfire severity patterns from specific local case studies,
far less is known about how these factors interact in varying geographic and
climate contexts based on spatio-temporally consistent measurements of
forest structure, previously unavailable at scale prior to GEDI34.

Importantly, if topography and fireweather conditions can overwhelm
fuel structure patterns – especially where that forest structure has been
altered through costly management interventions – knowing the threshold
values for both structural attributes and topo-weather conditions will be of
critical importance to forest managers and fire science researchers. High-
intensity fuel treatments (i.e. those that remove entire forest canopies)

versus those that focusonvertical continuity (especially understory thinning
of ladder fuels or cultural burns) could lead to very different severity out-
comes in varying topo-weather conditions35. Improved clarity on the nature
of these relationships can provide a deeper understanding of process and
pattern in fire science, with practical applications for modeling wildfire
hazard, treatment design and containment strategies35,36.

In this study,we employed large-scaleGEDI-derived estimates of forest
fuel structure (where forest is defined as vegetation ≥5m) to assess fuel
structure’s effects on wildfire severity patterns, and how these relationships
change across a gradient of topographic,fireweather and climate conditions
among42 large (>2000ha)wildfire burn scars inCalifornia from2019–2021
(Fig. 1; Table S1). Among the many ways to extract information on fuel
structure from individual GEDIwaveforms, we focused on four particularly
promising metrics, each selected for their relative parsimony, interpret-
ability, and representativeness across the primary dimensions of canopy
structure37,38. Selected fuel metrics include (1) biomass (specifically, above-
ground biomass density; AGBD); (2) canopy height (the relative height of
the 98th percentile of returned energy; RH98); (3) canopy layering (the
number of distinctmodes in the rawwaveform;nmode), and (4) ladder fuels
(mean plant area index below 10m; mPAI10m). While total biomass and
canopy height are established metrics that quantify critical components of
canopy volumes28, GEDI-derived layering and ladder fuels are, to the best of
our knowledge, novel indicators of vertical continuity in fuel structure
(Fig. 2). These vertical continuity metrics are proposed in response to the
demand to better characterize under-represented aspects of vertical fuel
continuity, especially in the subcanopy39. Put simply, layering can be envi-
sioned as the total number of distinct canopy layers, such that more layers
generally correspond to greater canopy heights as well as greater continuity
of fuels fromtheground to the topof the canopy (Fig. 2). Ladder fuels, on the
other hand, are defined as fuels between 0–10m that can propagate flames
from the ground stratum (0–5m) to tree crowns (>10m). Because of the
specific requirement for at least three 5m PAI bins (a result of physical
constraints from GEDI’s pulse width40) from which to define GEDI-based
ladder fuels, it is only applicable to forests with canopy heights over 10m
(See Methods: GEDI fuel structure).

Wildfire effectswere characterized in terms of severity, whichwe define
as the proportion of aboveground organic matter directly consumed
(combusted) by fire41. This is in contrast to longer-term, lagged ecosystem
responses like delayed treemortality and vegetation resprouting42. Owing to
the vast size of recent wildfire extents, quantifying burn severity is not easily
undertaken nor consistently reconciled across sites. Field indices like the
Composite Burn Index (CBI) excel for accurately characterizing site-level
severity43.However, because theCBI relies primarily onocular estimates that
may vary by worker and often lacks pre-fire measurements at a burned site
(instead relying on nearby forests as a proxy), it is not optimal for con-
sistently characterizing broad-scale severity patterns acrossfires, regions and
years44. For large-area assessments, satellite optical imageryprovides ameans
to measure vegetation change by quantifying spectral differences between a
pre-fire image (ostensibly, butnot always, dominatedbygreen chlorophyll in
vegetated areas) and a post-fire image where dark elements like ash and
charcoal tend to dominate the spectral signature with increasing levels of
severity44. As such, we adopted the difference Normalized Burn Ratio
(dNBR) index, with per-fire offsets, due to its robust history in the literature
and high classification accuracies in relation to field measurements43.

In addition to >830,000 samples of GEDI-derived pre-fire fuel structure
and co-located dNBR-based burn severity estimates distributed throughout
the study domain, we included coincident data on topography, fire weather
andclimate ina spatial, hierarchicalmodeling framework to test the following
hypotheses: (H1)GEDI-derived fuel structuremetrics are positively related to
wildfire severity across a range of wildfires in the California study domain;
(H2) the magnitude of the role of fuel structure in driving landscape severity
patterns will decline with increasing topographic slope andmore intense fire
weather conditions; and (H3) the strength of fuel structure’s relationshipwith
wildfire severity will decline along topographic and climatic conditions per-
ceived to be more conducive to ignition and fire spread.
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Results
Fuel structure and wildfire severity
Among the four GEDI-derived forest structural metrics selected for this
study, larger values of biomass, canopy height and layering reflect more
voluminous canopies as indicated by higher plant area index (PAI) values
throughout the vertical profile and into the taller height bins (Fig. 2). Ladder
fuels, on the other hand, have pronounced PAI values in the lower forest
strata that are not necessarily associated with taller canopy heights.

Generalized Additive Models (GAMs), which employ semi-parametric
smoothing functions to characterize the general shape of the relationship
between fuel structure and wildfire severity, exhibit functional forms that are
consistent with positive, concave-down relationships across all four GEDI-
derived fuel metrics (Fig. 3a). Spatial Generalized Linear Mixed Models
(spGLMMs), on the other hand, are parametrized with explicit linear and
quadratic terms. The spGLMMmodels corroborate theGAM’s general form,
with all four metrics possessing significant linear (positive) and quadratic

Fig. 2 | Vertical profiles for four GEDI-derived fuel structure metrics, each split
into three structural classes. Horizontal bars represent the mean plant area index
(PAI) in 5 m vertical height bins from 0–45 m for all GEDI footprints in the study
domain. The three structure classes represent percentiles – <33% (low), 33–67%

(mid), and >67% (high) – for each structural metric, and depict how characteristic
vertical PAI distributions differ among forests possessing low to high structural
attributes for each metric, respectively. See Table 1 for description of metrics.

Fig. 1 | Study domain. a Spatially continuous 1 km
resolution map of GEDI-derived canopy heights
(RH98) across three Californian study regions and
42 wildfires from 2019-2021. bAugust Complex fire
with MTBS severity classes. c GEDI footprint sam-
pling prior to Caldor fire, where each 25 m GEDI
footprint is colored by its spatial blocking group
which controls for spatial autocorrelation among
proximate samples.
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(negative) terms (Fig. 3b; S2). Further, all four fuel structural attributes (which
depict, to varying extents, the amount and spatial arrangement of forest fuels)
positively covary with severity (supporting H1) until they peak at larger
relative values of fuel structure (z-score >1), after which the relationship
attenuates in the tallest and most voluminous forest canopies.

Fuel structure and topo-weather interactions
A series of multivariate spGLMMswere used to assess the independent (i.e.
partial) and interactive effects of fuel structure, topography and fire weather
variables on severity patterns across the 42 wildfire burn scars. Consistent
with their uniformly positive effect on fire severity in the univariate case
(Fig. 3b), fuel structure’s partial spGLMM coefficients were significantly
positive in all cases except for canopy height (RH98) after controlling for
slope or wind conditions (Fig. 4a).

Topo-weather variables like slope, VPD, ET and wind speed were
likewise consistently positively related tofire severity,with the sole exception
of ET after accounting for ladder fuels (Fig. 4b). Critically, significant
negative interactions were observed for nearly all combinations of fuel
structure and topo-weather variables (Fig. 4c). This result is consistent with
H2,whereby structure’s positive effects onwildfire severity decrease inmore
extreme conditions such as steeper slopes, drier weather, and greater wind
speeds. Conversely, the greater the fuel structural attributes (e.g. taller,
higher biomass forests), the lesser the independent role of topo-weather in
determining severity patterns.

Model results obtained from splitting the full dataset into five equal-
sized subsets stratified by topographic slope and weather variables indicate
that while structure-severity relationships from all data (“all”) were sig-
nificantly positive, many of these relationships were not significant in
extreme topo-weather conditions (Fig. 5). For example, on slopes greater
than 20°, where VPD levels were greater than 2.9 kPa, where ETwas greater
than 1mm/8days, or where wind speeds were greater than 9.3m/s, biomass
and canopy height were no longer significantly related to severity. Canopy
layering, on the other hand, was a consistent predictor of severity across
topo-weather conditions, but it too was not significant at ET levels greater
than 1mm/8days, orwherewind speedsweremoderately high (9.3–11.6m/
s). Importantly, only ladder fuels exhibited consistently significant positive
effects on wildfire severity across all topographic slopes and fire weather
conditions.

Fuel-severity across topo-climate gradients
While spGLMMs with fire level random effects explicitly account for the
hierarchical structure of the dataset across a wide range of wildfires (S1; S3),
there was considerable variability in the sign and magnitude of the rela-
tionship between fuel structure and fire severity among individual wildfires.
To examine factors constraining intra-fire structure-severity relationships,

Fig. 3 | Generalized relationships between fuel structure and wildfire severity.
a Generalized Additive Models (GAMs) and (b) spatial GLMM (spGLMMs)
quadratic regressions between standardized fuel structure values (z-scores) and
wildfire severity based on dNBR. Linear and quadratic coefficients in the four
spGLMMswere positive and negative, respectively, and significant at p < 0.05 (S2.1).

Fig. 4 | Partial and interactive effects of fuel structure and topo-weather on fire
severity. Slope estimates (β1), standardized by z-score, represent the partial linear
effects of (a) fuel structure, (b) topographic and weather variables, or “topo-
weather”, and (c) their interaction on wildfire severity from a series of spGLMMs.
Across all combinations of fuel structure and topo-weather, standardized partial

effects correspond to the linear effect of a given predictor on dNBR-based severity
(response) after accounting for the effect of the other predictor, plus its interaction.
Median posterior estimate (points) and associated 95% credible interval (error bars);
terms not significant (open symbol) when the credible interval includes zero (dashed
vertical line).
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we assessed how per-fire regression slope coefficients change along gra-
dients in topography and climate, using a generalized characterization of
fuel volume: biomass (AGBD). We found that standardized intra-fire bio-
mass effects on severity (AGBD~dNBR β1) tended to decline (e.g., their
slopewasmorenegative) along a gradient of highermean topographic slope.

We also found a decreasing trend with productivity (GPPcum) and con-
currently an increasing relationshipwith temperature seasonality (Tseas) and
mean aridity (AI) (Fig. 6). While a decreasing role of structure in steeper
regions was consistent with expectations from H3, the positive covariance
betweenAGBD-dNBRβ1 coefficients andTSeas andAI values led us to reject

Fig. 5 | Effects of fuel structure on fire severity across five levels of topo-weather.
Slope estimates (β1), standardized by z-score, represent the univariate linear effects
of GEDI-derived fuel structural variables on dNBR wildfire severity from a series of
spGLMMs. Model results were obtained from all data samples (“all”) in addition to

subsets defined as five equal-sized classes stratified by corresponding topo-weather
variables. Median posterior estimate (points) and associated 95% credible interval
(error bars); terms not significant (open symbol) when the credible interval includes
zero (dashed vertical line).

Fig. 6 | Intra-fire effects of forest biomass onfire severity across topographic slope
and climate gradients. Subsets depict how intra-fire (i.e. per fire) fuel-severity
relationships change across topo-climatic contexts. Specifically, for each wildfire
possessing a significant intra-fire linear effect between biomass and severity, its per-
fire regression slope coefficient (AGBD~dNBR β1) was regressed against mean

values of (a) slope; (b) temperature seasonality (Tseas); (c) cumulative Gross Primary
Productivity (GPPcum); and (d) aridity index (AI) - each corresponding to the entire
spatial extent of each fire. See Table 1 for variable descriptions and Table S1 for
labeled fire abbreviations for panel (a).
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H3. All quadratic relationships exhibited a significant slope and possessed
R2s of 0.54, 0.15, 0.25, and 0.16, respectively.

Discussion
Based on a dataset ofGEDI-derived, pre-fire fuel structuremetrics across 42
large wildfires over three years, model results indicate a consistent positive
relationship between fuel structure variables (biomass, height, layering, and
ladder fuels) and wildfire severity. These findings support H1, which pos-
tulated forest fuel’s positive relationship with wildfire severity, and tends to
corroborate findings from specific case studies15,19 as well as somemulti-fire
assessments8,17. Furthermore, these fuel-severity relationships concurrently
possess significant negative quadratic terms, which corresponds to a
concave-down relationship. In otherwords, larger fuel structure valueswere
associated with higher severity burns up until the highest values of fuel
structure, after which they were associated with more moderate severity
levels.

This reduction in severity for the largest biomass forests is consistent
with patterns observed in fire refugia, whereby certain high-biomass areas
tend to be repeatedly spared from high severity fire within a matrix of
mixed-severity burns33. Studies have noted the propensity of valley bottoms
and local concavities in arid forests to support voluminous, late-seral forests
owing to multiple environmental factors including reduced ET due to
hillshading, cold air pooling, or higher soil and canopy moisture levels for
forest stands in close proximity to streams45. At the same time, tall multi-
layered canopies transmit less light through the canopy, thereby reducing
evaporative demand on the forest floor and creating a moderated micro-
climate less conducive to ground fire propagation46. This observation,
whereby larger trees tend to burn less severely,may likewise have bearing on
fuels treatment designed to retain and recruit large diameter trees for
simultaneous biodiversity and fuel reduction targets47.

While the positive relationship between top-of-canopy height and
wildfire severity has been corroborated by several other studies32,47–49, this
single height metric has limited information content, especially for char-
acterizing the vertical distribution of canopy fuel in structurally-complex
forest canopies. Aboveground biomass, on the other hand, provides a more
information-rich indicator of total fuel volume. For a given level of fuel
moisture, heat output and transfer is greatest for fuels with high surface area
relative to volume50. Therefore, biomass density (AGBD) has been com-
monly used as a direct antecedent to common fuel structure parameters
such as CBD and CFL, which each reflect biomass above the canopy base
height (CBH), or the height at which canopy fuels allow for vertical fire
propagation29. However, CBH is an ambiguous concept, in part because it is
problematic to accurately and consistently estimate across ecosystems and
forest types, and difficult to verify with fieldmeasurements39. AGBD, on the
other hand, is a consistently estimated GEDI-derived product, validated
across plant functional types in the study domain and globally51,52.

Critically, total biomass is agnostic to how forest fuels influence the
vertical propagation of fire from the ground to tree crowns. Vertical fuel
continuity directly affects flame length and propagation53, but has remained
a challenging canopy attribute to consistently estimate, especially across
uneven-aged, heterogeneous forests39. To address this gap, we tested nmode
as a proxy for structural diversity (but more accurately described as vertical
layering). Nmode exploits GEDI’s continuous vertical waveform to char-
acterize evenness across vertical strata. Simply described, a greater number
of modes in GEDI’s waveform corresponds to a larger number of distinct
biomass elements across a forest’s vertical profile, and hence greater vertical
fuel continuity. Unlike more common indices of structural diversity like
foliar height diversity (FHD), which is partly derived from the number of
pre-established canopy height bins, nmode is not a priori dependent upon
canopyheight and thereforeoffers analternative representationof structural
diversity with a degree of independence fromRH98, even if the twometrics
are correlated (see Fig. S4.3)54.

Vertical fuel continuity is especially important for lower stratum ladder
fuels, where greater continuitymay enable flames to transition from ground
and surface fires to higher canopy strata, thereby increasing contagion and

eventual burn severity46. As with vertical fuel continuity, studies have noted
the difficulty in consistently estimating sub-canopy ladder fuels in the field
and across airborne lidar campaigns32,39. These results confirm the ability of
GEDI waveforms to consistently estimate lower canopy fuel structure
despite challenges with lidar signal attenuation in the lowest reaches of
dense, highbiomass forests55. Furthermore, ourfinding that aGEDI-derived
proxy for ladder fuels, mPAI10m, was the strongest (highestmagnitude) and
most consistent predictor of severity across topographic and fire weather
conditions reinforces the role of ladder fuels as an essential fuel structure
metric.Conversely, those forestswith less ladder fuels (possessing the lowest
mPAI10m values) were the least likely to burn at high severity. While the
sample size for ladder fuels was smaller than that of the other three metrics
(734,347GEDI footprints for ladder fuels versus 830,709 for biomass, height
and layering; or an 11.6% reduction), this sample size differential had no
substantial effect on findings (See S5).

Of particular interest for this study was determining how generalized
structure-severity relationships change across topo-weather conditions. A
number of studies have found evidence for forest structure overwhelming
the effect of topography36, fire weather32, or both8,19. Other studies have
found these relationships to vary by context such that fuels dominate during
mild weather conditions, while extreme conditions (such as acute drought
or high winds) may overwhelm fuel structure in determining severity
patterns20. Our results – including significant negative interaction coeffi-
cients between structure and topo-weather (Fig. 4) as well as nonsignificant
fuel structure coefficients in themost intense topo-weather subsets (Fig. 5) –
are consistent with the conclusion of topography- and weather-mediated
context dependency. Consistent with expectations from H2, we observed
that steep slopes, dry conditions and high winds overwhelmed most fuel
structural conditions to constrain landscape severity patterns. Importantly,
the sole exception to this pattern occurred with ladder fuels and to a lesser
extent, canopy layering.

Quantile values (Fig. 5) provide an indicator of which specific values of
topo-weather conditions may serve as a ‘switch’ between fuel- and topo-
weather dominated severity. For example, one study found this transition
towards weather-controlled severity to occur at 20–40% relative humidity,
though we surmise specific threshold values will fluctuate in different
contexts48. Importantly, fuel structuremay itself feedback upon local climate
conditions, such as when dense forest canopies moderate subcanopy
microclimatic which serves to slow fire progression regardless of fuel
volumes46. At the same time, intermediate topo-weather conditions may
interact to create more extreme conditions than either on its own, such as
when wind direction is perpendicular to topographic aspect for uphill
heading fires16 or when continental easterlies coincide withVPDminima to
drive the rapid spread of high-severity wildfires56.

Studies have found a variety of divergent drivers of severity across
different ecosystems and along gradients in topography and climate34,57.Our
observation that structure-severity effects decline with greater mean topo-
graphic slope is consistent with H3 as well as results from GEDI footprint
sample analyses (i.e. Fig. 4c).This result suggests fuel structure’s diminishing
role in constraining fire severity patterns in steeper terrains. Conversely, the
increase of intra-fire fuel structure effects along a gradient of increasing
aridity and temperature seasonality (a result likewise recently found in
western Tasmania)58 as well as its decrease with greater productivity, led us
to ultimately reject H3. This diverging pattern suggests a change in the
relative role of fuel structure in driving fire severity along a spectrum from
climate-limited (high biomass but high relative moisture) to fuel-limited
(conditions supporting combustion, but limiting biomass growth)
ecosystems57,59. Thus, in this analysis, severity was less dependent on fuel
structure in high productivity regions where fuels were not limited and
where other climatic factors had a larger relative impact on severity patterns.
This observation is consistent with a recent study that found that given
extreme fire weather conditions, excess fuel volumes and ignition, more
productive regions tend to burn at the highest severity levels60. Moreover, in
fuel-limited arid regions, the relative importance of fuel structure in driving
severity may increase where severity patterns more closely track the spatial
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footprint of combustible biomass as opposed to non- or sparsely-vegetated
surfaces, which tend to arrest fire progression61.

A few important caveats and considerations should be considered in
interpreting these results. First,while dNBRexcels as a satellite optical-based
index of fire severity43, studies have noted several issues with its use. In
forests with sparse cover, variability in subcanopy and ground conditions
may confound attempts to differentiate between unburned and low-severity
wildfires33,42, while also failing to distinguish stand-replacing fires as high
severity62. In forests with high canopy cover, optical indices may under-
estimate understory severity as satellite remote sensing of top-of-canopy
reflectance is mostly influenced by photon interaction with upper-canopy
features49. Furthermore, optical indices are subject to noise depending on
date of acquisition (e.g. low sun angles and leaf senescence) and time
betweenfire containment andpost-fire observation, such that post-fire grass
regrowth or epicormic sprouting limit the detection of the extent of canopy
severity given enough time having transpired44. Related to this, studies have
noted the spectral similarity between fire-induced charcoal and shadow
effects in otherwise healthy, structurally-complex vegetation63. Second, this
study looked at fuel structure as distinct from fuel condition and horizontal
connectivity as they influence landscape fire severity patterns. While this
study’s sampling and statistical design intrinsically incorporated these latent
factors, future research would benefit from a more explicit partitioning of
these fuel-related drivers of severity, including 3D spatial contagion of live
and dead fuel moisture, and leaf traits like foliar chemical composition.
Finally, the time period covered (2019–2021) caps a mega-drought in the
region, and the driest 22-year period since 800 CE, with over double the
acreage burned than the previous historical record64. Thus, while the climate
context was relatively consistent across the study duration, this three-year
period of GEDI observation may obscure inference into longer-term dec-
adal dynamics, especially under wetter conditions. While it is ill-advised to
directly extrapolate results from this study to regions outside of the study
domain, future research could address the utility of using climate proxies to
assess howrelationships between fuels, topo-weather and severity generalize
to other regions. For example, does this study’s finding that biomass
and severity were more tightly coupled in increasingly arid regions hold
in other Mediterranean regions? How do differential drivers of fire pro-
gression– includingwind speed anddirectionaswell as landscape treatment
design – affect relationships outside of the study domain? Despite the
promise of broad-scale application, GEDI samples – especially in lower
latitude regions –may be too sparsely distributed to effectively assess small-
medium sized fires (<2000 ha) or where spatio-temporal resolution is cri-
tical to management intervention such as when assessing small-scale
prescribed burns.

Conclusions
Wildfires, especially mixed-severity burns, can be healthy for main-
taining multi-scale landscape ecosystem processes and biodiversity1,9,10,65

while suppression efforts may actually accentuate future burn severity66.
However, climate warming trends have interacted with historically-
anomalous forest fuel density and continuity to generate wildfires of
increasing size and severity6,21,67. As such, forest management guidelines
in theWesternUS have increasingly prioritized reducing the incidence of
high-severity wildfires to minimize the loss of human life and property,
and to slow the processes of vegetation type conversion which are exa-
cerbated by climate warming12,13,21. Results from this study confirm the
utility of GEDI-derived fuel estimates, including those of ladder fuels, for
consistently predicting wildfire severity across large areas, multiple years,
and varying topo-weather conditions. Inasmuch as high-quality data on
weather conditions is available, GEDI fuel structure metrics provide a
novel and complementary tool to guide forest management, including
pre-fire treatment and suppression, especially for regions lacking ALS
monitoring capabilities68,69.

Furthermore, these findings emphasize the effect of topo-weather
thresholds or ‘switches’, after which fuel structure and fuel treatments may
have a diminished role in determining severity patterns70. Critically, this

switch from fuel to weather-dominated wildfires was most pronounced for
structural metrics associated with canopy volumes (e.g. height and above-
ground biomass), while vertical fuel continuity metrics (especially ladder
fuels) consistently predicted wildfire severity even in extreme topographic
and weather conditions. This finding suggests that high-intensity fuel
treatments (which target entire forest canopies rather than focusing on
lower stratum ladder fuels only) may have a limited effect on wildfire
severity in extreme conditions. Conversely, sparse understories (<10m) –
even those that concurrently possess robust mid- strata (>10m) – were
associated with reduced wildfire severity. This result has impor-
tant management implications, especially for treatment interventions that
focus on vertical fuel continuity such as understory thinning or cultural
burns, which have been found to be effective in reducing high-severity
burns2. Understory treatments have also been found to lessen externalities
associated with more intensive thinning operations71 and simultaneously
promote culturally- and ecologically-beneficial wildfire outcomes across a
wide variety of topographic, weather and climate contexts1,72.

Methods
Study domain
The study domain was defined as the North Coast, Central Coast, and
Sierras regions of California (Fig. 1), for fires occurring during years of
temporally-coincident GEDI observations; namely, 2019–2021. California
is the most fire-prone state in the lower USA, and supports the most fire-
adapted vegetation64. The study domainis an environmentally-varied
mountainous region, with elevations ranging from 10m below sea level to
4413m and mean annual temperatures ranging from −3.4–19 °C (Fig. 1).
Apart from the higher elevation Sierras and coastal temperate rainforests,
most of the study domain possesses a Mediterranean climate with ample
precipitation in the winter, vigorous growth in spring, and hot and dry
summer-autumn periods. Sampled vegetation in this study can be char-
acterized primarily sclerophyllous shrublands, oak woodlands, and conifer
forests (>5m) where composition tends to track climate and elevation
gradients.

Data and sampling
This study employed pre-fire structure derived from GEDI waveforms as
well as spatially coincident data on topography, fire weather, climate and
dNBR-based burn severity (Table 1). All data consist of 45m diameter
circular samples centered on the estimated centroid location of each GEDI
footprint. The 45m diameter extent of each sample was determined from
the 25m diameter circular GEDI footprint, buffered outwards by 10m to
account for potential geolocational error, estimated as ±10m (1 standard
deviation)73. All samples were extracted from within the perimeter of all
large (>2000 ha) wildfires in the study domain buffered inwards by 90m to
minimize edge effects and geolocation imprecision.

GEDI fuel structure
The GEDI space-borne lidar sensor produces high resolution laser ranging
waveform profiles for monitoring near-global vegetation structure27. GEDI
L2A, L2B and L4A version 2 data40,51,74,75 were filtered to include only high
quality shots, defined as: (1) possessing aminimumcanopyheight (RH100) of
5m; (2) having been acquired during leaf-on dates (corresponding to day of
year 105 to 319); (3) occurring on slopes less than25° owing to challengeswith
ground-finding in steep terrain; (4) possessing footprint elevations <150m
divergent fromaTanDEM-Xdigital elevationmodel to prevent the erroneous
inclusion of low-lying clouds; (5) having minimal positional degradation as
indicatedby thedegradeflag; (6)possessing surfaceflag equal to1and the stale
return flag equal to 0; and (7) having beam sensitivity >0.9 for the default
ground finding algorithm and sensitivity of >0.95 for ground finding algo-
rithm 276. Among all GEDI waveform shots selected from within the study
domain, those occurring within the extent of two overlapping wildfire scars
within the last ten years, or identified as non-forest fromCALVEGvegetation
maps, were excluded77. In total, these criteria constrained our dataset to
830,709 samples across 42 large wildfires (Fig. 1; Table S1).
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From many potential GEDI-derived canopy metrics78, four were
selected for analysis (1) aboveground biomass, or biomass, from GEDI’s
L4A aboveground biomass density (AGBD) product51; as well as L2A and
L2B derived products, including: (2) canopy height, or the 98 percentile of
relative heights (RH98); (3) canopy layering based on the number ofmodes
in the raw GEDI waveform profile (nmode); and (4) ladder fuels, which we
characterize using the mean PAI below 10m, for all canopies with
RH98 > 10m (mPAI10m) (Table 1). Biomass and height are common
indicators of fuel volumes37,38, while layering and ladder fuels are GEDI-
determined indicators of vertical continuity in fuel structure (despite sig-
nificant correlation; Fig. S4.3). Importantly, ladder fuel metrics are only
applicable for forests >10m due to the physical constraints of GEDI’s pulse
width, which is optimized for detection of PAI in 5m vertical bins40. This
5mbinning size likewise balances theneed for a sufficient signal fromwhich
to accurately characterize PAI (an aggregate value of plant area in a pre-
defined volume) while still providing the best possible vertical resolution.
Because of this GEDI-determined constraint, ladder fuels are defined as the
amount of canopy fuels between 0–10m that can serve to propagate flames
from one 5m layer below (the 0–5m ground stratum) to one layer above
(tree crowns>10m)79. Therefore, the sample size for ladder fuelswas smaller
than that of theother threemetrics (734,347GEDI footprints for ladder fuels
versus 830,709 for biomass, height and layering; or an 11.6% reduction in
sample size; See S5).

While most GEDI-derived fuel structure metrics possess varying
degrees of correlation (See Fig. S4.3), the aforementioned four metrics were
chosen based on the following criteria: (a) they should be easily interpretable
to remote sensing and fire science research andmanagement communities,
(b) they should be well-distributed across a range of canopy height, volume
and heterogeneity categories37, (c) they should each show promise to
independently predict wildfire severity across the study domain, and (d)
they should balance precedence in the literature with novelty for new pre-
dictors. Thus, while total biomass and canopy height are well-established in
the literature28,37, GEDI-derived layering and ladder fuels are, to the best of
our knowledge, novel metrics proposed to better characterize under-
represented aspects of vertical fuel continuity, especially in the subcanopy39.

Wildfire severity, topography, fire weather, and climate data
Wildfire severity was characterized from the 30m resolution Monitoring
Trends in Burn Severity (MTBS) dNBR product80, with per-fire offsets
applied81. In preliminary testing, we found that dNBR outperformed
MTBS’s discrete severity classes, the Relativized dNBR (RdNBR), as well as
logarithmic Composite Burn Index (CBI) transformations based on dNBR.
From the30mresolutiondNBRraster,we extracted an area-basedweighted
average for each 45mcircular sample across all corresponding pixels, and in

proportion to the area covered by each pixel’s value in the 45m sample.
Topographic slope (°) was derived from the 10mUSGSNational Elevation
Dataset82. Slope values corresponding to 45m diameter samples adopted
averages across all corresponding 10mpixels,weightedby the proportionof
each 10m pixel in each circular sample.

VPD and wind speed were derived from daily, 4 km gridMET rasters
and spatially interpolated to specific GEDI footprint locations. GridMET
blends spatial data fromPRISMwithdailyNational LandDataAssimilation
System data83. VPD (kPa) and wind speed (m/s) were derived as the max-
imum daily value for each wildfire’s duration (between alarm and con-
tainment dates). Spatial interpolation was employed on all gridMET
variables to derive unique values for each 45m sample based on area-to-
point kriging (ATPK), which relies on a sample’s relative location within a
given pixel, in addition to its Euclidean distance to neighboring pixels to
estimate an interpolated weighted average84. ET (mm / 8 days) was derived
as themean value of 8-day, 1 km gap-filledMODIS global ET (MOD16GF)
for themonthprior to ignition.We employedquality-filtering on all ETdata
to remove pixels flagged as “significant clouds present” or “mixed clouds”.

Climate indices were compiled from 1 km resolution global climate
products representing mean conditions between 1979 and 2013 for the
entire extent of each wildfire85,86. Temperature seasonality was expressed as
the standard deviation in monthly mean temperature (Tseas)

85. The aridity
index (AI) corresponds to moisture availability for potential growth of
reference vegetation excluding the impact of soil mediating water runoff
events86. AIwas calculated as annual precipitation divided by ET,multiplied
by -1 so that AI values increase with aridity, normalized by z-score, and
centered on 086. For cumulative gross primary productivity (GPPcum), we
adopted the corresponding dynamic habitat index (DHI) which consists of
the median of all good GPP observations from the MODIS GPP product
(MOD17A2) between 2003–201487.

Spatial hierarchical models
Prior tomodel application, all variableswere assessed for violations from the
normal distribution based on the Shapiro-Wilks statistic (W). When vari-
ables significantly deviated from a normal distribution, we employed
Tukey’s Ladder of Powers and cycled through transformation coefficients
(ƛ), selecting theƛ value thatmaximizedW, andused it to transform the raw
vectors to a normal distribution. For cross-comparison among variables in
different units and scales, all variables were standardized based on z-score
and centered around zero, with those variables exhibiting a z-score greater
than 4 removed as outliers.

GEDI footprint locations exhibit a non-random, linear, lattice-like
spatial structure whose spatial dependence could violate assumptions of
independence underlying our parametric modeling framework and

Table 1 | Data, metrics and definitions

Category Metric Definition Abbr. Units

Forest fuel structure Biomass Total above-ground biomass from GEDI waveforms (L4A)51,74 AGBD m/m2

Canopy height Relative height of the 98th percentile of returned energy from GEDI waveforms (L2A)75 RH98 m

Layering Number of modes in the GEDI waveform (L2B)40 nmode n

Ladder fuels Mean plant area index (mPAI) for 5 m vertical increments below 10m for canopies
>10m (L2B)40

mPAI10m m2 / m2

Fire weather Evapo-transpiration Weighted mean values from 8-day, interpolated from 1 km gap-filled MODIS (MOD16GF)
global evapotranspiration

ET mm / 8 days

Vapor pressure deficit Weighted mean daily values in the month preceding ignition interpolated from 4 km
gridMET83

VPD kPa

Wind speed Weighted mean daily values during wildfire interpolated from 4 km gridMET83 -- m/s

Topography Slope Weighted mean slope derived from the USGS National Elevation Dataset82 -- degrees

Climate Temperature seasonality Standard deviation of monthly temperature per annum at 1 km resolution85 Tseas sd °C

Productivity Cumulative Gross Primary Productivity from 1 kmMODIS (MOD13A2) summed over 2003-
201487

GPPcum kg C / m2

Aridity Global aridity index calculated as normalized annual precipitation / ET at 1 km resolution86 AI unitless
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potentially underestimate model prediction error. To test for a spatial
dependence structure among samples, we conducted aMoran’s I test on all
GEDI structure metrics, finding evidence of spatial autocorrelation for all
four metrics. We therefore implemented a spatial blocking routine to
remove autocorrelated GEDI shots while providing a framework for
permutation-based inference. Spatial blocking, where data are split into
groups based on aminimum threshold pairwise distance, has been found to
mitigate spatial dependence structures while minimizing data decimation88.
To do this, we first developed empirical semivariograms for canopy height
(RH98) for each fire. RH98 was used for this assessment of spatial auto-
correlation because tests have shown it to be the most accurate among our
selected canopy structural attributes basedon independent validationwith a
global data set of field sites and airborne lidar76.

We then applied a pairwise distance filter initiated from the semivario-
gram range so that only points beyond that nominal Euclidean distance were
retained for a secondaryMoran’s I test. When significant (i.e. autocorrelated),
we iterated larger blocking distances until remaining points produced a non-
significantMoran’s I. This process was repeated ten times (with replacement)
for each wildfire, each initiated with a different random seed, to produce ten
distinct GEDI sample combinations per fire, whereby all shots in each of the
ten sample setswere sufficiently uncorrelated as determined fromre-evaluated
Moran’s I values. All subsequent models were iterated over each of the ten
sample sets to produce mean ensemble coefficient estimates (including
intercepts, slopes, and standard errors) based on the resulting distributions.

Inference into underlying relationships was predicated on univariate
and multivariate hierarchical spatial Generalized Linear Mixed Models
(spGLMMs).Bothunivariate (Fig. 3) andmultivariate (Figs. 4, 5) spGLMMs
were parameterized with random intercepts and random slopes, with ran-
dom effects determined at the level of the wildfire. Univariate spGLMMs
incorporated two terms for each predictor: a linear and a quadratic term.
Multivariate spGLMMs, on the other hand, included a structural variable, a
topo-weather variable, and an interaction term – each run in a series based
on all pairwise combinations of structural and topo-weather variables. Only
fires with >500 shots per seed/fire were included as a random effect. For
Fig. 5, all data samples were subset into five equal-sized quantiles stratified
according to topographic and weather values, and then subjected to mul-
tivariate spGLMMs as above. Finally, for each wildfire possessing a sig-
nificant intra-fire linear effect between biomass and severity, z-score
standardized intra-fire regression slope coefficients between biomass and
severity were regressed against mean topo-climate conditions across each
fire’s extent. Unlike prior models, intra-fire quadratic linear regressions
employed a single response (AGBD~dNBR β1) and a single predictor,
representing the mean climate condition across the fire extent. All GLMMs
were run in the nlme89 package in R90.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All datasets used are publicly available. The GEDI L2 dataset is available
from the LP DAAC (https://lpdaac.usgs.gov/products/gedi02_av002/,
https://lpdaac.usgs.gov/products/gedi02_bv002/) and the L4 dataset is
available from the ORNL DAAC. All open access data for this study were
downloaded from the following websites: CHELSA, https://chelsa-climate.
org; AI, https://cgiarcsi.community/data/global-aridity-and-pet-database/
;gridMET, https://www.climatologylab.org/gridmet.html; MODIS ET,
https://lpdaac.usgs.gov/products/mod16a2gfv006/; and Dynamic Habitat
Indices, https://silvis.forest.wisc.edu/data/dhis/; CALVEG, https://www.fs.
usda.gov/detail/r5/landmanagement/resourcemanagement/?cid=
stelprdb5347192; MTBS, http://mtbs.gov/direct-download.

Code availability
All of the code used to develop these analyses is openly available at: https://
zenodo.org/records/1401918878.
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