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Single-cell integration reveals metaplasia in 
inflammatory gut diseases

Amanda J. Oliver1, Ni Huang1, Raquel Bartolome-Casado1,2, Ruoyan Li1,3, Simon Koplev1, 
Hogne R. Nilsen2, Madelyn Moy1, Batuhan Cakir1, Krzysztof Polanski1, Victoria Gudiño4,5, 
Elisa Melón-Ardanaz4,5, Dinithi Sumanaweera1, Daniel Dimitrov6, Lisa Marie Milchsack1, 
Michael E. B. FitzPatrick7, Nicholas M. Provine7, Jacqueline M. Boccacino1, Emma Dann1, 
Alexander V. Predeus1, Ken To1, Martin Prete1, Jonathan A. Chapman8, Andrea C. Masi8, 
Emily Stephenson1,8, Justin Engelbert1,8, Sebastian Lobentanzer6, Shani Perera1, 
Laura Richardson1, Rakeshlal Kapuge1, Anna Wilbrey-Clark1, Claudia I. Semprich1, 
Sophie Ellams1, Catherine Tudor1, Philomeena Joseph1, Alba Garrido-Trigo4,5, Ana M. Corraliza4,5, 
Thomas R. W. Oliver9, C. Elizabeth Hook10, Kylie R. James11,12, Krishnaa T. Mahbubani13,14,15, 
Kourosh Saeb-Parsy13,14, Matthias Zilbauer16,17,18, Julio Saez-Rodriguez6, Marte Lie Høivik19,20, 
Espen S. Bækkevold2, Christopher J. Stewart8, Janet E. Berrington8, Kerstin B. Meyer1, 
Paul Klenerman7,21,22, Azucena Salas4,5, Muzlifah Haniffa1,23,24, Frode L. Jahnsen2, 
Rasa Elmentaite1,25,29 & Sarah A. Teichmann1,16,25,26,27,28,29 ✉

The gastrointestinal tract is a multi-organ system crucial for efficient nutrient uptake 
and barrier immunity. Advances in genomics and a surge in gastrointestinal diseases1,2 
has fuelled efforts to catalogue cells constituting gastrointestinal tissues in health and 
disease3. Here we present systematic integration of 25 single-cell RNA sequencing 
datasets spanning the entire healthy gastrointestinal tract in development and in 
adulthood. We uniformly processed 385 samples from 189 healthy controls using  
a newly developed automated quality control approach (scAutoQC), leading to a 
healthy reference atlas with approximately 1.1 million cells and 136 fine-grained cell 
states. We anchor 12 gastrointestinal disease datasets spanning gastrointestinal 
cancers, coeliac disease, ulcerative colitis and Crohn’s disease to this reference. 
Utilizing this 1.6 million cell resource (gutcellatlas.org), we discover epithelial cell 
metaplasia originating from stem cells in intestinal inflammatory diseases with 
transcriptional similarity to cells found in pyloric and Brunner’s glands. Although 
previously linked to mucosal healing4, we now implicate pyloric gland metaplastic 
cells in inflammation through recruitment of immune cells including T cells and 
neutrophils. Overall, we describe inflammation-induced changes in stem cells that 
alter mucosal tissue architecture and promote further inflammation, a concept 
applicable to other tissues and diseases.

The human gastrointestinal tract is a complex system comprising sev-
eral organs that work together to absorb nutrients while simultaneously 
providing an immunologically active barrier. Diseases of the gastroin-
testinal tract are prevalent: ulcerative colitis and Crohn’s disease affect 
over 7 million people worldwide, and 2 million new colorectal cancer 
(CRC) cases are diagnosed annually1,2. Single-cell transcriptomics has 
offered unprecedented molecular insights of gastrointestinal homeo-
stasis, development and disease5–9. Over 25 single-cell RNA sequencing 
(scRNA-seq) studies of the human gastrointestinal tract have been 
published to date, primarily focused on specific organs and/or cell 
types. The integration of these publicly available datasets provides a 
valuable resource for the Human Cell Atlas community and beyond3, 
and enables cross-regional comparisons of gastrointestinal cell types.

The epithelial cells lining the gastrointestinal tract lumen arise from 
a common endoderm progenitor and acquire their regional identity 

early in embryogenesis10. This regional identity can be altered in 
adulthood leading to metaplasia, where mature tissue is replaced 
by cells normally occurring in other anatomical regions4. Intestinal 
metaplasia is well described in the stomach and in patients with Bar-
rett’s oesophagus where the mucosa is transformed to intestinal 
epithelial cells, increasing the risk of gastric and oesophageal adeno-
carcinomas11,12. Conversely, pyloric metaplasia of intestinal tissue, 
comprising cells expressing MUC6 and MUC5AC4, is less well charac-
terized (also known as pseudopyloric metaplasia, gastric metaplasia, 
ulcer-associated cell lineage and spasmolytic polypeptide-expressing 
metaplasia). Histological studies4,13,14 have suggested that pyloric 
metaplasia may arise as part of the mucosal healing process and 
can transition to neoplasia4. However, the origin and functional 
role of metaplastic cells in acute and chronic tissue damage remain  
unresolved.
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In this study, we created a gastrointestinal tract atlas by integrat-
ing published and newly generated scRNA-seq data spanning health 
and disease. Utilizing this resource (gutcellatlas.org) of 1.6 million 
cells across 271 donors, we examined cell types and signatures in 
inflammatory intestinal diseases. We identified MUC6+ metaplastic 
cells from inflamed intestines from patients with inflammatory bowel 
disease (IBD) and coeliac disease, uncovering the full transcriptome 
of pyloric gland metaplastic cells, which we termed inflammatory epi-
thelial cells (INFLAREs). We propose that a shift in the epithelial stem 
cell state alters the differentiation pathway from healthy to metaplastic 
lineages, which in turn contribute to ongoing inflammation in chronic 
disease.

Pan-gastrointestinal data integration
We curated, integrated and harmonized healthy cells across the gas-
trointestinal tract from 23 published and 2 unpublished scRNA-seq 
datasets (Fig. 1a–c, Extended Data Fig. 1a,b and Supplementary Table 1). 
Tissues covered include the oral mucosa, oesophagus, stomach, small 
and large intestines, and mesenteric lymph nodes. To uniformly process 
the data, we remapped raw sequencing data and processed gene counts 
through our newly developed quality control pipeline (scAutoQC), 
removing low-quality cells in an unbiased and automated way (Meth-
ods; Fig. 1b, Extended Data Figs. 1 and 2 and Supplementary Note 1). We 
used single-cell variational inference (scVI) to integrate the data, which 
outperformed other methods (Extended Data Fig. 1e).

The final integrated data were annotated into seven broad line-
ages (Extended Data Fig. 1a), subclustered and further annotated 
into fine-grained cell types (Supplementary Figs. 1–3). Owing to 
large heterogeneity across gastrointestinal regions and life stages 
(Extended Data Fig. 3a,b), we further subclustered epithelial and 
mesenchymal cells by age and/or region, to accurately annotate 

fine-grained cell types (Extended Data Fig. 1a). Cell types were anno-
tated by a semi-automated method, with manual annotations based 
on known marker genes cross-referenced with automated annotations 
based on published studies5,6,15 (Methods). In total, our healthy refer-
ence atlas comprised approximately 1.1 million cells from 143 adult or 
paediatric and 32 embryonic, fetal or preterm donors, annotated to 
136 fine-grained cell types (Extended Data Fig. 1 and Supplementary 
Figs. 1–3). We annotated 51 epithelial cell types or states, highlighting 
commonly occurring and temporally or spatially restricted popula-
tions (Supplementary Fig. 2). Our atlas highlighted rare and difficult 
to distinguish cell types with varying representation across donors, 
studies and locations (Supplementary Figs. 4 and 5 and Supplemen-
tary Note 1). We resolved diverse immune populations including 17 
T or natural killer (NK), 16 myeloid and 11 B and B plasma cell subsets 
(Supplementary Fig. 1).

Cellular changes in the healthy gastrointestinal tract
Comparing cell-type composition in the developing versus the mature 
(paediatric and adult) stomach, duodenum, ileum and colon, we 
observed enrichment of neural and mesenchymal lineages in devel-
oping tissues (Extended Data Fig. 3c). Myeloid populations, especially 
macrophages and LYVE1+ macrophages, were also enriched in devel-
oping compared with adult small and large intestines (Extended Data 
Fig. 3c,d). In line with the development of intestinal IgA responses 
after birth16, most B cell subsets were enriched in the mature gastro-
intestinal tract (Extended Data Fig. 3d). By contrast, progenitor B cells 
were enriched in developing gastrointestinal tissues, as previously 
observed15 (Extended Data Fig. 3d). Although most T cell populations 
were enriched in mature gastrointestinal tissues, ILC3 and CD56bright 
cytotoxic NK cells were enriched in the developing gastrointestinal 
tissues (Extended Data Fig. 3d).
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Fig. 1 | Overview of pan-gastrointestinal cell integration. a, Schematic 
overview of the atlas denoting the healthy reference as a core, with additional 
disease datasets mapped by transfer learning. GI, gastrointestinal; QC, quality 
control. Schematic in panel a was created with BioRender (https://biorender.
com). b, Overview of scAutoQC, an automated, unsupervised quality control 
approach to remove low-quality cells. UMAP, uniform manifold approximation 
and projection. c, Overview of the number of cells and donors per study, broken 
down by age and region of the gastrointestinal tract ( y axis). The dot size 
indicates the number of donors, and the colour indicates the number of cells. 

The colours of the y axis indicate broad-level organs (oral mucosa, salivary 
gland, oesophagus, stomach, small intestine, large intestine and mesenteric 
lymph node (MLN)). Caetano (2021), ref. 50; Chen (2022); ref. 51; Costa-da-Silva 
(2022), ref. 52; Domínguez Conde (2022), ref. 53; Elmentaite (2021), ref. 5; He 
(2020), ref. 54; Holloway (2021), ref. 55; Huang (2019), ref. 56; Jaeger (2021),  
ref. 57; James (2020), ref. 58; Jeong (2021), ref. 59; Kim (2022), ref. 60; Kinchen 
(2018), ref. 9; Lee (2020), ref. 61; Li (2019), ref. 62; Madissoon (2019), ref. 63; 
Martin (2019), ref. 6; Pagella (2021), ref. 64; Parikh (2019), ref. 23; Uzzan (2022), 
ref. 65; Wang (2020), ref. 66; Williams (2021), ref. 19; Yu (2021), ref. 67.
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Differential abundance comparison across mature gastrointestinal 
regions revealed specific enrichment of endothelial cells in oral mucosa 
(Extended Data Fig. 3e), consistent with a high level of vascularization17.  
IgA2 and IgM plasma cells were enriched in the oesophagus compared 
with other tissues (Extended Data Fig. 3f). In mesenchymal popula-
tions, several region-specific fibroblasts were enriched in the oral 
mucosa, oesophagus and rectum (Extended Data Fig. 3g and Supple-
mentary Fig. 1a).

Disease-relevant cell dynamics in IBD
Next, we projected disease data from patients with ulcerative colitis, 
Crohn’s disease, paediatric IBD, coeliac disease (unpublished), CRC 
and gastric cancer onto the healthy reference (Methods; Fig. 2a,b and 
Supplementary Fig. 6). Overall, we added approximately 500,000 cells 
to our atlas, totalling 1.6 million cells across 27 studies, 271 donors and 
6 gastrointestinal diseases. To annotate disease cells, we projected dis-
ease data onto our subclustered, lineage-specific and region-specific 
views of the atlas (Methods; Extended Data Fig. 1b and Supplementary 
Figs. 7 and 8).

Focusing on IBD, we analysed differences in cell abundance and gene 
expression programs using unsupervised consensus non-negative 

matrix factorization (cNMF) and differential gene expression analysis 
(Methods). These analyses highlighted known cell-type abundance 
changes in IBD, along with disease-specific gene expression programs 
across lineages (Extended Data Fig. 4a, Supplementary Fig. 9 and Sup-
plementary Note 2). We observed an enrichment of oral mucosa fibro-
blasts in Crohn’s disease compared with the healthy ileum (Extended 
Data Fig. 4a).

Inflammatory fibroblast populations in IBD and cancer have been 
described18 and are expected to map imperfectly onto a healthy ref-
erence. In our atlas, disease-specific fibroblasts from IBD and cancer 
samples from the stomach, and small and large intestines surpris-
ingly mapped to oral mucosa fibroblasts. Thus, disease-specific fibro-
blasts share transcriptional similarity to healthy fibroblasts in the 
oral cavity, albeit with upregulated inflammatory gene signatures 
compared with their healthy counterparts (Fig. 2c–e, Extended Data 
Fig. 4b–j and Supplementary Note 3). In periodontitis, gingival mucosa 
fibroblasts similarly upregulate inflammatory genes, particularly 
those involved in recruiting neutrophils (CXCL1, CXCL2, CXCL5 and 
CXCL8) to aid in wound healing19,20 (Extended Data Fig. 4k–m). We 
hypothesize that in the intestines, this inflammatory fibroblast state 
only arises in severe inflammatory environments similar to inflamed  
gingival mucosa.
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In the epithelial compartment, we observed a distinct disease-specific 
cluster of cells in the large intestine, which we annotated as Paneth cells 
based on the marker genes DEFA5, DEFA6, REG3A and PLA2G2A (Fig. 2f 
and Extended Data Fig. 5a–i). Paneth cells were found across inflamed 
and neighbouring tissue from patients with IBD, but not in the healthy 
controls, consistent with Paneth cell metaplasia in chronic colon inflam-
mation21,22 (Fig. 2f and Extended Data Fig. 5g). Comparing gene expres-
sion profiles of native Paneth cells in the inflamed small intestine with 
metaplastic Paneth cells in the inflamed colon, we identified upregu-
lation of WFDC2 and FAM3D (Extended Data Fig. 5j). These genes are 
involved in colon homeostasis and controlling bacterial growth, sup-
porting the role for Paneth cell metaplasia in barrier restoration23,24.

Epithelial metaplasia in gut disease
In the small intestine, we observed two distinct epithelial populations 
with unique signatures across healthy and diseased samples. In the 
healthy duodenum, we observed MUC6+ mucous gland neck (MGN) cells 
and MUC5AC+ surface foveolar cells phenotypically resembling cells of 

the Brunner’s glands25,26 (Fig. 3a,b, Extended Data Fig. 6a, Supplemen-
tary Fig. 2e and Supplementary Notes 4 and 5). As expected, these cells 
were abundant in stomach samples, representing cells of the pyloric 
glands (Extended Data Fig. 6a and Supplementary Fig. 2d). Disease cells 
annotated as MGN or surface foveolar populations were enriched in 
the ileum of patients with IBD (Fig. 3c and Extended Data Figs. 4a and 
6b,c). In the duodenum of patients with untreated coeliac disease, we 
observed more MUC6+ cells than in matched controls (Extended Data 
Fig. 6a). Marker genes of the MGN-like population included MUC6, PGC, 
AQP5 and BPIFB1 (Fig. 3b). Within the surface foveolar-like population 
in disease, we observed enhanced and heterogeneous expression of 
CEACAM7, CEACAM1, DUOX2 and LCN2 (Extended Data Fig. 6b). Owing to 
the low MUC5AC expression in scRNA-seq (Extended Data Fig. 6c–f and 
Supplementary Note 5), we refer to this distinct population in disease 
as ‘surface foveolar-like’.

In the coeliac duodenum and IBD ileum, we hypothesized that MUC6+ 
cells represent epithelial cells in pyloric metaplasia13 and provide addi-
tional supporting evidence in Supplementary Note 4 (Extended Data 
Fig. 6g–k). In previous studies of the diseased small intestine, MUC6+ 
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cells were either annotated as a mixture of cell types (including micro-
fold cells, OLFM4+ stem cells and goblet cells) or excluded entirely 
(Supplementary Fig. 10). By contrast, here we identified MUC6+ cells 
in the coeliac duodenum and IBD ileum as epithelial cells in pyloric 
metaplasia. This discovery reflects the power of data integration to 
classify rare cell types (for supporting evidence, see Supplementary 
Note 4). We henceforth refer to MUC6+ cells in disease as INFLAREs to 
distinguish them from healthy MGN cells. We next investigated the 
molecular and cellular roles of this metaplastic lineage in disease.

Pyloric metaplasia has been reported in approximately 28% of patients 
with IBD via histology13,27,28 (Supplementary Table 3). In our atlas, we 
found INFLAREs in only a small number of patients, potentially due to 
sampling biases (Extended Data Fig. 6h). To generalize our findings, we 
investigated bulk RNA-seq datasets of mucosal biopsies from paediatric 
and adult patients with IBD. Using bulk deconvolution with our single-cell 
data as a reference (Methods), we found significantly higher propor-
tions of INFLAREs in Crohn’s disease and ulcerative colitis samples and 
microdissected metaplastic tissue than in healthy tissue, which agreed 
with previously reported prevalence and validated INFLARE marker 
genes (Fig. 3d,e, Extended Data Fig. 7a–d and Supplementary Note 6). 
INFLAREs were present across the intestines in Crohn’s disease but only 
in the large intestines of patients with ulcerative colitis, consistent with 
the aetiology and site of inflammation (Fig. 3d), and also detected in 
patients with coeliac disease and in patients with CRC with microsatellite 
instability (Extended Data Fig. 7e,f and Supplementary Note 6). MUC6 
expression is associated with colonic neoplasms in ulcerative colitis, sug-
gesting that INFLAREs may have a direct role in colitis-associated CRC29,30.

To validate the presence of INFLAREs in patients with IBD and 
coeliac disease, we performed immunohistochemistry and multi-
plexed single-molecule fluorescence in situ hybridization (smFISH) 
in patient samples (Supplementary Table 4). We located INFLAREs 
(MUC6+AQP5+BPIFB1+) at the crypt base and surface foveolar cells 
(MUC5AC+) at the crypt top of metaplastic glands in Crohn’s disease 
mucosa (Fig. 3f–h and Extended Data Fig. 7g,h). We noted heterogeneity 
in INFLAREs based on co-expression of AQP5 and BPIFB1 (Extended Data 
Fig. 7i) and observed their close association with ulcerated regions and 
tertiary lymphoid structures (Extended Data Fig. 7g). We also validated 
INFLAREs in disease tissue from untreated patients with coeliac and 
ulcerative colitis (Extended Data Fig. 7j,k). In untreated patients with 
coeliac disease, MUC6+ INFLARE metaplastic glands were distinguished 
from healthy MUC6+ Brunner’s gland cells by their mucosal localization 
(Extended Data Fig. 7k, left panel). MUC6+ or MUC5AC+ cells were not 
found in the healthy ileum (Extended Data Fig. 7l). Thus, INFLAREs are 
found across the intestines during chronic inflammation and share 
transcriptional similarities to healthy MGN cells, which are restricted 
to the stomach and duodenum (with important differences discussed 
below) (Fig. 3g). We describe INFLAREs, MUC6+ cells of pyloric meta-
plasia, at single-cell resolution for the first time, to our knowledge.

Origin of INFLAREs
To interrogate the origin of INFLAREs, we performed trajectory analysis 
(Methods) on small intestinal epithelial cells (Fig. 4a and Extended 
Data Fig. 8a,b). INFLAREs branched from LGR5+ stem cells (Fig. 4a) and 
retained expression of stemness genes along the trajectory (Fig. 4b and 
Extended Data Fig. 8c). Using smFISH, we found LGR5 and MKI67 expres-
sion in INFLAREs in tissue from the ileum of individuals with Crohn’s 
disease (Fig. 4c), validating a stemness and proliferative phenotype.

To identify drivers of the INFLARE trajectory, we performed 
gene-level pseudotime trajectory alignment of stem cells to either 
MGNs or INFLAREs (Fig. 4d) or to other inflamed lineages (entero-
cytes and goblet cells) from the duodenum (Methods; Extended Data 
Fig. 8b–d). We focused our analysis on transcription factors, due to 
their importance in determining cell fates, and found 19 mismatched 
transcription factors (potentially involved in determining INFLARE 

cell fate) (Extended Data Fig. 8e and Supplementary Note 7). These 
transcription factors have been implicated in the regulation of stem 
cells, intestinal development and secretory programs, the epithelial 
injury response and metaplasia (Supplementary Note 5). In addition, 
we found mismatches across two of three comparisons in NME2, which 
is implicated in maintaining gastric cancer stemness31, and ATF3, ATF4, 
CREB3L1 and CREB3L2, which encode cAMP response element-binding 
proteins implicated in injury responses and metaplasia in the stomach 
and pancreas32,33. These mismatched transcription factors highlight 
potentially conserved molecular mechanisms (inflammatory stress 
responses and tissue regeneration programs) for mucous cell meta-
plasia across tissues.

Applying cNMF analysis to diseased cells in the small intestine, 
we identified transcriptional programs shared between epithelial 
populations and INFLAREs. A stem cell gene program (Fig. 4e, fac-
tor 5) with high-ranking genes including SLC12A2, RGMB and LGR5 
(Fig. 4f) was highly expressed in INFLAREs. Other factors distinguished 
MGN and INFLAREs from other mucous-secreting cells, such as the 
INFLARE signature itself (factor 42), surface foveolar-like (factors 15 
and 25) and goblet signatures (factor 10; Fig. 4e,f and Extended Data 
Fig. 8f), with the latter two including expected cell-type-specific genes 
(Extended Data Fig. 8f–h). INFLAREs are thus a distinct cell type with 
unique transcriptional signatures and expression of stemness genes.

Comparing stem cell gene expression, LEFTY1, a marker of intestinal 
metaplasia progenitors in the stomach and oesophagus, was enriched 
in inflamed versus healthy ileum (Fig. 4g, Extended Data Fig. 8i and Sup-
plementary Note 8). REG1A, OLFM4 and SLC12A2 were also enriched in 
IBD (Extended Data Fig. 8j), suggesting that inflamed stem cells differ 
from those in healthy tissue, which may explain their potential to give 
rise to metaplastic cells. Cell–cell communication analysis highlighted 
differentially regulated stem cell factors that may contribute to a meta-
plastic niche. In particular, we identified the ligands NGR1, AREG and 
EREG, which were upregulated in oral mucosa/inflammatory fibroblasts 
and signalled to stem cells and INFLAREs via EGFR, ERBB2 and ERBB3 
(Extended Data Fig. 8k–m and Supplementary Note 9).

Together, our data suggest that metaplasia can arise from 
inflammation-induced changes within crypt-based stem cells giving 
rise to INFLAREs, the major lineage of pyloric metaplasia (Fig. 4h). 
Moreover, INFLAREs retain stem-like properties in intestinal disease, 
representing a plastic population.

Dual role of INFLAREs in disease
Previous studies have suggested that metaplasia is an adaptation 
in mucosal tissues in response to injury and healing4,34. Supporting 
this hypothesis, INFLAREs expressed TFF3, a trefoil factor normally 
expressed by goblet cells, which has a key role in mucosal healing35 
and causes mucinous metaplasia and neutrophil infiltration in fundic 
glands when overexpressed in mice36. By contrast, healthy MGN cells 
in the stomach and duodenum expressed mostly TFF2 (Extended Data 
Fig. 9a,b). INFLAREs had significantly decreased TFF2 expression and 
also increased expression of PLA2G2A, which encodes an antibacterial 
protein important for the stem cell niche37,38 (Extended Data Fig. 9c).

However, INFLAREs also expressed programs that may contribute 
to chronic intestinal inflammation. We compared MGN and INFLAREs 
across different tissues, life stages and diseases in our atlas, identifying 
distinct features depending on the context (Extended Data Fig. 9d). 
We found greater similarity between diseased INFLAREs and healthy 
MGN cells in the stomach than in the healthy duodenum (Extended 
Data Fig. 9e,f). Compared with MGN cells in the healthy duodenum 
and stomach, INFLAREs upregulated cytokine-induced inflammatory 
programs and IFNγ-mediated pathway genes, similar to ileal stem cells 
from patients with Crohn’s disease (Extended Data Fig. 9c,g,h).

To interrogate inflammatory signalling from INFLAREs in dis-
ease, we performed cell–cell interaction analysis (Methods). 
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INFLAREs overexpressed the chemokines CXCL16 (T cell recruit-
ing), CXCL2, CXCL3 and CXCL5 (neutrophil recruiting) and CXCL17 
(myeloid-recruiting angiogenic factor39) compared with healthy MGN 
cells (Fig. 5a,b and Extended Data Fig. 9i). Healthy stomach MGN cells 
more closely resembled INFLAREs, with upregulated chemokine expres-
sion compared with healthy duodenum MGN cells (Fig. 5a and Extended 
Data Fig. 9i,j). CXCL2, CXCL3 and CXCL5 on INFLAREs were predicted 
to interact with ACKR1, which encodes an atypical receptor that can 
transport chemokines into the vessel lumen40, on venous endothelial 
cells (Fig. 5b). ACKR1 expression in the endothelium is associated with 
resistance to anti-TNF and anti-integrin α4β7 therapy in IBD6 and can 

be upregulated through neutrophil interactions40. Using smFISH, we 
found a close association of ACKR1+ vessels with INFLAREs in Crohn’s 
disease tissue (Fig. 5c and Extended Data Fig. 9k). In agreement, 
venous endothelial cells correlated with INFLAREs in deconvoluted 
bulk RNA-seq data from Crohn’s disease tissue (Extended Data Fig. 9l). 
Neutrophil marker genes (CXCR1, CXCR2, FCGR3B and PROK2) also 
correlated with INFLAREs in bulk RNA-seq data (Extended Data Fig. 9l). 
Together, INFLAREs express immune-recruiting chemokines, which 
could potentiate inflammation in intestinal diseases.

In addition to inflammatory cytokines, INFLAREs have elevated MHC 
class II-related gene expression compared with healthy MGN cells, 
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particularly those in the duodenum (Fig. 5d, Extended Data Fig. 9c,g–i 
and Supplementary Note 8). We confirmed this at the protein level 
in ileum sections from patients with Crohn’s disease, showing that 
INFLAREs had much higher HLA-DR expression than surrounding 
MUC6− glands and surface epithelium (Fig. 5e and Extended Data 
Fig. 10a). Elevated levels of MHC was seen in other epithelial cells from 
inflamed tissue, including surface foveolar-like and LGR5+ stem cells; 
however, this increase was most prominent in INFLAREs compared with 
healthy MGN cells (Extended Data Fig. 9i). We observed increased IFNγ 
response signatures in INFLAREs from inflamed versus healthy tissue, 
consistent with the abundance of IFNγ in the inflamed intestine and 

its role in MHC class II regulation41 (Fig. 5f and Extended Data Figs. 9g,i 
and 10b). In addition, we observed CD8+, CD4+ and γδ T cells surround-
ing INFLAREs in Crohn’s disease and coeliac disease tissue, in con-
trast to low numbers of T cells surrounding healthy Brunner’s glands 
(Fig. 5g and Extended Data Fig. 10c–f). INFLAREs had higher densities 
of CD4 T cells (significant using regions of interest as replicates) than 
in neighbouring MUC6− glands (Extended Data Fig. 10e). Consistent 
with elevated MHC class II, close interaction between CD4+ T cells 
and INFLAREs in the Crohn’s disease ileum suggests that INFLAREs 
may act as non-conventional professional antigen-presenting cells 
in chronic inflammation. Overall, in addition to the mucosal healing 
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memory T cell. c, smFISH staining of INFLARE (MUC6 and BPIFB1), surface 
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Representative image from n = 3. Scale bars, 100 µm. White arrows highlight 
ACKR1+ vessels, yellow arrows indicate BPIFB1+MUC6+ cells. For both images, the 
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disease resection showing high MHC class II expression in INFLAREs. 
Representative image from n = 2. f, Schematic of the signalling pathway from 
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conditions (right). Schematics in panel f were created with BioRender  
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(CD3+CD4+), CD8 T cells (CD8+CD3+) and γδ T cells (TCRγδ+CD3+) in Crohn’s 
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Representative image from n = 4. Scale bars, 100 µm. h, Schematic of the 
potential role of pyloric metaplasia in inflammatory intestinal diseases. 
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INFLAREs contribute to ongoing inflammation through association with 
activated vessels, the recruitment of various immune cells and direct 
interactions with CD4+ T cells via MHC class II.
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hypothesis for pyloric metaplasia, INFLAREs can exacerbate chronic 
inflammation through interactions with immune cells with known 
roles in IBD and coeliac pathogenesis (Fig. 5h).

Discussion
Here we present an integrated single-cell atlas covering the whole 
human gastrointestinal tract and a workflow including bioinformatic 
tools (scAutoQC) that can aid the assembly of other large-scale atlases. 
Systematic regional comparisons between health and disease revealed 
metaplastic lineages with cellular identities of other gastrointestinal 
regions in chronic disease, including Paneth cells, oral mucosa/inflam-
matory fibroblasts and INFLAREs.

MGN cells, the healthy counterpart of INFLAREs, are best described 
in the healthy stomach and healthy duodenal Brunner’s glands26.  
A scRNA-seq study of paediatric treatment-naive patients with Crohn’s 
disease identified MUC6+TFF2+ and BPIFB1+AQP5+ populations, albeit 
annotated as goblet cells42. Similarly, another study of Crohn’s dis-
ease and ulcerative colitis identified INFLAREs as MUC6+PGC+DUOX2+ 
enterocytes, enriched in the inflamed Crohn’s disease ileum43. Pyloric 
metaplasia in patients with Crohn’s disease has been reported exten-
sively from histology13 and we now annotate and interrogate pyloric 
metaplasia at the single-cell level, with full transcriptional resolution 
for the first time. We highlight distinguishing features of INFLAREs from 
their healthy counterparts and define changes both in stem cells and 
in mature, differentiated cells across intestinal inflammatory diseases.

Our observations support the view that metaplasia arises due to 
alterations in stem cell identity and differentiation. Recent studies in 
the oesophagus12 and stomach44 have proposed that metaplastic line-
ages emerge from altered undifferentiated stem cells. In the ileum of 
patients with IBD, we propose a similar change, in which intestinal injury 
promotes stem cell differentiation to INFLAREs. We provide multiple 
lines of evidence for stem-like features in INFLAREs. The mechanisms 
of pyloric metaplasia may partly mirror the mechanisms of intestinal 
metaplasia of the oesophagus and stomach45. We found that INFLAREs 
express genes and pathways implicated in intestinal metaplasia, for 
instance, LEFTY1 and NRG1–ERBB3. Although the precise mechanisms 
of stem cell transition to INFLAREs will be the focus of future research, 
we highlight potential mechanisms, including inflammatory signalling 
pathways, stem and tissue regeneration factors and cell–cell com-
munication pathways.

Pyloric metaplasia may arise to repair the mucosal barrier after 
injury4. Our results build on these observations, proposing that 
INFLAREs also recruit and interact with immune cells. Increased MHC 
class II expression on intestinal epithelial cells in patients with IBD has 
been described, along with functional interactions between epithelial 
cells and CD4+ T cells via MHC class II46,47. We propose that INFLAREs sim-
ilarly interact directly with CD4+ T cells under inflammatory conditions. 
In addition, INFLAREs can recruit neutrophils, similar to inflammatory 
fibroblasts48, using a cellular circuit probably aided by the close associa-
tion with ACKR1+ vessels. In support of a disease-promoting role, many 
genes expressed by INFLAREs have been implicated in genome-wide 
association studies of IBD, including chemokines CXCL1, CXCL2, CXCL3 
and CXCL5 and IFNγ signalling genes49.

In conclusion, we present an integrated single-cell atlas along the 
gastrointestinal tract as a resource to study gastrointestinal cell popula-
tions in health, development and disease. Using our atlas, we identify 
and interrogate pyloric metaplasia, informing the origin and role of 
metaplastic cells in intestinal inflammation and potential progression 
to neoplasia.
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Methods

Patient samples and tissue processing
Healthy tissue from adults. Healthy adult gastrointestinal tissue was 
obtained by the Cambridge Biorepository of Translational Medicine 
(CBTM) from deceased transplant organ donors (n = 2) after ethical 
approval (REC 15/EE/0152, East of England–Cambridge South Research 
Ethics Committee) and informed consent from the donor families. De-
tails of the gastrointestinal regions processed and donor information 
are compiled in Supplementary Table 5. Donors were perfused with cold 
University of Wisconsin (UW) solution, fresh tissue was collected from 
the distal stomach (antrum/pylorus), duodenum and terminal ileum 
within 1 h of circulatory arrest, and tissue was stored in HypoThermo-
sol FRS preservation solution (H4416, Sigma) at 4 °C until processing. 
Intestinal tissue was open longitudinally and rinsed with D-PBS and then 
processed to single-cell suspensions following standard protocols5,58. 
For tissues from donor A68/759B (D105), epithelium and lamina propria 
were separated into different fractions by dissection. Epithelial cells 
were removed by washing the intestinal mucosa twice in Hank’s bal-
anced salt solution (HBSS) medium (Sigma-Aldrich) containing 5 mM 
EDTA (15575020, Thermo Fisher), 10 mM HEPES (42401042, Gibco), 2% 
(v/v) FCS supplemented with 10 mM ROCK inhibitor (Y-27632 (Y0503, 
Merck)) while shaking at 4 °C for 20 min. Epithelial wash-offs were 
centrifuged at 300g for 7 min at 4 °C and incubated at 37 °C with TrypLE 
(Thermo Fisher) supplemented with 0.1 mg ml−1 DNase I (11284932001, 
Sigma) for 5 min. Cells were pelleted and filtered through a 40-µm cell 
strainer and resuspended in Advanced DMEM F12 (12634028, Thermo 
Fisher) with 10% (v/v) FCS. The remaining epithelium-depleted tis-
sue was minced and incubated in digestion media (HBSS medium, 
0.25 mg ml−1 Liberase TL (5401020001, Roche) and 0.1 mg ml−1 DNase I 
(11284932001, Sigma)) on a shaker at 37 °C for up to 45 min. The tissue 
was gently homogenized using a P1000 pipette every 15 min. For tis-
sues from donor A68/770C (D99), full-thickness tissue was diced with 
a scalpel and digested in digestion media, as described above. Cells 
were pelleted and filtered through a 70-µm strainer before proceed-
ing to Chromium 10x Genomics single cell 5′ v2 protocol as per the 
manufacturer’s instructions. Libraries were prepared according to the 
manufacturer’s protocol and sequenced on an Illumina NovaSeq 6000 
S2 flow cell with 50-bp paired-end reads.

Control tissue from preterm infants. Uninvolved tissue from preterm 
infants, between 23 and 31 post-conception weeks (pcw), with necrotiz-
ing enterocolitis (NEC), focal intestinal perforation or intestinal fistula 
(n = 4) were collected at the Neonatal Department of Newcastle upon 
Tyne Hospitals NHS Foundation Trust with consent and ethical approval 
as part of the SERVIS study (REC 10/H0908/39). Tissue was resected from 
the infant and placed immediately into ice-cold PBS. Within 3 h, samples 
were enzymatically dissociated into a single-cell suspension using col-
lagenase type IV (Worthington) for 30 min at 37 °C. Cells were filtered 
with 100-µm cell strainer, treated with red blood cell lysis and filtered 
through a 35-µm strainer. Cells were stained with DAPI before FACS sort-
ing, selecting only for live, single cells and separating CD45-positive and 
CD45-negative cells. Sorted cells were then loaded onto the Chromium 
Controller (10x Genomics) using the Single Cell Immune Profiling kits 
and subsequently sequenced as per the manufacturer’s protocol.

Disease tissue from patients with Crohn’s disease, ulcerative colitis 
and coeliac disease. Crohn’s disease tissue used for validations was 
obtained from multiple sites. Adult Crohn’s disease surgical resec-
tions were collected from patients in the IBSEN III (Inflammatory Bowel 
Disease in South Eastern Norway) at Oslo University Hospital (n = 4) or 
Hospital Clinic Barcelona (n = 9), and biopsy material was collected 
from patients undergoing colonoscopy at Addenbrookes Hospital 
Cambridge (n = 4); all patients gave informed written consent. Fresh 
tissue was fixed in formalin and embedded in paraffin for subsequent 

immunostaining. Ulcerative colitis tissue was also collected from Hos-
pital Clinic Barcelona (n = 3) during colonic resections, with the same 
consent and tissue processing procedure. Coeliac disease tissue was 
obtained from Oslo University Hospital (n = 2) or the Oxford University 
Hospitals NHS Foundation Trust (OUHFT) coeliac disease clinic (n = 2 
treated coeliac, n = 3 untreated coeliac). As controls, healthy tissue was 
also collected at Oslo University Hospital from the proximal duodenum 
(during pancreaticoduodenectomy for patients with pancreatic cancer, 
n = 2) and the terminal ileum (n = 4).

Duodenal biopsies from Oslo University Hospital were collected 
from newly diagnosed untreated patients with coeliac disease (n = 2) 
and subsequently fixed in formalin and embedded in paraffin for immu-
nostaining. Mucosal pinch biopsies from the second part of the duode-
num from the OUHFT were obtained during gastroscopy of untreated 
patients with coeliac disease (n = 3) and treated patients with coeliac 
on a gluten-free diet (n = 2). Equivalent healthy control samples from 
the OUHFT (n = 3) were obtained from patients undergoing gastros-
copy with gastrointestinal symptoms without coeliac disease. Biopsies 
were stored in MACS tissue storage solution (Miltenyi Biotec) before 
cryopreservation in freezing medium (Cryostor Cs10, Sigma-Aldrich). 
Samples were later recovered by thawing in a 37 °C water bath and 
washed in 20 ml R10 (90% RPMI (Sigma-Aldrich) and 10% FBS) before 
tissue dissociation. Epithelial cells were isolated using v1.11 of the pub-
lished protocol (https://doi.org/10.17504/protocols.io.bcb6isre)69. 
After isolation, epithelial cells proceeded to single-cell sequencing 
(10x Genomics Next GEM 5′ v1.1) as per the manufacturer’s protocol. 
Details of samples and metadata are available in Supplementary Table 4.

Ethical approval for collection of disease tissue. Tissue collected 
at Oslo University Hospital was approved by the Regional Committee 
for Medical Research Ethics (REK 20521/6544, REK 2015/946 and REK 
2018/703, Health Region South-East, Norway) and comply with the 
Declaration of Helsinki. Tissue collected at Hospital Clinic Barcelona 
was approved by the Ethics Committee of Hospital Clinic Barcelona 
(HCB/2016/0389). Tissue from Addenbrookes Hospital was collected 
through the Addenbrookes–Human Research Tissue Bank HTA research 
licence no: 12315 (Cambridge University Hospitals Trust). Tissue col-
lected at the OUHFT was collected under the Oxford Gastrointestinal 
Illnesses Biobank (REC 21/TH/0206).

Single-molecule fluorescence in situ hybridization
Intestinal tissue was embedded in OCT and frozen on an isopentane-dry 
ice slurry at −60 °C, and then cryosectioned onto SuperFrost Plus slides 
at a thickness of 10 µm. Before staining, tissue sections were post-fixed 
in 4% paraformaldehyde in PBS for 15 min at 4 °C, then dehydrated 
through a series of 50%, 70% and 100% ethanol, for 5 min each. Stain-
ing with the RNAscope Multiplex Fluorescent Reagent Kit v2 Assay 
(Bio-Techne, Advanced Cell Diagnostics) was automated using a Leica 
BOND RX, according to the manufacturers’ instructions. After manual 
pre-treatment, automated processing included epitope retrieval by 
protease digestion with Protease IV for 30 min before RNAscope probe 
hybridization and channel development with Opal 520, Opal 570 and 
Opal 650 dyes (Akoya Biosciences). Stained sections were imaged with 
a Perkin Elmer Opera Phenix High-Content Screening System, in con-
focal mode with 1-µm z-step size, using a 20× water-immersion objec-
tive (NA 0.16, 0.299 µm per pixel). Channels were: DAPI (excitation 
375 nm, emission 435–480 nm), Opal 520 (excitation 488 nm, emission 
500–550 nm), Opal 570 (excitation 561 nm, emission 570–630 nm) and 
Opal 650 (excitation 640 nm, emission 650–760 nm). The fourth chan-
nel was developed using TSA-biotin (TSA Plus Biotin Kit, Perkin Elmer) 
and streptavidin-conjugated Atto 425 (Sigma-Aldrich).

Immunohistochemistry
For samples collected at Oslo University Hospital, sections of 
formalin-fixed, paraffin-embedded tissue were cut in series at 4 µm and 
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mounted on Superfrost Plus object glasses (Thermo Fisher Scientific). 
Haematoxylin–eosin staining was performed on the first sections and 
reviewed by an expert pathologist (F.L.J.) and the following sections 
were used for immunohistochemical studies. AB-PAS staining was 
performed by dewaxing formalin-fixed, paraffin-embedded samples 
and staining with Alcian blue (8GX) (AB) at pH 2.5 for acidic mucins 
and periodic acid-Schiff reagent (PAS) staining for neutral mucins, as 
previously described70.

Multiplex immunostaining was performed sequentially using a Ven-
tana Discovery Ultra automated slide stainer (Ventana Medical System, 
750-601, Roche). After deparaffinization of the sections, heat-induced 
epitope retrieval was performed by boiling the sections for 48 min with 
cell conditioning 1 buffer (DISC CC1 RUO, 6414575001, Roche) followed 
by incubation with DISC inhibitor (7017944001, Roche) for 8 min. The 
following primary antibodies were used: anti-human MUC6 clone CLH5 
dilution 1:400 (RA0224-C.1, Scytek), anti-human MUC5AC clone CLH2 
dilution 1:100 (MAB2011, Sigma), anti-human CD3 rabbit polyclonal 
dilution 1:50 (A0452, Dako), anti-human CD8 clone 4B11 dilution 1:30 
(MA1-80231, Leica Biosystems, Invitrogen), anti-human CD4 clone 
SP35 dilution 1:30 (MA5-16338, Thermo Fisher), anti-TCRδ clone H-41 
dilution 1:100 (sc-100289, Santa Cruz Biotechnology), anti-human 
FOXP3 clone 236A/E7 dilution 1:1,000 (NBP-43316, Novus Biologicals), 
anti-human HLA-DRα-chain clone TAL.1B5 dilution 1:200 (M0746, 
Dako), anti-human CD68 clone PG-M1 dilution 1:100 (M0876, Dako), 
anti-human CD20 clone L26 dilution 1:200 (M0755, Dako), anti-human 
TFF2 clone #366508 dilution 1:1,000 (MAB4077, RnD), anti-human TFF3 
clone BSB-181 dilution 1:1,000 (BSB-3820-01, BioSB) and anti-human 
pan-CK clone AE1/AE3/PCK26, ready to use reagent (RTU) (Ventana 
Medical System, 760–2595, Roche).

Each primary antibody was diluted in antibody diluent (5266319001, 
Roche), incubated for 32 min and then washed in a 1× reaction buffer 
(Concentrate (10X), 5353955001, Roche). OmniMap anti-mouse 
horseradish peroxidase (HRP) RTU (5269652001, Roche) secondary 
antibody was incubated for 16 min followed by 12-min incubation 
with diluted opal fluorophores (Opal 6-Plex Detection Kit for Whole 
Slide Imaging formerly Opal Polaris 7 Color IHC Automated Detection 
Kit NEL871001KT) following the manufacturer’s instructions. After 
that, bound antibodies were denatured and HRP was quenched using 
Ribo CC solution (DISC CC2, 5266297001, Roche) and DISC inhibitor 
(7017944001, Roche). Sections were then counterstained with DAPI 
(DISC QD DAPI RUO, 5268826001, Roche) for 8 min and mounted with 
ProLong Glass Antifade mountant (Molecular Probes). Imaging was 
performed using a Vectra Polaris multispectral whole-slide scanner 
(PerkinElmer). Irrelevant, concentration-matched primary antibod-
ies were used as negative controls. For some tissue sections, bound 
anti-CD3, anti-CD20, anti-MUC6 and anti-MUC5AC primary antibodies 
were detected with secondary antibodies conjugated with peroxi-
dase, using the automated Ventana Discovery Ultra system and DAB, 
purple-responsive, yellow-responsive or teal-responsive chromogens 
(ChromoMap DAB Detection Kit, 5266645001; DISCOVERY Purple Kit, 
07053983001; DISCOVERY Yellow Kit, 07698445001; and Discovery 
Teal-HRP detection kit) all from Ventana Medical System.

For samples collected at Hospital Clinic Barcelona, sections of 
formalin-fixed, paraffin-embedded tissue were cut into 3.5-µm sections. 
Immunohistochemistry was conducted for the following commer-
cially available antibodies: anti-human MUC5AC (1:4,000; MAB2011, 
Sigma-Aldrich) and anti-human MUC6 (1:4,000; RA0224-C.1, ScyTek). 
Deparaffinization, rehydration and epitope retrieval of the sections 
were automatedly performed with PT link (Agilent) using Envision 
Flex Target Retrieval Solution Low pH (Dako). Samples were blocked 
with 20% of goat serum (Vector) in a PBS and 0.5% BSA solution. Bioti-
nylated anti-mouse secondary antibodies were used (1:200; Vector). 
Positivity was detected with the DAB Substrate kit (K3468, Dako). Image 
acquisition was performed on a Nikon Ti microscope ( Japan) using 
Nis-Elements Basic Research Software (v5.30.05).

Image quantification
For quantification of T cell density in MUC6+ and neighbouring control 
epithelium, tissue sections from patients with Crohn’s disease (n = 5 
sections, 3 donors) and patients with coeliac disease (n = 2 sections, 
2 donors) stained with antibodies to MUC6, CD3, CD4, CD8 and TCRδ 
(see above) were used. Individual glands/epithelium (either MUC6+ or 
MUC6−) were annotated manually using PathViewer v3.4.0 freehand 
region-of-interest tool outlining the entire gland cross-section. We 
subtracted 3 × 3 pixel averages of autofluorescence measurement per 
channel with subtraction coefficients of: DAPI (1.5), TCRγδ (0.5), MUC6 
(1.0), CD4 (0.25), CD3 (0.25) and CD8 (0.25). We next used QuPath71 v0.5 
with the cellpose72 v2.2.3 extension to segment T cells with the ‘cyto2’ 
model from maximum projection of CD3, CD4, CD8 and TCRγδ, with 
DAPI as the nuclear marker, an expected median diameter of 10 µm and 
excluding cells with diameters of less than 5 µm. Segmented cells were 
thresholded for mean intensity expression of T cell markers by manual 
inspection with cut-offs of more than 25 (CD3), more than 20 (CD4), 
more than 10 (CD8) and more than 10 (TCRδ) and classified into subsets 
based on positive and negative marker expression as indicated. Using 
the centroid position of cells, we counted T cells per gland if the major-
ity of the cell area was within the region of interest and quantified the 
T cell density per gland area comparing MUC6+ and control epithelium.

Data curation and mapping
Datasets (Supplementary Table 1) were chosen from a literature search 
of scRNA-seq studies5–7,9,19,22,23,50–67. Studies were included when there 
was raw scRNA-seq data (FASTQ) from human gastrointestinal tract 
tissues (oral cavity (excluding tongue), salivary glands, oesophagus, 
stomach, and small and large intestine).

Available metadata from each sample were collated from various data 
repositories and harmonized for consistent nomenclature. Metadata 
related to sample retrieval methods, tissue processing and cell enrich-
ment methods were retrieved from the methods section of the original 
study. Where possible, the suggestions of sample metadata from the 
Gut Cell Atlas Roadmap manuscript were considered3. An explanation 
and overview of metadata included and harmonized in the atlas are 
available in Supplementary Table 2.

For public datasets deposited to ArrayExpress, archived paired-end 
FASTQ files were downloaded from the European Nucleotide Archive 
(ENA) or ArrayExpress. For public datasets deposited to the Gene 
Expression Omnibus (GEO), if the Sequence Read Archive (SRA) archive 
did not contain the barcode read, URLs for the submitted 10X bam files 
were obtained using srapath v2.11.0. The bam files were then down-
loaded and converted to FASTQ files using 10x bamtofastq v1.3.2. If the 
SRA archive did contain the barcode read, the SRA archives were down-
loaded from the ENA and converted to FASTQ files using fastq-dump 
v2.11.0. Sample metadata were gathered from the abstracts deposited 
to the GEO or ArrayExpress, and supplementary files from publications.

Following the FASTQ file generation, 10X Chromium scRNA-seq 
experiments were processed using the STARsolo pipeline v1.0 detailed 
in https://github.com/cellgeni/STARsolo. In brief, STAR v2.7.9a was 
used. Transcriptome reference exactly matching Cell Ranger 2020-A for 
human was prepared as described in the 10X online protocol (https://
support.10xgenomics.com/single-cell-gene-expression/software/
release-notes/build#header). Automated script ‘starsolo_10x_auto.
sh’ was used to automatically infer sample type (3′ or 5′, 10X kit ver-
sion, among others). STARsolo command optimized to generate the 
results maximally similar to Cell Ranger v6 was used. To this end, the 
following parameters were used to specify unique molecular identifiers 
(UMI) collapsing, barcode collapsing and read clipping algorithms: 
‘--soloUMIdedup 1MM_CR --soloCBmatchWLtype 1MM_multi_Nbase_
pseudocounts --soloUMIfiltering MultiGeneUMI_CR --clipAdapterType 
CellRanger4 --outFilterScoreMin 30’. For cell filtering, the Empty-
Drops algorithm used in Cell Ranger v4 and above was invoked using 
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‘--soloCellFilter EmptyDrops_CR’ options. Options ‘--soloFeatures Gene 
GeneFull Velocyto’ were used to generate both exon-only and full-length 
(pre-mRNA) gene counts, as well as RNA velocity output matrices.

Following read alignment and quantification, Cellbender v0.2.0 with 
default parameters was used to remove ambient RNA (soup). In cases 
where the model learning curve did not indicate convergence, the script 
was re-run with ‘--learning-rate 0.00005 --epochs 300’ parameters. For 
certain large datasets or datasets with low UMI counts, ‘--expected-cells’ 
and ‘--low-count-threshold’ parameters had to be adjusted individually 
for each sample.

scAutoQC
On a per sample basis, scAutoQC calculated the following metrics: 
logarithmized numbers of counts per cell (log1p_n_counts), logarith-
mized numbers of genes per cell (log1p_n_genes) and the percentages 
of total genes expressed that are mitochondrial genes (percent_mito), 
ribosomal genes (percent_ribo), haemoglobin genes (percent_hb), 
within the top 50 genes expressed in a given cell (percent_top50), 
classified as soup by CellBender (percent_soup) and spliced genes 
(percent_spliced) (Extended Data Fig. 2). The dimensions of these eight 
metrics were reduced to generate a neighbourhood graph and UMAP 
for each sample, which was then clustered at low resolution; these 
clusters are referred to as quality control (QC) clusters. Classification of 
cells/droplets as passing or failing QC was then performed in a two-step 
process, first by classifying each cell as passing or failing QC based 
on four-metric parameters and thresholds set by a Gaussian mixture 
model (GMM). For the atlas, the number of GMM components was set 
to 10 for an overfit model. scAutoQC was subsequently improved to 
automate the best model fit between 1 and 10 components based on the 
Bayesian information criterion. Then, whole clusters were classified as 
passing QC if 50% or more of individual cells within the cluster passed 
QC. The benefits of the approach include the automated nature, remov-
ing most manually set thresholds and limiting hands-on analysis. Our 
unbiased approach exploits both the distribution of individual metrics 
and their correlations. Although there are some parameters that are set 
up-front, they only serve as guidance for the final flagging of low quality 
cells and are not sensitive to small changes in the starting points (for 
example, setting an initial per cent of mitochondrial genes to 15% or 
20% is likely to flag the same clusters). An overview of the pipeline is in 
Extended Data Fig. 2, and the code (https://github.com/Teichlab/sctk/
blob/master/sctk/_pipeline.py v0.1.1) and example workflow (https://
teichlab.github.io/sctk/index.html) can be found in GitHub.

Assembly of the healthy reference
After samples were run through scAutoQC, they were pooled and 
cells were flagged as failing QC, along with samples where less than 
10% of cells or 100 cells total passed QC (18 samples). In total, we 
removed 596,449 (31.22%) low-quality cells during this initial filtering 
step. Cells were further filtered through automated doublet removal 
based on scrublet scores, removing a further 67,846 from the healthy 
reference (Extended Data Fig. 2). Cells from healthy/control samples 
were integrated using scVI73–75 (v0.16.4) with donorID_unified as batch 
key, log1p_n_counts and percent_mito as continuous covariates, cell 
cycle genes removed and 7,500 highly variable genes. For compari-
son, we integrated with Harmony76 (v0.1.7) and BBKNN77 (v1.4.1) using 
donorID_unified as the batch key and ran through the standard scIB 
benchmarking pipeline78 (v1.1.4), assessing batch correction metrics 
based on donorID_unified as batch key.

Annotations of the healthy reference
Cells from the core atlas were grouped by Scanpy (v1.8.0) leiden clus-
tering into seven broad lineages based on marker gene expression 
(annotation level 1; Extended Data Fig. 1a). Each lineage was split, and 
reintegrated with scVI (using the settings above but selecting for 5,000 
highly variable genes with lineage-dependent gene list exclusions: 

cell cycle genes removed for all non-epithelial subsets, ribosomal 
genes removed for all epithelial subsets and variable immunoglobulin 
genes removed for B/B plasma cells) to annotate cells at fine resolu-
tion (annotation level 3). Mesenchymal populations were further split 
by developmental age group (first trimester fetal, second trimester 
fetal/preterm and adult/paediatric). Epithelial cells were further split 
by gastrointestinal region and/or developmental age group (oral all 
ages, oesophagus all ages, stomach all ages, small intestine first tri-
mester fetal, small intestine second trimester fetal/preterm, small 
intestine adult/paediatric, large intestine first trimester, large intestine 
second trimester fetal/preterm, large intestine adult/paediatric). For 
fine-grained annotations of objects by broad compartment (and age/
region if applicable), a combined approach including automated anno-
tation with leiden clustering and marker gene analysis was used. Cell-
typist53 predicted labels were calculated for the entire core atlas using 
various relevant models (Cells_Intestinal_Tract v2, Immune_All_Low 
v2 and Pan_Fetal_Human v2 based on studies5,15,53) and custom-label 
transfer models based on intestinal6 and salivary gland79 datasets.  
During annotation, further doublets were manually removed based on 
a combinatorial approach considering factors such as coexpression of 
different cell-type marker genes, scrublet scores, gene counts, posi-
tioning relative to other cells and CellTypist predictions. Notebooks 
for all annotations are available via our GitHub (https://github.com/
Teichlab/PanGIAtlas). MGN cells (MUC6+) in the healthy reference in 
the small intestine were identified in the healthy duodenum with leiden 
clustering resolution 0.5, and further refined to remove any residual 
doublets or MUC6− cells by subclustering.

Data projection and label prediction for diseased data
To include the disease data, we started from the raw data, remapped 
and applied scAutoQC to the disease data, ensuring that the healthy 
and disease references are comparable. Models for disease projection 
were made on the full healthy reference dataset (without doublets) 
using scANVI80 incorporating broad (level 1) annotations, based on 
the healthy reference scVI model. We projected disease data using 
scArches81 with the scANVI model. To annotate at fine resolution, we 
first predicted broad (level 1) lineages in the projected disease data 
using a label transfer method based on majority voting from k-nearest 
neighbour (kNN). Broad lineages were then split as for the healthy ref-
erence. For all lineages except epithelial, lineage-specific disease cells 
were projected onto the respective healthy reference lineage-specific 
latent space and fine-grained annotations predicted using the same 
method as for broad lineage predictions. Owing to an underrepre-
sentation of epithelial cells, we added additional epithelial cell data 
from coeliac disease duodenum (unpublished data from the Klener-
man laboratory (M.E.B.F., unpublished) and Crohn’s disease ileum and 
colon22, increasing the amount of diseased epithelial cells from 57,406 
to 92,342 cells plus an additional 219,472 cells from healthy controls/
non-inflamed tissue. These additional datasets were not remapped, 
instead these studies were added based on the raw counts matrix. Split 
epithelial cells from the original disease set (remapped data) and the 
additional disease sets (from count matrices) were concatenated and 
reduced to a common gene set of 18,485 genes. The resulting epithelial 
dataset was further split by region (stomach, small intestine and large 
intestine), prepared for projection using scANVI_prepare_anndata 
function (fills 0s for non-overlapping genes) and projected onto the 
respective healthy reference epithelial region-specific latent space 
embeddings.

To refine level 3 annotations on disease cells, we utilized the scArches 
weighted kNN uncertainty metric. We labelled cells as unknown if they 
had an ‘uncertainty score’ greater than the 90th quantile for each line-
age. For epithelial cells, the 90th quantile was calculated separately 
for cancer cells and non-cancer cells to account for high uncertainty 
labelling of tumour cells. To refine the labels of these unknown cells, we 
performed leiden clustering (resolution = 1) and reassigned the label 
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based on both majority voting of the higher certainty cells (above the 
cut-off) and marker genes. In stomach epithelium, there was one cluster 
of unknown cells, likely to be cancer cells, which could not be assigned 
a label and was therefore left annotated as unknown. In large intestinal 
epithelium, we found a cluster that corresponded to metaplastic Paneth 
cells (a cell type not present in the healthy reference), which were rean-
notated based on the distinct marker genes (Extended Data Fig. 4).

Technical and biological variation
To determine the contribution of different metadata covariates to the 
integrated embedding of the healthy reference data, we performed lin-
ear regression for each latent component of the embedding with each 
covariate as previously described82. We performed the analysis per cell 
type based on level_1_annot (broad level) and level_2_annot (medium 
level) annotations, and for all ages or adult/paediatric only (excluding 
developing and preterm samples). It should be noted that although 
this analysis can be informative, many of the covariates included in our 
atlas are correlated, for example, specific studies with tissue processing 
methods, diseases, ages or organs. Therefore, multiple covariates can 
explain the same variance in the data.

Differential abundance analysis
To identify differentially abundant cell populations, we used Milo83 
(Milopy v0.0.999), which tests for differentially abundant neighbour-
hoods from kNN graphs. For comparisons between healthy developing 
(6–31 pcw, including preterm infants ex utero) and adult/paediatric 
gut, Milo was run separately per tissue with more than two donors 
for each group (stomach, duodenum, ileum and colon) using default 
parameters. For comparisons between organs in the healthy adult gut 
(18 years of age or older), Milo was run for each organ (oral mucosa, 
salivary gland, oesophagus, stomach, small intestine, large intestine 
and mesenteric lymph node) versus the others combined with the 
covariates of tissue_fraction and cell_fraction_unified and otherwise 
default parameters. For comparisons between disease and healthy 
adult samples, Milo was run comparing disease and controls from an 
individual study, rather than all disease and controls in the atlas, on 
the kNN graph from joint embedding, which has been shown to have 
greater sensitivity for detecting disease-associated cell states84. We 
focused comparing inflamed with neighbouring inflamed tissue from 
the Martin (2019)6 dataset.

Differential gene expression analysis
Differential gene expression (DGE) analysis was performed using Scanpy 
rank gene groups function (Wilcoxon rank-sum test with default param-
eters) and/or by pseudobulking (decoupler85) and DESeq2 (ref. 86)  
analysis. For Scanpy DGE analysis, samples were preprocessed by 
downsampling to 200 cells per cell type per donor and removing 
ribosomal-related and mitochondrial-related genes to limit unwanted 
batch and technical effects. Decoupler pseudobulking (v1.5.0) was 
performed combining donor-cell-type combinations, summing raw 
counts per gene across cells for each combination. DGE analysis was 
then performed with DESeq2 (v1.38.0), with log2(fold change) (log2FC) 
shrinkage calculated using the ashr (v2.2_63) estimator. Genes were 
classified as differentially expressed when log2FC ≥ 0.5 or log2FC ≤ −0.5 
and adjusted P ≤ 0.05. For comparison of metaplastic Paneth cells, 
INFLAREs and oral mucosa fibroblasts with healthy counterparts, 
minimum cells per donor-cell-type combination for pseudobulking 
was 2 and DESeq2 was run without covariates. For oral mucosa fibro-
blasts, comparison was between oral mucosa fibroblasts in healthy 
oral mucosa versus inflammatory fibroblasts annotated as oral mucosa 
fibroblasts in diseased ileum. For all other comparisons, minimum cells 
were 10 and study was included as a covariate, and comparison was 
between small intestinal cells in IBD versus healthy controls. DESeq2 
run on bulk data from the GSE126299 LCM dataset compared meta-
plastic glands and inflamed epithelium from patients with IBD using 

default settings, without covariates. For gene set analysis, the output 
from Scanpy rank gene groups was filtered to contain genes with a 
minimum log fold change of 0.25 and a P value cut-off of 0.05. The 
resulting gene list was used for gene set analysis using the GSEApy 
(v1.0.4) enrichr function with relevant gene sets such as MSigDB, KEGG 
and GO Biological Process examined. Gene scores for epithelial cells 
were calculated using Drug2Cell87 score function with default param-
eters. Gene scores for fibroblasts were calculated using the Scanpy 
score_genes function with default parameters. Full gene lists used for 
gene scores are available in Supplementary Table 6. Odds ratio and  
P value of gene overlap for MGN and INFLARE marker genes in different 
gastrointestinal regions were calculated using GeneOverlap88 (v0.99.0), 
with the genomic background set to 18,485 genes as the total number 
of genes used in the marker gene analysis.

Cell–cell interaction analysis
Cell–cell interaction analysis was performed using LIANA+ (v1.0.4)89, 
CellChat (v1.1.1)90 and CellPhoneDB v3 (statistical_method)91 to deter-
mine cell–cell interactions occurring in the small intestine during 
Crohn’s disease. Interaction analysis was performed on remapped 
data, to avoid loss of genes or interactions lost when merging addi-
tional count matrices (see ‘Data projection and label prediction for 
diseased data’ for more detail). Before analysis, data were preproc-
essed by downsampling to 50 cells per cell type per donor. Normalized 
count matrix with cell annotation metadata were processed through 
the standard CellChat and CellPhoneDB pipeline, with the commu-
nication probability truncated mean/threshold set to 0.1. Output of 
LIANA+ analysis was further analysed using NMF with ligand–receptor 
mean expression and considering only interactions expressed in at 
least 5% of cells. This analysis resulted in 10 interaction programmes 
by an automatic elbow selection procedure. Pathway enrichment 
analysis on the resultant ligand–receptor loadings was performed 
using decoupler’s univariate linear model method with pathway prior 
knowledge from PROGENy92; only factors in which at least one pathway 
was significantly enriched (false discovery rate ≤ 0.05) were included 
for analysis. Using the differential analysis statistics from DESeq2, as 
described above, we generated a list of deregulated ligand–receptor 
interactions in IBD versus healthy, or for INFLAREs and oral mucosa 
fibroblasts, comparing the disease cells to the appropriate healthy 
counterparts (see above).

cNMF analysis
To identify shared activity and cell identity gene programs cells from 
diseased small intestine (Crohn’s disease, paediatric IBD and coeliac 
disease with a total of 99,465 cells), we analysed raw counts with cNMF 
(v1.3.4)93. We used the default processing and normalization of cNMF, 
which considers 2,000 highly variable genes along with 100 iterations 
of NMF. All other parameters were set at default values. We tested hyper-
parameter values of K, the number of factors, ranging in steps of 1 from 
5 to 80, and picked on inspection a favourable tradeoff between factor 
stability and overall model error at K = 44. For determining consensus 
clusters, we excluded 6% of fitted cNMF spectra with a mean distance 
to kNNs above 0.3. The resulting per-cell gene program usage was com-
pared across fine-grained cell annotations, identifying gene programs 
corresponding to the identity of MGN cells and other relevant cell types 
(goblet, stem and surface foveolar cells). To assess programs specific 
to health or disease, we performed analysis on all cells from small and 
large intestines using identical parameters, downsampled randomly 
to 200 cells per cell type per donor (resulting in 313,879 cells). In this 
case, we tested for values of K in steps of 2 from 10 to 80, choosing an 
optimal K = 64.

Trajectory analysis
Monocle3. To infer the developmental trajectory giving rise to  
MGN or INFLAREs in the ileum IBD, we used monocle3 (v1.3.1)94 on a 
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subset of data containing cells in the ileum from studies5,6,22. We per-
formed Scanpy Louvain clustering on the original UMAP represen-
tation generated from the scANVI latent space to account for batch 
effects and inferred developmental trajectories along pseudotime 
by choosing the node assigned the highest number of epithelial stem 
cells as the root node. We then extracted the MGN or INFLARE-specific 
trajectory by selecting the nodes assigned the highest number of MGN 
or INFLAREs as the final nodes. Finally, we determined genes whose 
expression changes along pseudotime by using ‘monocle3::graph_test’, 
which leverages a Moran’s I-test considering gene expression changes 
within groups of k = 25 neighbouring cells on the principle trajectory 
graph.

Palantir. We analysed epithelial cell trajectories in the ileum from pa-
tients with IBD from studies5,6 by running transcriptome-based pseu-
dotime estimation using Palantir (v1.3.1)95. Before running Palantir, we 
reintegrated the datasets using scVI with settings described above in 
‘Assembly of the healthy reference’.

We used the default Palantir parameters with 500 waypoints speci-
fying the root cell with the maximum gene score (using Scanpy rank 
genes function) of LGR5, ASCL2, RGMB and OLFM4. We then computed 
a CellRank96 (v2.0.1) kernel (Markov transition probability matrix) 
for Palantir pseudotime to allow projection of directional cell-state 
transitions onto the UMAP. To predict macrostates (potential terminal 
cell states), we ran CellRank’s Generalized Perron Cluster Analysis 
on the Markov matrix and then computed the fate probability for 
each cell under each terminal-state lineage. We calculated the top 
lineage driver genes along the stem → TA → INFLARE lineage using 
CellRank inference and generalized additive models. All correspond-
ing visualizations were made using the plotting functions available in 
the CellRank package.

Genes2Genes trajectory alignment. We used Genes2Genes (G2G)68 
to compare the INFLARE trajectory (stem → TA → INFLARE) in the dis-
eased IBD to three other different trajectories: (1) the stem → MGN 
trajectory in the healthy duodenum, (2) the stem → enterocyte trajec-
tory in the diseased ileum, and (3) the stem → goblet trajectory in the 
diseased ileum.
Preparing trajectories for comparison. For comparison 1, we ran scVI 
integration and Palantir pseudotime analysis as above for healthy small 
intestinal epithelial cells to facilitate reconstruction of the stem → MGN 
trajectory in the healthy duodenum. To be more confident, we also took 
only the stem and TA cells that have a pseudotime estimate less than 
the mean pseudotime of the INFLARE population (as there were some 
outlier stem/TA cells with higher pseudotime values in the INFLARE 
pseudotime range). For comparisons 2 and 3, we used the already esti-
mated Palantir pseudotime. To extract lineage-specific cells with high 
confidence, we assessed the fate probability distribution (estimated by 
Palantir) for the INFLARE lineage across all the cells annotated under 
the non-lineage-specific cell types (that is, a negative control under 
the cells not annotated as either stem, TA or INFLARE), and removed 
the stem and TA cells if their fate probability was less than the 75th 
percentile of the negative control.
Trajectory alignment. G2G aligns genes along reference and query tra-
jectories by running a dynamic programming algorithm that optimizes 
matching and mismatching of gene expression distributions between 
timepoints. This function formulates an alignment cost based on a 
minimum message length inference framework. As per the G2G work-
flow, we first discretized each pseudotime trajectory into interpolation 
timepoints at equal-length intervals based on the optimal number of 
bins inferred using the optbinning package. We then ran G2G (under its 
default settings) for each of the three trajectory comparisons to align 
transcription factors97 using log1p normalized gene expression and 
pseudotime estimates for each cell. For comparison 1, we considered 
1,171 transcription factors common between the healthy and disease 

datasets, whereas 1,262 common transcription factors were aligned for 
comparisons 2 and 3. Interrogating the output of G2G alignment, we 
considered mismatches between trajectories when transcription fac-
tors had an alignment similarity ≤ 50% and optimal alignment cost ≥ 30 
nits (in the unit of Shannon information).

Bulk RNA-seq deconvolution
For bulk deconvolution analysis, we first downloaded published bulk 
RNA-seq datasets of adult IBD from the GEO database (GSE111889), 
paediatric IBD from the ArrayExpress database (E-MTAB-5464) and 
the Expression Atlas (E-GEOD-101794), The Cancer Genome Atlas colon 
adenocarcinoma using R package TCGAbiolinks (v2.18.0), coeliac dis-
ease data from the GEO (GSE131705 and GSE145358) and RNA-seq from 
laser capture microdissected pyloric metaplasia, inflamed and control 
epithelium (GSE126299). A single-cell reference for deconvolution 
analysis was then prepared by subsetting the overall object to only 
include cells from the small intestine in IBD and downsampling to 200 
cells for each fine-grained cell-type annotation. BayesPrism98 (v2.0) was 
used for deconvolution analysis with raw counts for both single-cell and 
bulk RNA-seq data as inputs. Both the ‘cell-type labels’ and the ‘cell-state 
labels’ were set to fine-grained annotations. Ribosomal protein genes 
and mitochondrial genes were removed from single-cell data as they 
are not informative in distinguishing cell types and can be a source of 
large spurious variance. We also excluded genes from sex chromosomes 
and lowly transcribed as recommended by the BayesPrism tutorial. 
For further analysis, we applied a pairwise Welch t-test to select dif-
ferentially expressed genes with the ‘pval.max’ being set to 0.05 and 
‘lfc.min’ to 0.1. Finally, a prism object containing all data required for 
running BayesPrism was created using the new.prism() function, and 
the deconvolution was performed using the run.prism() function. For 
correlation analysis, we calculated the Pearson correlation between  
(1) the estimated abundance of INFLAREs and other cell types, and 
(2) the estimated INFLAREs abundance and gene expression in bulk 
RNA-seq datasets. For the later calculation, we first normalized raw 
counts in the expression matrix from each bulk dataset using R pack-
age DESeq2. To estimate the number of patients with INFLAREs in 
bulk RNA-seq data, we categorized samples by MUC6 expression with 
a cut-off higher than the mean + 2× the standard deviation, stratifying 
patients as MUC6-high above this cut-off.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw sequencing data for adult samples are available through Array-
Express with the accession number E-MTAB-14050. Published data-
sets are readily available to access through the GEO, ArrayExpress, 
European Genome-Phenome Archive, BioProject and Broad Institute 
Single Cell Portal with the accession numbers GSE152042, GSE188478, 
GSE180544, E-MTAB-11536, E-MTAB-9543, E-MTAB-9536, E-MTAB-8901, 
GSE159929, E-MTAB-9489, GSE121380, GSE157477, E-MTAB-8007, 
E-MTAB-8474, E-MTAB-8484, E-MTAB-8486, GSE167297, GSE150290, 
GSE114374, EGAS00001003779, E-MTAB-8410, GSE122846, PRJEB31843, 
GSE134809, GSE161267, GSE116222, GSE182270, GSE125970, GSE164241, 
E-MTAB-10187, E-MTAB-10268 and SCP1884, which are also detailed in 
Supplementary Table 1. Published bulk RNA-seq datasets are available 
through the GEO, ArrayExpress and Expression Atlas with the acces-
sion numbers GSE111889, E-MTAB-5464, E-GEOD-101794, GSE131705, 
GSE145358 and GSE126299. Imaging data are available for download 
from the European Bioinformatics Institute (EBI) BioImage Archive with 
the accession number S-BIAD1139. All relevant processed single-cell 
objects and models for use in future projects are available at https://
gutcellatlas.org/pangi.html.
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Code availability
Code for scAutoQC is readily available on GitHub and installable via 
PyPI (https://github.com/Teichlab/sctk). Additional code including 
atlas assembly, annotation and downstream analyses is described in 
detail throughout the Methods and is available on GitHub (https://
github.com/Teichlab/PanGIAtlas). All the analyses and plots have been 
made on standard Python (v3.8 or higher) and R (v4.0.4) environments, 
using the third-party libraries mentioned in the Methods; standard data 
and single-cell experiment data structures; and basic libraries: numpy, 
scipy, pandas, scikit-learn, statsmodels, python-igraph, seaborn, mat-
plotlib and ggplot2. All imaging analyses were performed using Path-
Viewer, QuPath, cellpose and OMERO.web.

73. Gayoso, A. et al. A Python library for probabilistic analysis of single-cell omics data.  
Nat. Biotechnol. 40, 163–166 (2022).

74. Virshup, I. et al. The scverse project provides a computational ecosystem for single-cell 
omics data analysis. Nat. Biotechnol. 41, 604–606 (2023).

75. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for 
single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).

76. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. 
Nat. Methods 16, 1289–1296 (2019).

77. Polański, K. et al. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics 
36, 964–965 (2020).

78. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. 
Nat. Methods 19, 41–50 (2021).

79. Huang, N. et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat. Med. 27, 892–903 
(2021).

80. Xu, C. et al. Probabilistic harmonization and annotation of single-cell transcriptomics 
data with deep generative models. Mol. Syst. Biol. 17, e9620 (2021).

81. Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer learning.  
Nat. Biotechnol. 40, 121–130 (2022).

82. Sikkema, L. et al. An integrated cell atlas of the lung in health and disease. Nat. Med. 29, 
1563–1577 (2023).

83. Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. Differential 
abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 
40, 245–253 (2022).

84. Dann, E. et al. Precise identification of cell states altered in disease using healthy 
single-cell references. Nat. Genet. 55, 1998–2008 (2023).

85. Badia-I-Mompel, P. et al. decoupleR: ensemble of computational methods to infer 
biological activities from omics data. Bioinform. Adv. 2, vbac016 (2022).

86. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion 
for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

87. Kanemaru, K. et al. Spatially resolved multiomics of human cardiac niches. Nature 619, 
801–810 (2023).

88. GeneOverlap-package: test and visualize overlaps between gene lists. rdrr.io  
https://rdrr.io/bioc/GeneOverlap/man/GeneOverlap-package.html (2020).

89. Dimitrov, D. et al. LIANA+: an all-in-one cell-cell communication framework. Nat. Cell Biol. 
26, 1613–1622 (2024).

90. Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. 
Commun. 12, 1088 (2021).

91. Garcia-Alonso, L. et al. Single-cell roadmap of human gonadal development. Nature 607, 
540–547 (2022).

92. Schubert, M. et al. Perturbation-response genes reveal signaling footprints in cancer 
gene expression. Nat. Commun. 9, 20 (2018).

93. Kotliar, D. et al. Identifying gene expression programs of cell-type identity and cellular 
activity with single-cell RNA-seq. eLife 8, e43803 (2019).

94. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by 
pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

95. Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. 
Nat. Biotechnol. 37, 451–460 (2019).

96. Lange, M. et al. CellRank for directed single-cell fate mapping. Nat. Methods 19, 159–170 
(2022).

97. Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018).
98. Chu, T., Wang, Z., Pe’er, D. & Danko, C. G. Cell type and gene expression deconvolution 

with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA 
sequencing in oncology. Nat. Cancer 3, 505–517 (2022).

99. Brügger, M. D. & Basler, K. The diverse nature of intestinal fibroblasts in development, 
homeostasis, and disease. Trends Cell Biol. 33, 834–849 (2023).

100. Garrido-Trigo, A. et al. Macrophage and neutrophil heterogeneity at single-cell spatial 
resolution in human inflammatory bowel disease. Nat. Commun. 14, 4506 (2023).

Acknowledgements We thank the donors and their families for donating tissue samples and 
enabling this research; the organizers and members of the Helmsley Consortium and Human 
Cell Atlas Gut Bionetwork for facilitating valuable discussions; K. Roberts for support and 
expertise with imaging; A. Oszlanczi for help on sample management; A. Wilk for administrative 
assistance; H. H. Uhlig and M. G. Friedrich for valuable discussions; L. Buer and K. Thorvaldsen 
Hagen for assistance with tissue blocks and AB-PAS staining; H. V. Holm for access to healthy 
terminal ileum; A. Maartens for manuscript proofreading; and the Cambridge Biorepository  
for Translational Medicine for access to tissue from deceased transplant organ donors. We 
acknowledge support from the Wellcome Sanger Cellular Genetics Informatics team, Spatial 
Genomics Platform (SGP) team, particularly M. Patel, and the Core DNA Pipelines and New 
Pipeline Group (NPG), especially S. Leonard. This work was made possible through collaboration 
between the Wellcome Sanger Institute, University of Oslo and Oslo University Hospital, IDIBAPS 
Hospital Clinic Barcelona, Newcastle University, Newcastle University NHS Foundation Trust, 
Cambridge University Hospitals NHS Foundation Trust, University of Cambridge and the 
University of Oxford. This work was financially supported by the Wellcome Trust (WT206194 to 
S.A.T.); the European Research Council (646794, ThDefine to S.A.T.); an MRC New Investigator 
research grant (MR/T001917/1 to M.Z.); and a project grant from the Great Ormond Street Hospital 
Children’s Charity, Sparks (V4519 to M.Z.). A.M.C. and V.G. were funded by grant #2008-04050 
from The Leona and Harry B. Helmsley Charitable Trust. R.B.-C. was funded by Grant 315307, 
Researcher Project/International Mobility Grant from the Research Council of Norway, and travel 
grant from the Per Brandtzæg’s Fund for Research in Mucosal Immunology. E.M.-A. is funded by 
grant RH042155 (RTI2018-096946-B-I00) from the Ministerio de Ciencia e Innovacion. P.K. is 
funded by Wellcome grant 222426/Z/21/Z. This study was supported by the NIHR Biomedical 
Research Centre, Oxford, by grant PID2021-123918OB-I00 from MCIN/AEI/ 10.13039/ 
501100011033 and co-funded by “FEDER A way to make Europe”, Barcelona. A.J.O. is supported 
by the RESPIRE4 Marie Sklodowska-Curie fellowship (grant agreement 847462). This research 
was funded in whole, or in part, by the Wellcome Trust (203151/Z/16/Z, 203151/A/16/Z) and the 
UKRI Medical Research Council (MC_PC_17230). For the purpose of open access, the author  
has applied a CC BY public copyright licence to any Author Accepted Manuscript version  
arising from this submission. The views expressed in this paper are those of the authors and  
not necessarily those of the NHS, the NIHR, the Department of Health or the ERS, REA and EU.  
The illustrations in Figs. 1a, 3h and 5f and Extended Data Fig. 1a were created with BioRender 
(https://biorender.com); all other illustrations were made by R.E. and A.J.O. This publication is 
part of the Human Cell Atlas (https://www.humancellatlas.org/publications).

Author contributions A.J.O., R.E. and S.A.T. designed the project. M.E.B.F., T.R.W.O., C.E.H., 
K.T.M., K.S.-P., M.L.H., E.S.B., A.S., C.J.S. and J.E.B. procured the tissue samples. R.B.-C., N.M.P., 
J.A.C., A.C.M., E.S., J.E., L.R., R.K., A.W.-C., C.I.S., A.G.-T. and R.E. performed tissue processing 
and sequencing. S.E., C.T. and P.J. performed RNAscope. H.R.N., V.G., E.M.-A. and S.P. 
performed immunohistochemistry and histology. A.J.O., R.L., R.B.-C. and R.E. curated the data. 
N.H., A.V.P., A.M.C. and B.C. processed the raw data. N.H. performed quality control of the data. 
N.H. and A.J.O. assembled the atlas. A.J.O., R.L., R.B.-C. and R.E. annotated the atlas. A.J.O. 
performed disease mapping and annotation. A.J.O., R.L. and K.P. analysed healthy sample 
data. A.J.O., R.L., S.K., L.M.M., B.C., K.T., R.E., D.D., D.S. and J.M.B. analysed diseased sample 
data. A.J.O., R.B.-C. and R.E. performed tissue validation. R.L. performed bulk deconvolution. 
N.H., K.P. and S.L. curated the scAutoQC package. M.P. and B.C. created the Gut Cell Survey 
web portal. A.J.O., R.L., R.B.-C., E.D., J.S.-R., K.R.J., K.B.M., M.Z., A.S., P.K., M.H., F.L.J., R.E. and 
S.A.T. provided project insight. A.J.O., R.L., R.B.-C., S.L., M.M., K.B.M., R.E. and S.A.T. reviewed 
and edited the manuscript. A.J.O., R.E. and S.A.T. wrote the manuscript. A.J.O., R.E., A.W.-C., 
J.S.-R., K.B.M., A.S., P.K., M.H., F.L.J. and S.A.T. supervised the project.

Competing interests S.A.T. is a scientific advisory board member of ForeSite Labs, OMass 
Therapeutics, a co-founder and equity holder of TransitionBio and EnsoCell Therapeutics,  
a non-executive director of 10x Genomics and a part-time employee of GlaxoSmithKline.  
R.E. is an equity holder in EnsoCell. P.K. has consulted for AstraZeneca, UCB, Biomunex and 
Infinitopes. N.M.P reports consulting fees from Infinitopes. J.S.-R. reports funding from GSK, 
Pfizer and Sanofi and fees/honoraria from Travere Therapeutics, Stadapharm, Astex, Owkin, 
Pfizer, Moderna and Grunenthal. A.S. is the recipient of research grants from Roche-Genentech, 
Abbvie, GSK, Scipher Medicine, Pfizer, Alimentiv, Boehringer Ingelheim and Agomab and has 
received consulting fees from Genentech, GSK, Pfizer, HotSpot Therapeutics, Alimentiv, 
Agomab, Goodgut and Orikine. R.E. and S.A.T are inventors on the patent GB2412853.0 filed in 
the UK, some components of which are related to this work.  
All other authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-024-07571-1.
Correspondence and requests for materials should be addressed to Sarah A. Teichmann.
Peer review information Nature thanks Dominic Gruen and the other, anonymous, reviewer(s) 
for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://github.com/Teichlab/sctk
https://github.com/Teichlab/PanGIAtlas
https://github.com/Teichlab/PanGIAtlas
https://rdrr.io/bioc/GeneOverlap/man/GeneOverlap-package.html
https://biorender.com
https://www.humancellatlas.org/publications
https://doi.org/10.1038/s41586-024-07571-1
http://www.nature.com/reprints


Article

Additional epithelial
cell count matrices:

Healthy controls
Celiac disease

(active and inactive)
Crohn’s disease

Mapping and QC 
as for healthy

reference

scArches projection
and broad

lineage prediction
using scANVI model

(kNN based prediction)

Subclustering
by lineage and

region (Epi)

Fine grained cell type
annotations for
diseased cells

Reannotation of 
“uncertain” cells by 
majority voting from
leiden clusters and

removal of predicted
doublets

Fetal and
preterm

32 donors
25 datasets
17 tissues

367 samples

scRNAseq data from:

143 donors

Adult and
pediatric

HEALTHY REFERENCE

STARsolo
mapping of 
FASTQ files

CellBender + 
automated

QC + scrublet
filtering

scVI
integration
correcting
for donor

Broad lineage
annotation

1.1M cells

Subclustering by lineage and region/age (Mes/Epi)

Lineage

Region

Age

Mesenchymal EpithelialT and 
NK cells

B and
plasma cells Myeloid Endothelial

Oral
mucosa

Salivary
gland

Oesophagus Stomach Small
intestine

Large
intestine

adult/
paediatric

(AP)

first
trimester

(FT)

second
trimester

(ST)

Extended data 2

Fine grained cell type
annotation

Annotations based on consensus
of marker genes and automated

label transfer from published
studies using CellTypist

Adult and
pediatric 70 donors

10 datasets
5 diseases
88 samples

pppp

Broad lineage
annotation

500k cells

AP STFT AP STFT

Downstream
analysis comparing

region specific
differences across GI

Doublet
removal and

scVI integration

Harmonised metadata

136 cell types/states

DISEASE EXTENSION

scArches projection
and fine grained

annotation prediction
using lineage/region

specific scANVI models
(kNN based prediction)

+ 233 samples
+ 79 donors

+1 additional disease

Supplementary figure 1-3

E
xt

en
de

d 
da

ta
 4

Breakdown of donors and samples in healthy reference

a b

c

Neural

By age

N
um

be
r o

f d
on

or
s 40

30

20

10

0

6-
13

 w
ee

ks
(fi

rs
t t

rim
es

te
r)

14
-2

0 
w

ee
ks

(s
ec

on
d 

tri
m

es
te

r)
23

-3
1 

w
ee

ks
(p

re
te

rm
) 4-
7

9-
12

18
-2

4

35
-5

4

55
-7

4

47
-8

0

75
+

(years)

Age group

Sex

Fe
m

al
e

M
al

e

N
aN

70
60
50
40
30
20
10
0

By sex By control donor type
50

40

30

20

10

0

or
ga

n_
do

no
r

co
nt

ro
l

ca
nc

er C
D

U
C

je
uv

en
yl

e_
po

ly
ps

N
EC FI

P
Fi

st
ul

a_
re

vi
si

on
SC

C
_m

an
di

bu
la

r
gi

ng
iv

a

Donor disease

By tissue

pe
rio

do
nt

iu
m

gi
ng

iv
al

 m
uc

os
a

bu
cc

al
 m

uc
os

a
sa

liv
ar

y 
gl

an
d

oe
so

ph
ag

us
st

om
ac

h
du

od
en

um
je

ju
nu

m
ile

um
ap

pe
nd

ix
ca

ec
um

as
ce

nd
in

g 
co

lo
n

tra
ns

ve
rs

e
de

sc
en

di
ng

 c
ol

on
si

gm
oi

d 
co

lo
n

re
ct

um
sm

al
l i

nt
es

tin
e

in
te

st
in

e
co

lo
n

M
LN

Tissue region

35
30
25
20
15
10
5
0

By control sample type By 10X technology By tissue fraction By tissue By cell fractionantion method

N
um

be
r o

f s
am

pl
es

300

250

200

150

100

50

0

N
on

-p
at

ho
lo

gi
ca

l

N
ei

gh
bo

ur
in

g_
ca

nc
er

N
ei

gh
bo

ur
in

g_
in

fla
m

ed

N
ei

gh
bo

ur
in

g_
po

ly
ps

Sample category

10
X_

3p
v2

10
X_

5p

10
X_

3p
v3

10X technology

200

150

100

50

0

Fu
ll_

th
ic

kn
es

s

M
uc

os
a

Ep
ith

el
iu

m

La
m

in
a_

pr
op

ria

Tissue fraction

200

150

100

50

0

pe
rio

do
nt

iu
m

gi
ng

iv
al

 m
uc

os
a

bu
cc

al
 m

uc
os

a
sa

liv
ar

y 
gl

an
d

oe
so

ph
ag

us
st

om
ac

h
du

od
en

um
je

ju
nu

m
ile

um
ap

pe
nd

ix
ca

ec
um

as
ce

nd
in

g 
co

lo
n

tra
ns

ve
rs

e
de

sc
en

di
ng

 c
ol

on
si

gm
oi

d 
co

lo
n

re
ct

um
sm

al
l i

nt
es

tin
e

in
te

st
in

e
co

lo
n

M
LN

Tissue region

70
60
50
40
30
20
10
0

140
120
100
80
60
40
20
0

To
ta

l
Fi

co
ll_

pe
rc

ol
l

EP
C

AM
P_

M
AC

S
C

D
45

N
_M

AC
S

C
D

45
P_

M
AC

S
C

D
45

P_
FA

C
S

Li
ve

_M
AC

S
Li

ve
_F

AC
S

C
D

4P
_F

AC
S

EP
C

AM
_M

AC
S

N
aN

C
D

45
_P

N
_e

qu
al

po
ol

_F
AC

S
C

D
3P

_F
AC

S
C

D
45

N
_F

AC
S

C
D

45
_P

N
eq

ua
lp

oo
l_

M
AC

S
C

D
45

P_
C

D
3N

_C
D

19
N

_F
AC

S
St

ro
m

al
_M

AC
S

EP
C

AM
P_

FA
C

S

Cell fractionation

e
Method

scVI

Harmony

BBKNN

Unintegrated

Batch correction
Silhouette

batch iLISI KBET Graph
connectivity

PCR
comparison

Aggregate
score

El
m

en
ta

ite
20

21
Ki

m
20

22
M

ad
is

so
on

20
19

W
illi

am
s2

02
1

Ja
eg

er
20

21
M

ar
tin

20
19

Yu
20

21
Le

e2
02

0
H

ua
ng

20
19

U
zz

an
20

22
Ja

m
es

20
20

H
e2

02
0G

en
om

eB
io

Je
on

g2
02

1
C

os
ta

D
aS

ilv
a2

02
2

W
an

g2
02

0
Pa

rik
h2

01
9

C
he

n2
02

1
Ki

nc
he

n2
01

8
D

om
in

gu
ez

20
22

C
ae

ta
no

20
21

Pa
ge

lla
20

21
Li

20
19

0

50000

100000

150000

200000

250000

300000

nu
m

be
r o

f c
el

ls

El
m

en
ta

ite
20

21
Ki

m
20

22
M

ad
is

so
on

20
19

W
illi

am
s2

02
1

Ja
eg

er
20

21
M

ar
tin

20
19

Yu
20

21
Le

e2
02

0
H

ua
ng

20
19

U
zz

an
20

22
Ja

m
es

20
20

H
e2

02
0G

en
om

eB
io

Je
on

g2
02

1
C

os
ta

D
aS

ilv
a2

02
2

W
an

g2
02

0
Pa

rik
h2

01
9

C
he

n2
02

1
Ki

nc
he

n2
01

8
D

om
in

gu
ez

20
22

C
ae

ta
no

20
21

Pa
ge

lla
20

21
Li

20
19

0

40000

30000

20000

10000

50000

overlap
published study only
panGI atlas only

nu
m

be
r o

f c
el

ls

d

Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Overview of atlas assembly. a) Detailed flowchart of 
the methods used to assemble the healthy reference, datasets were remapped 
and filtered based on scAutoQC automated QC pipeline (Supplementary 
Fig. 2), integrated with scVI and annotated as broad lineages. Broad lineages 
were subclustered, and lineages with high level of heterogeneity (Epithelial and 
Mesenchymal lineages) were further subclustered based on age and/or region 
to accurately annotate at a fine-grained level. Cells in these subclustered views 
of the healthy reference were annotated by a semi-automated approach, taking 
into account the marker genes and CellTypist predictions from published 
studies. Schematic in panel a was created with BioRender (https://biorender.
com). b) The healthy reference was used as an anchor to project disease 
datasets onto the atlas using scArches, fine-grained annotations were 

generated in a two-step approach, first with broad lineage prediction using 
scANVI and subclustering by lineage/region as with the healthy reference to 
predict the fine-grained annotations. Most disease data was remapped and 
QC’ed as with the healthy reference, except two additional studies from CD 
(Kong, 2023) and celiac disease (M.E.B.F., unpublished) which were added to 
the atlas from the published count matrices. c) Breakdown of the distribution 
of donors and samples in the healthy reference based on various metadata as 
specified. d) Overlapping and unique cells in our pan-GI atlas and the published 
studies (based on available count matrices). e) Benchmarking of batch 
correction across 3 integration methods for the healthy reference atlas versus 
the unintegrated atlas.

https://biorender.com
https://biorender.com
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Extended Data Fig. 2 | Overview of scAutoQC method. a) Summary of the 
automated QC pipeline. Standard QC metrics are calculated and dimensions  
of 8 QC metrics (listed in step 2) are reduced, neighbours calculated and UMAP 
generated. Clusters from this UMAP are classified as “good” if ≥ 50% fall within 
upper and lower bounds (calculated by Gaussian Mixture Model) of 4 QC 
metrics (listed in step 4). Step 4–7 was repeated for 3 different mitochondrial 
thresholds (20%, 50%, 80%) and all steps were repeated for all samples. Finally 
samples are pooled, and cells within clusters that failed automated QC when 
mitochondrial threshold is 80%, and predicted as doublets (based on scrublet 
score calculated on a per sample basis) are removed before downstream 
processing. b) Plot of cells passing QC vs number of cells per sample across 

studies. Dotted line represents threshold for 100% of cells/sample passing QC. 
c) Histogram showing distribution of cells passing QC (log base 10) across the 3 
mitochondrial thresholds. d-f) Example QC plots from one sample where d) is 
showing QC distribution of QC metrics where each data point is a cell, coloured 
by good_qc_cluster value (see step 8 of panel a). e) shows the QC UMAPs with 
the 8 QC metrics (listed in step 2 panel a), QC leiden clusters and good_qc_
cluster value (see step 8 of panel a). f) violin plot of the 8 QC metrics (listed in 
step 2 of panel a) for each QC leiden cluster. In this sample for example, cluster 5 
has failed QC because cells in this cluster have high % of mitochondrial reads, 
low genes and high percentage of genes expressed within the top 50 genes.
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Extended Data Fig. 3 | Analysis of cells within the healthy reference.  
a) Analysis of metadata covariate contribution of variance in the integrated 
healthy reference embedding per cell type at broad level annotations (level_1_
annot). b) Analysis of covariate contribution of variance per cell type at 
mid-level annotations (level_2_annot). c) Differential abundance analysis 
(Milopy) comparing broad level cell type (level_1_annot) abundance between 
adult/pediatric samples and developing samples (embryo, fetal and preterm), 
broken down by GI region with sufficient data for comparison. Each datapoint 
is a neighbourhood with positive log-fold change values indicating enrichment 
of lineage in adult/pediatric GI vs developing GI. d) Differential abundance 
analysis (Milopy) comparing fine-grained cell type/state (level_3_annot) 
abundance from immune lineages between adult/pediatric samples and 
developing samples (embryo, fetal and preterm), broken down by GI region. 

Each datapoint is a neighbourhood with positive log-fold change values 
indicating enrichment of cell type/state in adult/pediatric GI vs developing GI. 
Coloured data points are significantly enriched/depleted neighbourhoods.  
e) UMAP showing differential abundant neighbourhoods in the healthy reference 
comparing Oral mucosa to other organs throughout the GI tract in adult/
pediatric samples. Positive log-fold change indicates enrichment of 
neighbourhoods in Oral mucosa. Coloured neighbourhoods show significant 
enrichment/depletion. f) Violin plot of B and B plasma cells showing 
enrichment of IgA2 and IgM plasma cells in oesophagus compared to other 
organs in the atlas. g) Differential abundance of Mesenchymal populations in 
adult/pediatric samples across each GI region compared to all others combined. 
Three tissue specific fibroblast populations were annotated, oral mucosa, 
oesophagus and rectum fibroblasts.
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Extended Data Fig. 4 | Inflammatory fibroblasts in disease share 
transcriptional similarity to homeostatic fibroblast population in the  
oral mucosa. a) Differential abundance analysis of cell neighbourhoods from 
Martin et al. (2019)6 dataset based on embedding on the whole atlas84. Cell 
neighbourhoods with positive log fold change are enriched in CD compared to 
healthy samples. b) UMAP of mesenchymal cells from adult/pediatric samples 
in health and disease, shown by disease category. Dashed line highlights the 
oral mucosa fibroblast cluster. c) UMAP of mesenchymal cells from adult/
pediatric samples in health and disease, shown by organ. Dashed line highlights 
the oral mucosa fibroblast cluster. d) Proportion of mesenchymal cell types/
states by organ in the healthy reference and combined healthy and disease. 
Oral mucosa fibroblasts appear in other organs in disease. e) Markers of 
inflammatory and activated fibroblasts from published studies99 showing 
expression in oral mucosa/inflammatory fibroblasts from controls (oral 
mucosa fibroblasts) and disease (inflammatory fibroblasts) samples.  
f) CellTypist predictions of cell annotations in mesenchymal populations  
from published studies5,6 showing oral mucosa fibroblasts predicted to be 
inflammatory/activated fibroblast populations in both studies. g) Differential 
gene expression and hierarchical clustering of oral mucosa/Inflammatory 
fibroblasts from different regions. Oral mucosa fibroblasts from gingival 

mucosa and periodontium are most distinct from fibroblasts in other organs. 
h) Gene set enrichment analysis showing pathways (including various 
inflammatory pathways) enriched in inflammatory fibroblasts (disease) 
compared to oral mucosa fibroblasts (healthy). The adjusted p-values have 
been calculated using wilcoxon rank-sum test. i) Gene score for inflammatory/
activated fibroblasts markers in (d) expressed in oral mucosa/inflammatory 
fibroblasts across disease conditions. j) MSigDB inflammatory response gene 
score (significantly enriched in inflammatory vs oral mucosa fibroblasts), 
across all mesenchymal cell types/states in control and disease samples.  
k) UMAP of mesenchymal populations from the atlas with the addition of 
fibroblasts from periodontitis data19 mapped onto the atlas using scArches and 
scANVI, coloured by level 3 annotation and highlighting the added data. LP = 
lamina propria. l) Dotplot showing expression of oral mucosa marker genes and 
inflammatory chemokines in oral mucosa/inflammatory fibroblasts in healthy 
tissue, periodontitis and IBD. Expression in other fibroblasts (combined 
population including crypt_fibroblast_PI16, LP_fibroblast_ADAMDEC1, 
oesophagus fibroblast, rectum fibroblast and villus_fibroblast_F3) from 
control and IBD shown for comparison. m) Inflammatory gene scoring in oral 
mucosa/inflammatory fibroblasts across disease conditions, as in Fig. 2e and 
Extended Data Fig. 4i,j.
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Extended Data Fig. 5 | Identification of metaplastic Paneth cells in diseased 
large intestine. a-i) Example workflow to finalise transferred annotations 
from scANVI/weighted kNN trainer for large intestine epithelial cells in disease. 
a) Distribution of uncertainty scores in disease data from large intestine 
epithelial cells from cancer and non-cancer. Dashed line indicates the 90th 
percentile cut off, where cells with an uncertainty score above this are classified 
as “unknown”. b) UMAP of large intestine epithelial cells with predicted 
annotations and unknown cells flagged. DCS = deep crypt secretory cells.  
c) Proportions of predicted large intestine epithelial cell annotations (colours as 
in b) including unknown cells by disease. d) UMAP of large intestine epithelial 
cells with leiden clustering at resolution = 1, used to reclassify unknown cells 
based on majority voting. e) Proportions of predicted large intestine epithelial 
cell annotations by leiden cluster. Red arrow points to cluster 24, which was 
reannotated to Paneth cells but originally annotated as a combination of goblet 

cells, doublets and unknown cells. f) Marker gene dot plot of large intestine 
epithelial cells and Paneth cells by leiden cluster. Paneth cell markers are 
highlighted for cluster 24. g) Proportions of cells in each leiden by donor. Black 
arrows highlight clusters dominated by cells from only one donor (excluded 
from the atlas), and red arrow highlights cluster 24 which contains metaplastic 
Paneth cells. h) UMAP of reannotated large intestine epithelial cells from 
disease, including metaplastic Paneth cells. i) Marker gene dot plot for 
reannotated cell types in large intestine epithelial cells from disease.  
j) Pseudobulk (decoupler) and differential gene expression analysis (DESeq2) 
comparing Paneth cells from inflamed small intestine (n = 27) and metaplastic 
Paneth cells from inflamed large intestine (n = 9). Genes with a positive log2FC 
are upregulated in metaplastic Paneth cells compared to native small intestine 
Paneth cells, based on two-sided Wald test with Benjamini and Hochberg 
correction.
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donors per study, broken down by age and region of the GI. Dot size indicates 
the number of donors, colour indicates the number of cells. b) UMAP of 
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cells annotated as SF cells (SF-like cells). c) UMAP of subclustered INFLAREs,  
SF/SF-like cells and either goblet or enterocyte populations, showing distinct 
separation of populations highlighting transcriptional differences. d) UMAP of 
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and ileum CD SF-like cells showing overlapping marker genes. f) Heatmap of 

overlapping marker genes calculated in (e) (with MUC5AC for reference) 
showing overlapping genes across all comparisons, healthy duodenum and CD 
ileum, and selected genes of the 165 overlapping in healthy stomach and CD 
ileum. g) Violin plot for QC metrics across epithelial cell subsets from diseased 
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barplot for sample retrieval method for cells in disease small intestinal 
samples, highlighting that the majority of INFLAREs come from resections 
rather than biopsies. i) UMAP of epithelial cells from large intestine, with added 
data from studies8,100 (totalling an additional 209,347 cells from 23 control,  
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type, study, disease and donor.
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Extended Data Fig. 7 | Validation of INFLAREs. a) Deconvolution 
(BayesPrism) of bulk RNAseq dataset comparing MGN and INFLAREs in healthy 
(normal, n = 50) and CD (n = 254). Statistical analysis was performed using two-
sided Wilcoxon rank-sum test. b) Estimation of CD patients with INFLAREs 
based on stratification of high and low MUC6 expressing samples from the bulk 
datasets indicated, showing ~29% of patients have high MUC6 expression.  
c) Expression of MUC5AC from bulk datasets indicated comparing expression in 
controls, CD and UC patients. d) Differential gene expression analysis (DESeq2) 
from laser capture microdissected epithelium from healthy crypts (n = 7), 
inflamed crypts from IBD patients (n = 6) and metaplastic glands from IBD 
patients (n = 6) from published data (GSE126199). Genes with a log2FC greater 
than 0 are upregulated in metaplastic glands compared to inflamed IBD 
epithelium, based on two-sided Wald test with Benjamini and Hochberg 
correction. e) Deconvolution (BayesPrism) of bulk RNAseq from celiac disease 
comparing MGN and INFLARE proportions in healthy and celiac disease tissue. 
For GSE131705, n = 21 (healthy) and n = 33 (celiac). For GSE145358, n = 6 
(healthy), n = 15 (celiac gluten free) and n = 15 (celiac gluten challenge).  
f) Deconvolution (BayesPrism) of TCGA bulk RNAseq data of MGN and  
INFLAREs in healthy tissue (normal, n = 41) and tumour tissue stratified by 
microinstability status, n = 40 (Tumour_MSI-H), n = 42 (Tumour_MSI-L), n = 126 
(Tumour_MSS) and n = 272 (Tumour_NA). MSI-high tumours are predicted to 
have higher levels of INFLAREs. Statistical analysis was performed using two-

sided Wilcoxon rank-sum test. For all box and whisker plots the lower edge, 
upper edge and centre of the box represent the 25th (Q1) percentile, 75th (Q3) 
percentile and the median, respectively. The interquartile range (IQR) is Q3 - Q1. 
Outliers are values beyond the whiskers (upper, Q3 + 1.5 x IQR; lower, Q1 − 1.5 x 
IQR). g) Protein and ABPAS (Alcian Blue Periodic acid-Schiff) staining of 
INFLAREs (MUC6, Magenta+Blue+ ABPAS staining) and metaplastic surface 
foveolar cells (MUC5AC) in CD ileum showing association with tertiary 
lymphoid structures (dense nuclei and CD3/CD20+ regions). Selected regions 
adjacent to lymphoid structures from n = 2 (CD3, CD20, MUC6 staining), n = 2 
(AB-PAS staining) and n = 2 (MUC5AC, MUC6 staining). h) Protein staining of 
INFLAREs (MUC6) and metaplastic surface foveolar cells (MUC5AC) from CD 
ileum tissue from additional donors (n = 3). i) smFISH staining of INFLARE 
(Inflammatory Epithelial cell) markers (MUC6, AQP5 and BPIFB1) in pyloric 
metaplasia of CD duodenum showing heterogeneity in AQP5 and BPIFB1 
expression (n = 4). j) Protein staining of INFLAREs (MUC6) and metaplastic 
surface foveolar cells (MUC5AC) in colon resection tissue from UC patients 
(n = 3). Upper and lower panels are images from two different patients.  
k) Protein staining of MGN and INFLAREs (MUC6) in celiac disease duodenum 
showing INFLAREs and healthy MGN cells in Brunner’s gland in the submucosa 
(n = 2). l) Protein staining of MUC6, MUC5AC and cytokeratin (CK) in healthy 
ileum (n = 4), CD ileum (n = 4) and healthy duodenum (n = 2). All images show 
representative staining from the replicates indicated.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126199
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131705
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145358
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Origins and stem-like features of INFLAREs.  
a) Relative cell proportions along healthy trajectories as calculated by 
Monocle3, to give confidence in the reconstruction of known trajectories.  
b) Palantir trajectory analysis from remapped studies, showing CellRank kernel 
projection and pseudotime of 4 terminal cell states in inflamed ileum. c) Scaled 
expression of stem markers as in Fig. 4b in the Palantir pseudotime trajectory 
for INFLAREs. d) Genes2Genes alignment of Palantir pseudotime trajectories 
for stem → INFLARE compared with stem → enterocyte and stem → goblet in 
inflamed ileum. Left: Cell density plots of the aligned trajectories along 
pseudotime, marked with 15 interpolation time points (bins) used for each 
alignment, and the corresponding cell-type proportions of those bins as 
stacked bar plots for each comparison. Right: Overall average alignment paths 
(highlighted in white) of the 1262 transcription factors between the interpolation 
pseudotime points along the trajectories for both comparisons. Each matrix 
cell of the pairwise heatmap gives the number of TFs where the corresponding 
pseudotime points have been matched. e) Mismatched genes (alignment 
similarity ≤ 50% and optimal alignment cost ≥ 30 nits) in INFLARE compared to 
control trajectories as indicated, showing their pseudotime alignments in (d) 
and Fig. 4d using Genes2Genes. Bold lines represent mean expression trends 
and faded data points are 50 random samples from the estimated expression 
distribution at each time point. The black dashed lines visualise matches 
between time points. Asterix indicates significant mismatch in gene alignment 

(as outlined above) for the specific gene/trajectory comparison. f) cNMF 
analysis (Methods) of cell types from IBD small intestine in the atlas. Violin 
plots showing expression of ranked genes in factors related to SF-like cells and 
goblet cells. g) Gene rankings of genes in factor 10 (goblet cell factor) with 
goblet cell specific genes highlighted in green and those also expressed in 
Mucous gland cells (MGN and INFLARE and SF-like cells) highlighted in yellow. 
h) Gene rankings of genes in factors 15 and 25 (SF-like cell factors) with select 
genes highlighted. i) Dotplot of LEFTY1 expression in small intestine epithelial 
cells across cell types and conditions (upper) and across cell types and study 
(lower). j) Dot plot of selected differential expressed genes (wilcoxon rank- 
sum test) in epithelial stem cells (LGR5+) from the ileum of patients with IBD 
compared with healthy controls. k) NMF factors from cell-cell communication 
analysis using ligand/receptor mean expression and cell type pairs to 
determine factors. Heatplot shows the expression of ligand/receptor pairs 
categorised into pathways for each factor. l) Connectivity of high ranking cell 
types in factor 3, showing interactions between fibroblasts (sources) and 
epithelial stem cells or INFLAREs (targets). Line thickness indicates a higher 
number of ligand/receptor pairs per cell type pairing. m) Expression (log2FC 
from DESeq2) comparing ligand and receptor expression in healthy controls vs 
IBD samples in relevant cell types from (l) for ligands and receptors within the 
NRG1/AREG/EREG pathway. Positive log2FC indicates upregulation of ligand/
receptor expression in IBD compared to healthy controls.
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Extended Data Fig. 9 | See next page for caption.



Article
Extended Data Fig. 9 | Dual role of pyloric metaplasia in mucosal healing 
and inflammation. a) Expression of genes related to mucosal barrier function 
in MGN (Mucous gland neck)/INFLAREs (Inflammatory Epithelial cells) in 
healthy stomach, healthy duodenum and IBD ileum. b) Protein staining of TFF2, 
TFF3, MUC6 (MGN and INFLARE), MUC5AC (surface foveolar) and cytokeratin 
(CK) across from CD ileum (n = 4), celiac duodenum (n = 2) and healthy proximal 
duodenum (n = 2). White arrows indicate MUC6 + TFF3+ cells. c) Pseudobulk 
(decoupler) and differential gene expression analysis (DESeq2) comparing 
INFLAREs from IBD ileum (n = 4 pseudobulk samples) with MGN from healthy 
stomach (n = 35) or healthy duodenum (n = 5) with INFLAREs from IBD ileum. 
Genes with positive log2FC are upregulated in INFLAREs compared with 
healthy cells, based on two-sided Wald test with Benjamini and Hochberg 
correction. d) Subclustered MGN and INFLAREs from across the atlas 
(locations, ages and diseases). MGN and INFLAREs from different regions  
and/or developmental stages (ie. in utero) occupy separate coordinates in the 
UMAP. e) Overlap of MGN and INFLARE marker genes from different regions. 
Marker genes of MGN and INFLAREs were calculated by differential gene 
expression (wilcoxon rank-sum test) of other stomach and small intestine 
epithelial cells separately for healthy adult stomach MGN, healthy adult 
duodenum MGN, ileum CD INFLARE and duodenum celiac disease INFLARE. 
Overlapping marker genes show greater similarity of INFLAREs to healthy adult 

stomach MGN cells, than to healthy adult duodenum MGN cells. f) Heatmap of 
differentially expressed genes (wilcoxon rank-sum test) in MGN and INFLAREs 
across healthy and diseased adult conditions. Stomach control is combined 
control and neighbouring cancer stomach MGN cells. g) GO terms from 
upregulated genes (wilcoxon rank-sum test) in IBD INFLAREs (CD and pediatric 
IBD) compared with healthy control duodenum. Highlighted pathways are 
inflammatory, MHC-II mediated antigen presentation and exogenous peptide 
antigen presentation related pathways. h) Analysis as in (g) comparing IBD 
INFLAREs to healthy control stomach. i) Chemokine and MHC-II gene scores 
(see Supplementary Table 5 for gene list) comparing small intestine epithelial 
cells in the atlas in healthy control and disease (IBD and celiac) samples 
showing specificity of upregulated chemokine and MHC-II related gene 
expression in particularly in INFLAREs vs MGN cells. j) Expression of 
chemokines in MGN and INFLAREs, across healthy and diseased tissues.  
k) Additional smFISH staining (as in Fig. 5c, representative from n = 3) of 
INFLAREs (MUC6) association with ACKR1+ vessel in CD duodenum.  
l) Correlation between INFLARE cell proportions and cell types/genes from 
deconvolution (BayesPrism) of bulk RNAseq adult and pediatric IBD datasets 
using the atlas as a reference. Analysis indicates consistent correlation of EC_
venous cells (ACKR1+ endothelial population) with INFLAREs, and metaplastic 
surface foveolar and neutrophil marker genes with INFLAREs.
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Extended Data Fig. 10 | INFLARE:T cell interactions. a) Protein expression in 
CD ileum (representative of n = 2) of HLA-DR (MHC-II) in INFLAREs (MUC6) 
along with localisation of CD3+ T cells and regulatory T cells (FoxP3+CD3+).  
b) Expression per donor of genes involved in IFNGR to MHC-II signalling pathway 
in INFLAREs and MGN cells in small intestine, as summarised in Fig. 5f.  
c) Additional protein staining for INFLAREs (MUC6) in CD disease ileum (as in 
Fig. 5g, n = 4) with various T cell subsets (CD4+CD3+, CD8+CD3+, TCRγδ+CD3+T 
cells). d) Protein staining as in (c) in Celiac disease duodenum tissue (n = 2).  

e) Quantitation of T cell densities for the T cell subsets indicated in MUC6+ glands 
and adjacent control epithelium across 5 sections from 3 donors as represented 
in (c). P-values calculated based on ROIs as replicates (n = 126 MUC6+ ROIs and 
59 adjacent control ROIs) using negative binomial linear regression, adjusting 
for log area, two-sided Wald test. f) Protein staining as in (c) and (d) in healthy 
proximal duodenum (n = 2) showing abundance and localisation of T cell 
subsets in Brunner’s glands.
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