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Prospects for AI clinical
summarization to reduce the
burden of patient chart review
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Effective summarization of unstructured patient data in electronic health records
(EHRs) is crucial for accurate diagnosis and efficient patient care, yet clinicians
often struggle with information overload and time constraints. This review dives
into recent literature and case studies on both the significant impacts and
outstanding issues of patient chart review on communications, diagnostics, and
management. It also discusses recent efforts to integrate artificial intelligence
(AI) into clinical summarization tasks, and its transformative impact on the
clinician’s potential, including but not limited to reductions of administrative
burden and improved patient-centered care. Furthermore, it takes into account
the numerous ethical challenges associated with integrating AI into clinical
workflow, including biases, data privacy, and cybersecurity.
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1 Introduction

Patient information is critical in the delivery of effective care – thousands of practices, tools,

and techniques have been developed in patient interview, health record storage, and physical

examination purely for the sake of effective usage of key patient information. Clinicians must

have an effective understanding of a patient – including but not limited to the history of

present illness (HPI), past medical history (PMH), family history (FH), and more. This

allows them to discern accurate differentials and develop efficacious management plans.

In modern healthcare, collected patient information is stored in electronic health records

(EHRs), where they lie unstructured across thousands of progress notes, lab results, office

visits, phone call transcriptions, and the like. Patient chart review, also known as pre-

charting, involves condensing this unstructured information into an accurate picture of a

patient’s medical history and current health status into a concise, accessible format. This

practice has significant implications for healthcare professionals, patient health outcomes,

and hospital expenditures. However, even in a strictly regulated industry that is American

healthcare, clinicians have diverse ways of approaching patient chart review – with many

placing much time, energy, and value, while others not so much.

The process of condensing medical information from various sources, including but not

limited to biomedical texts, literature, and patient information, is known as clinical

summarization. Patient chart review is a subset of clinical summarization, but arguably one

of the most important in the field. Tools that streamline clinical summarization have been

a hot topic of debate, with many arguing for its effectiveness in healthcare delivery while

others fear issues in data privacy, ethical considerations, and more. This debate is further

complicated with the advent of generative AI and its impact on workflows across the

industry. However, it is no surprise that AI that automates clinical workflow is an exciting
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frontier. AI-powered clinical summarization is finding its foothold

cautiously in the hands of physicians and slowly into clinical

practice. This review article will explore the current state of patient

chart reviewing in healthcare, and how AI pushes its frontiers to

previously unexplored heights.
2 Quantifying patient chart review’s
impact on diagnostic accuracy and
time burden

Patient chart review is clinical summarization of unstructured

patient health data lying in EHRs through interpretation of

salient information. It is an essential part of any clinical

workflow, regardless of clinician, specialty, or patient. Reviewing

EHRs allows for the physician to focus on talking with patients

effectively by gaining contextual information about the patient

(1). The wealth of information housed within the patient charts

is just as critical as the patient interview, physical examination,

or lab/imaging workups, especially to avoid misdiagnoses or

contraindicatory management plans.

In fact, this valuable nature of EHR data is precisely why there are

many efforts to implement natural language processing of clinical

narratives into both workflow and diagnostics, including in

managing coronary artery disease, depression, and more (2, 3).

Especially for patients with chronic conditions, it is generally agreed

that clinical free-text, or the unstructured narrative information lying

inside the health records, is dominant in value over any of the other

structured data such as ICD-10 codes, which are often plagued with

errors/misdiagnoses (4). Thus, it should only be natural that

literature on EHR have discovered that low quality medical data

management and usage are key reasons for medical error (5).

One case study has also shown that unstructured, clinical

narrative information contained in EHRs for patient chart review

is sufficient for conclusions about the patients’ pathophysiological

processes and therapeutic advances, even for up to 94.9% of

cases. In fact, thorough patient chart reviews can take up to 30

min per patient case, but this time investment can have high

returns, identifying most or even all of the major patient issues

correctly in up to 93.8% of the cases (6).

However, even while taking 30 min per patient to conduct a

thorough chart review, the diagnostic and management decisions

are not perfect – an independent, second round of patient chart

review evaluating the accuracy of the first round of patient chart

review found that 36.6% of the cases had to be corrected in

either the pathophysiological process identification or therapy/

management decisions, highlighting the imperfection of even the

most thorough patient chart review process (6).
3 Medical errors associated with
patient chart review

Most physicians in the United States do not take sufficient time to

conduct patient chart review. A survey of 155,000 U.S. physicians in

ambulatory subspecialties or primary care utilizes 5 min and 22 s
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per patient encounter (7) – a significant time sink, but nowhere

near the 30 min average used in the aforementioned case study. The

poorer quality of the average patient chart review, whether it be due

to work burden overload, lack of time, or negligence, leads to larger

quantities of misdiagnoses, and thus, medical errors/malpractice.

There are many medical error scenarios associated with patient

chart review. For example, a common case of medical error are

iatrogenic adverse drug events (ADE), most commonly caused by

inconsistencies in a clinician’s knowledge on patient allergies to

medications. There is a wealth of literature and case studies that

review these adverse drug events caused by insufficient

documentation, poor patient health record communication, and

lack of proper information collection from charts. As these case

studies show, many of these ADEs involve insufficient knowledge

on the side of a clinician due to incomplete record review and

internal inconsistencies found in the unstructured data within

health records (8). In fact, another study highlights this lack of

clinician knowledge despite sufficiently documented patient

information, having caused 29% of the study’s preventable ADEs (9).

Another sector where patient chart review is key is transition of

care. Patients being transferred between clinicians, whether

internally in hospital systems or across practices, require fluid

and comprehensive communication of all relevant patient health

history to prevent confusion, poor management, and ultimately

malpractice or negligence. An average large academic teaching

hospital can have up to 4,000 transitions per day, and this high

volume of transition is a rich breeding ground for medical errors

due to lack of comprehensive patient information and thus, a

poor understanding of a patient’s status (10). In fact, a 2016

study showed that 30% of malpractice claims in the U.S. were

attributed to poor communication between clinicians, resulting in

1,744 deaths and $1.7B in claims (11).
4 Information overload and physician
burnout

The root driver behind patient chart review causing medical

errors has been investigated quantitatively through literature. On

the other side of the patient-physician interaction, consider the

burden of information placed on the physician. Each patient can

have patient records as short as 29 pages and as long as over 500

pages long (12), and it is also important to note that with note

redundnacy and length on the rise since this 1995 study, this

number is a severe underestimate. To paint an accurate picture

from this daunting data is a monumental manual task. A physician

spends an average of 4.5 h per day doing EHR workflow, with 33%

of that being patient chart review, translating to 1.5 h of patient

chart review per day (7). Even the average U.S. medical resident

spends 112 h per month exclusively reading patient charts (13).

Electronic health records directly contribute to what has been

dubbed as “information overload crisis,” where physicians

actively face an excess of information from patients, research,

and administration (14). In fact, studies have shown that 75% of

physicians facing burnout cite EHR workflow as the main

contributor (15), especially in primary care, where burnout rates
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are the highest at 50%. This high correlation between burnout and

EHR workflow can be attributed to the fact that physicians spend

49.2% of their time per day with EHRs while only 27% is

dedicated towards face-to-face time with patients (16) (Figure 1).

It is difficult to quantify exactly what portion of medical errors

are caused by problems with the information crisis and electronic

health records. However, it is still possible to discern what the

errors that were made from information handling processes, which

heavily involve patient charts. In fact, one family medicine case

study found that 29% of the errors made can be associated with

patient information processing. These errors include the

availability of information within patient charts, physician-

physician communications, and clinical knowledge gaps (17).

Another study of 2,590 primary care physicians showed that

69.6% receive more information that they can handle. This study

measured the number of alerts a physician received, which is

a common proxy for measuring information overload.

Furthermore, these alerts lead to almost 30% of these physicians

reporting missing test results and delayed patient care as a result,

another proxy for medical errors due to the information overload

(18). These studies highlight the burden of information placed

on the physician, and how it impacts not just their time usage,

but also prevalence of medical errors and physician burnout.

Current solutions to combat information overload has been mainly

reliant on human agents and intermediaries - to dedicate more

manpower and networking to distribute the burden of information

over multiple individuals. Partitioning these tasks to convert

unstructured data from patient health information, biomedical

literature, and the like, to structured information has primarily been

only been done by trained healthcare professionals and trainees.

Certain software solutions in the past have been proposed, but
FIGURE 1

Time distribution in clinical workflow.
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ultimately, the variance associated with healthcare delivery across

systems, clinicians, and even individual patient cases, proved to be a

daunting challenge to be solved by traditional software, and has

mainly fell on the clinical team members to handle (19).
5 The role of AI in healthcare support
and clinical summarization

The growing crisis in healthcare information volume, physician

burnout, and patient-physician relations, increasing efforts to

incorporate artificial intelligence into patient chart review. Natural

language processing (NLP) can be used to determine illnesses or

patient information from clinical free-text (20). The increasing

capabilities and token storage of LLMs in 2024 such as Google’s Med-

Gemini, Meta’s Llama 3, OpenAI’s ChatGPT4, or Anthropic’s Claude

3.5, has allowed for these models to process the enormous portions of

information for summarization and analysis. In recognition of the

stringent accuracy, the need for personalization, privacy regulations,

and the high knowledge floor needed for AI in clinical workflow, the

innovation space gave birth to many ventures to combat the

aforementioned issues in clinical summarization. Several case studies

verify AI usage in various clinical settings to aid in chart reviewing.

The AI models and data sources investigated in each of the following

case studies are summarized in Table 1.
5.1 Case study 1: radiology case reports

Radiological reports, essential for diagnosing and monitoring

diseases, can be lengthy and complex, often integrated into
frontiersin.org
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TABLE 1 Summary table of case studies in AI applications.

Study Models tested Additional modifiers Data source Evaluation metric
1 GPT-3davinci, BARTcnn, T5, LED None CNN+DailyMail, booksum, sec-

litigation, MIMIC-III
ROUGE, BERTscore, text length
reduction

2 GPT-4, GPT-3, FLAN-T5, FLAN-UL2,
Llama-2, Vicuna

ICL, QLoRA Open-i ROUGE, BERTscore, clinician
evaluation

3 FLAN-T5, BERT, pegasus-xsum SPeC MIMIC-CXR ROUGE, BERTscore

4 Med-BERT Prediction head, fine-tuning via
smaller data sets

Cerner, Truven Disease Prediction AUC
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almost every progress note. While the data is more structured than

typical progress notes, there is much to unpack in what is necessary

information and what is not.

Chien et al. utilized NLP summarization models from various

sources for the purpose of summarizing neuroradiology case

reports and charts. These included models such as BARTcnn,

trained on news datasets from CNN, LEDClinical, trained on

references from the MIMIC-III dataset, and even GPT3 davinci

from OpenAI (21). Both clinical-sided physician evaluation of

comprehensibility, accuracy, redundancy, and readability as well

as standard AI-sided quantitative evaluation using ROUGE or

BERTscore (22, 23) was performed on the summarization

capabilities of these models.

These AI models, especially BARTcnn and GPT3 davinci,

demonstrated considerable summarization capabilities, enhancing

the readability and comprehensiveness of summaries, while

simultaneously reducing text length to less than 20% of the

original case reports. These results are especially notable when

considering that most of the models tested were not trained on

any clinical dataset, which opens much potential for using these

AIs as tools for enhancing clinical workflow in fast-paced clinical

settings (21).

However, the performance of these models did not come

without limitations. For one, a common challenge associated

with LLM-based patient chart reviewing is that it is difficult to

guarantee the comprehensiveness of summaries, and the models

in this study often left out critical information at the end of

reports, typically patient outcomes or treatments. Furthermore,

different models tend to leave out different pieces of information

for unknown reasons, such as aneurysm locations. However,

considering that most of the models were not clinically oriented,

nor trained on clinical data, this case study still demonstrates

great promise for the capabilities of NLP models to greatly

improve clinical workflow efficiency (21).
5.2 Case study 2: capabilities of large
language models with patient charts

Van Veen et al. recently published in Nature Medicine a study

that evaluates leading Large Language Models (LLMs) in their

ability to summarize clinical information in patient charts (24).

Eight open source and proprietary models including

ChatGPT3.5, ChatGPT4, LLaMa-2, Med-Alpaca, which were then

adapted to the summarization tasks at hand using in-context
Frontiers in Digital Health 04
learning (ICL) and quantized low-rank adaptation (QLoRA),

were evaluated in its capabilities to summarize progress notes,

radiology reports, dialogue, and other patient-sided sources of

information. Datasets utilized for patient chart review tasks

included MIMIC-III, MIMIC-CXR, and ProbSum. The study

found that the best-performing models, namely ChatGPT4

adapted with ICL, performed superior to even physicians when

evaluated both on the AI-sided metrics and clinical-sided expert

evaluations by other physicians. In fact, a common challenge

when discussing LLM outputs are hallucinations, or outputs that

may be coherent yet contain nonsensical or factually incorrect

information, as if the model decided to ”make up” information

to compensate for the lack of a proper answer. However, data in

this study suggests that adapted LLMs may even outperform

humans in avoiding hallucinations, thus reducing mistakes in

clinical summarization of patient charts.

However, this study, and LLMs in general, do not come

without limitations. Another key challenge of implementing AI

into clinical workflow is the diversity of practice that varies

between not just specialties, but individual clinicians. Different

information can be stressed across specialties, such as cardiology

focusing on cardiac symptoms, or neurology focusing on

neurological symptoms. However, this problem could be

overcome through further training children models with more

data, or fine-tuning to fit each specialty (24). Another possibility

for fine-tuning summaries is train models to fit to each

clinician’s style through real-time clinician inputs and feedback.

A second, more pressing reality with incorporating LLMs is

handling context and proper referencing. Notes in electronic

health records face two challenges: note length and note

redundancy. A cross-sectional study by Rule et. al of almost

three million outpatient progress notes revealed that the median

length of notes is 642 words in 2018, increasing by 60.1% since

2009 (25). The most commonly used model in 2024, OpenAI’s

GPT-4o, has a context window of 128,000 tokens, or about

96,000 words (26). This means that a patient with more than a

mere 149 notes already exceeds the context window allocated by

GPT-4o. Even allowing the possibility of older, obsolete notes,

the problem of processing which notes are of relevance a priori

is a distinction without a difference to the original task.

Furthermore, Rule et al. also discovered that note redundancy

reached over 50% in 2018, further exacerbating the problem of

overrunning context size (25). Similarly, this problem cannot be

overcome without processing each note individually for

redundancy, a daunting manual or programming task. This is
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especially true considering that information may be redundant but

the actual associated files may have many differences, even with

text portions that were transferred verbatim. These problems

highlight a need for both innovation and a paradigm shift in

electronic health records.

While there are significant challenges associated with utilizing

leading models in clinical workflow, there still lies significant

potential of large language models, such as ChatGPT4 adapted

with in-context learning, to enhance clinical summarization

tasks. These models have shown an impressive ability to process

and summarize complex medical data with accuracy that

sometimes surpasses human performance, particularly in

reducing hallucinations. That being said, challenges such as

handling diverse clinical practices and managing the vast and

often redundant information in electronic health records

highlight the need for further refinement. There is also a need

to address context window limitations because of the modern

problem of note length and note redundancy, and they remain

critical hurdles in the effective integration of AI into clinical

workflows. As these models continue to evolve, their ability to

tailor outputs for individual clinicians and specialties could

further solidify their role in healthcare, provided these

limitations are addressed through continued research and

innovation, and perhaps even a change in the way healthcare

approaches electronic health records.
5.3 Case study 3: addressing variability in AI
outputs for clinical summarization tasks

Beyond the typical usages of AI in clinical summarization,

there have also been efforts to improve AI performance in

clinical settings. Chuang et. al recently presented the SPeC

framework, which represents a breakthrough in addressing the

variability of AI outputs in clinical summarization of radiology

reports. By employing soft prompts, this method enhances the

stability and consistency of AI-generated summaries, which is

critical for clinical accuracy and reliability. The framework aims

to mitigate the impact of prompt quality on the performance of

LLMs, demonstrating a novel approach to improving AI utility in

healthcare (27).

However, this study highlights several key limitations in using

large language models (LLMs) like SPeC for clinical notes

summarization. One of the main challenges is the performance

variability across different clinical domains and note types,

especially when it comes to more specialized knowledge. While

LLMs demonstrate strong performance on certain types of clinical

documentation, such as structured reports, they often struggle with

unstructured or highly specialized notes, which require a deeper

understanding and interpretation. In fact, even nuances such as

medical abbrieviations and complex medical terminologies could

mislead the models utilized in the SPeC study. Similarly to Van

Veen et al., the study also points to limitations in soft prompt-

based calibration when attempting to standardize LLM outputs

across diverse clinical tasks, as prompts may not sufficiently

capture the context or detail needed for accurate summarization in
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all scenarios (24, 27). Moreover, ethical and practical concerns

around the use of AI in healthcare, such as the potential for

hallucinations, bias, or incorrect information, remain significant

barriers to widespread adoption, despite advances in model

training. This will be discussed in more detail later in this review.
5.4 Case study 4: data, frameworks, and
fine-tuning

One key example of clinical datasets is the aforementined

MIMIC series, including MIMIC-III, MIMIC-IV and MIMIC-

CXR (28), which contains extensive patient reports, clinical

information, radiological reports, and images. Many models,

including G-BERT, a combination of the BERT framework and

Graph Neural Networks, are trained off of the MIMIC-III dataset (29).

Rasmy et al. takes the current work on utilizing BERT and

takes it a step further. The study used the Cerner Health Facts

and Truven Health MarketScan datasets to create Med-BERT.

With additional fine-tuning datasets, Rasmy et al. achieved

higher predictive accuracy on disease prediction, increasing

AUCs by up to 20 percent compared to using gated recurrent

unit networks alone. They were even able to achieve accuracies

on par with models that were trained on datasets ten times

larger. However, this study, as with many others, come with

significant limitations. The most salient for discussion is that the

models were trained off of structured datasets, which led to Med-

BERT being trained on pre-structured diagnostic information (in

ICD format) instead of off of unstructured information in

clinical notes. The information overload crisis that clinicians face

everyday is often in the challenge of converting unstructured

information into a structured summary. As such, we see that

while studies like these present the power of patient chart review

and diagnostics, it still fails to overcome the key challenge of

structuralizing data, where a bulk of the time and energy burden

lies (29).

There are many other clinical text or imaging databases for

clinicians and scientists to train AI/ML models. Thousands of

clinical notes are made available by the i2b2, which released a series

of NLP challenges and the respective data for each challenge, which

comprises of deidentified discharge summaries (30). Furthermore,

clinical trials data is available in various digital datasets, including

the PRO-ACT database, which provides access to Phase II and

Phase III clinical trials data from ALS patients (31). Finally, imaging

data can be extracted from a multitude of nationally funded

institutes, including but not limited to the NIH National Cancer

Institute’s TCIA (32) and OASIS, which feature open access to the

data used in its MRI studies (33).

The challenge of data availability also extends across

international scales. Most models in clinical workflow and

diagnostics are trained on data produced in the United States

and China, which produces challenges in output accuracy for

patients who fall outside those demographics. Key differences in

population-level health across international borders makes it

crucial for proper data production, labeling, and pre-processing

before training any model. For example, utilizing data from
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gastrointestinal (GI) patients in the United States may not be the

most representative for utilizing with Korean patients, who

experience a much higher rate of GI diseases than the rest of the

world. While the continued data produced by these countries is

paramount to furthering our understanding of AI development,

it is crucial to also emphasize data collection from diverse

sources that may lack representation (34).

While all the datasets mentioned in this review have

significantly advanced AI-driven clinical summarization and

disease prediction, they still face substantial challenges related to

data structure and representativeness. Models like Med-BERT,

which rely heavily on structured clinical data, demonstrate the

power of current datasets but highlight the limitations in

converting unstructured clinical notes into usable formats for

training AI. Moreover, the reliance on datasets predominantly

from the United States and China underscores the need for more

diverse, global data collection to enhance the applicability and

accuracy of AI models across different populations. Addressing

these challenges requires concerted efforts in data preprocessing,

international collaboration, and the development of methods to

structure unstructured clinical data, which remains a critical

bottleneck in AI-driven healthcare innovation.
6 Ethical challenges in AI-driven
clinical support

Incorporating AI into clinical summarization and patient chart

review presents significant ethical challenges, particularly concerning

bias, patient privacy, and cybersecurity. Algorithmic bias, which

arises when AI systems are trained on non-representative or

imbalanced data, potentially leading to unequal healthcare outcomes

for marginalized groups. Another critical issue is patient privacy and

informed consent. The use of AI often requires large datasets, raising

concerns about how patient data is stored, shared, and protected.

Further issues include cybersecurity risks of cloud-based

architectures and adversarial attacks on LLMs for reverse data

extraction. While anonymization techniques are commonly used, the

risk of re-identification and unauthorized access persists, which

could compromise patient confidentiality. Addressing these ethical

concerns is crucial for ensuring that AI enhances, rather than

hinders, clinical practice.
6.1 Risks of biases in utilizing AI for clinical
support

Bias in AI-driven clinical summarization is a pressing issue that

can exacerbate existing healthcare disparities. One of the main

sources of bias comes from the datasets used to train AI models.

Many of these datasets are not representative of the broader

population, often over-representing certain demographic groups

while under-representing others. For example, models for breast

cancer are trained on more data with women, and therefore

produce clinically and ethically significant differences in decision-

making between male and female-born patients (35). These
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statistical machines with limited data diversity can produce to

clinical summaries that do not accurately reflect the conditions or

treatments relevant to underrepresented groups, potentially skewing

decision-making in healthcare contexts.

Additionally, AI algorithms often reflect the biases present in

clinical practices, such as diagnostic disparities between men and

women or between racial groups. For example, women may be

treated differently for cardiovascular conditions than men due to

various factors, including differential auscultation practices,

which can introduce significantly biases in data (36).

It is also important to mention that biases don’t necessarily have to

exist just from data, but purely from the availability of technology,

either in development or distribution. For example, despite there

being more than double the number of patients afflicted with sickle

cell disease (SCD) than patients with cystic fibrosis (CF), CF receives

more than three times the funding from the National Institutes of

Health than SCD, and hundreds of times more in private funding.

However, SCD is more common in black patients, while CF is more

common in white patients, which highlights a racial funding

disparity for research within this space, which will inevitably also

impact the development of AI for clinical workflow and diagnostics.

The same funding patterns could also be observed between male-

and female-associated disease burdens, typically offering more

funding for research and development associated with the former (37).

Furthermore, measurement bias can occur when medical devices

or methods used to gather data are themselves biased. Tools like

pulse oximeters have been shown to overestimate oxygen levels in

patients with darker skin, especially in women. Thus, datasets that

use pulse oximeter data can be used to train many clinical support

algorithms and feed inaccurate perspectives on basis of skin color

and gender, further compromising how information is presented

in clinical summaries (38).

Addressing bias in AI-driven patient chart review is crucial to

ensuring equitable healthcare outcomes. The disparities in data

representation, diagnostic practices, and resource allocation all

contribute to biased predictions that can widen the healthcare

gap between different demographic groups. As AI becomes more

integrated into clinical decision-making, these biases can

significantly affect how healthcare is delivered, particularly for

underrepresented populations. To mitigate these issues, there is a

need for more inclusive datasets, equal access to healthcare

technology, and increased attention to funding disparities. Only

through addressing these systemic biases can AI-driven tools

become reliable allies in promoting health equity across diverse

patient populations.
6.2 Challenges of cloud-based AI 1: patient-
sided data privacy and informed consent

Currently, many general AI tools are hosted by cloud service

providers (CSPs), partially due to the need for significant

investments for proper local storage and computational

capabilities. Cloud-based AI systems can process vast amounts of

medical records, enhancing patient chart reviewing capabilities and

aiding in better healthcare decision-making. However, this reliance
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on cloud platforms introduces significant risks, particularly

concerning data privacy, informed consent, and cybersecurity.

One of the key issues with regulating the flow of information in

AI is that attaching proper safeguards is difficult. It is

fundamentally unknowable how data is processed and mutated

for output generation. In fact, this is further complicated by the

fact that most of the hardware and software that AI relies on is

owned by ”big tech.” It further raises questions on data

collection practices, and maintenance of privacy, and most

importantly, informed consent. A key example is the controversy

surrounding Alphabet’s Deepmind in 2017, where patient

information was obtained without proper informed consent for

the testing of their acute kidney injury algorithms (39, 40). In

2018, Deepmind came under fire again for migrating Streams,

their clinical information management and decision support tool,

to Google’s control without consent (41). These episodes

exemplify the problems associated with privacy when utilizing

data for machine learning and AI at a large scale, and highlight

an important concept - informed consent.

Informed consent is a central ethical issue when using patient

data for AI-driven clinical support. Traditional models of informed

consent are being challenged by the scale and complexity of data

used in AI. Patients often are unaware of how their data is used

in secondary applications such as AI training, leading to

potential ethical lapses. To address this, some researchers such as

Wang et al. propose dynamic consent models in both the U.S.

and China, where patients are regularly informed and can

withdraw their consent as new AI applications emerge. This

ensures patient agency in controlling how their personal health

data is used. In countries like the United States and Europe,

informed consent regulations such as HIPAA and GDPR are

further being modified to manage the growing influence of AI

data usage in healthcare (42).
6.3 Challenges of cloud-based AI 2:
cybersecurity and adversarial attacks

However, even if patient-sided precautions can be

established in an airtight manner, hosting cloud-based

architecture still predisposes patient health information to

greater cybersecurity risk. Cyberattacks for information theft

are devastating but nothing new in the world of healthcare -

from 2009 to 2023, over 500 million records have been

subjected to data breaches, and various cyberattacks on

covered entities have resulted in tens of millions of records

stolen even in 2024 (43).

The deeper challenge that arises with the advent of LLMs is

the threat of adversarial attacks, or the use of malicious prompt

engineering to induce harmful outputs, including the disclosure

of sensitive patient health information. Zhang et al. reveals an

interesting example using a study on partially synthetic

medical data. Partially synthetic data created by generative

models is particularly vulnerable to adversarial attacks that

reveal knowledge of whether a specific individual’s data

contributed to the synthetic dataset. This creates a data breach
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risk, revealing private health information. The researchers used

two datasets — Vanderbilt University Medical Center (VUMC)

and the NIH-sponsored All of Us Research Program — to test

these vulnerabilities, and these ”membership inference attacks”

could reach up to 80% precision in identifying individuals

from partially synthetic data. These breaches are especially

harmful for individuals with pre-existing conditions. While

these risks could be mitigated by techniques such as contrast

representation learning, there is still a moral dilemma

associated with the risks of using partially synthetic data vs.

fully synthetic data, which has shown to be much more

resistant to these types of attacks. The research stresses the

importance of evaluating privacy risks before releasing

synthetic health data and suggests that privacy protection

methods, like differential privacy, could potentially reduce

these risks, though they may also reduce data utility (44).

Several case studies have also presented another critical risk:

the susceptibility of medical LLMs to data poisoning attacks.

Data poisoning attacks occur when malicious inputs are

introduced during the training phase, leading the model to

produce skewed or incorrect results during clinical

summarization or diagnosis tasks. This can have dangerous

consequences in a healthcare setting, not only leading to

harmful outputs, but also potentially disclosing sensitive patient

data through manipulated queries. A key study by Abdali et. al

demonstrated that injecting just a small number of poisoned

examples into the LLM’s training data could cause the model to

unintentionally leak patient details from its training set during

inference (45).

But to present a contrasting view to this risk, another

study by Yang et al. showed that adversarial attacks are not

fully effective unless the adversarial data injection reaches a

critical mass for domain-specific tasks such as prescribing

medications. Thus, LLMs could be relatively safe from data

poisoning attack motifs such as posting poisonous/malicious

content online that many commercial open source LLMs are

trained on (46).

These findings are a few but many of the growing field of

data security associated with LLMs. They underscore the

urgent need for robust defensive mechanisms in healthcare AI

applications, such as fine-tuning models with adversarial

training, using differential privacy techniques, and

continuously auditing AI models for potential vulnerabilities.

As medical AI continues to grow, securing LLMs against these

types of attacks will be critical to protecting patient privacy

and ensuring the safe deployment of AI in clinical environments.
7 Moving forward

Looking to the future, the integration of AI in patient chart

review is poised to revolutionize healthcare workflows. Throughout

this review, we have presented statistics in how patient chart

reviewing has impacted both the workflow for clinicians and

quality of care for patients through various mechanisms. AI

capable of conducting patient chart review are undoubtedly poised
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TABLE 2 Barriers against effective AI-implementation in patient chart review.

Barriers against AI Potential solutions
Comprehensiveness of information of patient summaries Continued innovation in prompting to ensure information capture.

Accuracy of patient summary information without hallucinations Continued innovation in LLM performance. Increased data availability from various sources to
ensure both comprehensive capture of patient scenarios, decreased bias.

Implementation of AI-powered patient chart reviewing into the almost
infinite, diverse needs of each clinician or practice

Training of fine-tuned children models to capture various specialties and practices. Tailored
prompting.

Variability of AI outputs for similar patient scenarios Continued innovation in LLM-output consistency using solutions such as soft-prompting.

Data availability: patient diversity, bias, or lack of data (especially in
regards to US or China-centrism of data)

Increased data collection from sources typically underrepresented, and ensuring that data collection
methods themselves are unbias (or at least accounted for). Increased focus on populations outside
of U.S. and China.

Patient-sided privacy and informed consent for training new tools Newer models of informed consent on data-side, such as dynamic consent models. Patient access
and information to tools developed from their data.

Data extraction attacks from LLMs and cloud-based infrastructure
security

Continued innovation in defense against typical cloud-based cybersecurity risks and adversarials
attacks against LLMs.
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to save invaluable amounts of time and energy for overworked

clinicians, become employed in a plethora of different contexts

and practices, and even boost quality of care, speed of healthcare

delivery, and accuracy of disease management.

In 2024, integrating AI into clinical workflows presents a

significant challenge, especially when considering the need for

solutions that are compatible with over 600 EHR systems. A

practical approach for clinicians may begin with adopting AI-

powered scribes, followed by implementing automation tools for

patient chart review. The initial integration may face considerable

obstacles with considerable time being spent in proper

management of patient data, troubleshooting the accuracy and

utility of AI, and the time spent by clinicians in training and

familiarization of new digital health tools. Making sure not to

take shortcuts but properly handle each of those challenges

through sufficient time and collaboration between AI engineers,

healthcare professionals, and regulatory experts is paramount for

the success of adoption. However, as more and more clinicians

insert AI into their practice, growth can become exponential. In

fact, additional EHR tasks, such as billing, lab orders,

prescriptions, referrals, and patient communications, can also be

handled by AI. With advancements in regulation-approved

diagnostic AI, real-time management support may soon become

a reality, accelerating innovation in healthcare.

However, it is crucial that ongoing efforts focus on addressing key

limitations and barriers, particularly in terms of data privacy and

security, as they are summarized in Table 2. Ensuring that AI

models are trained on diverse, representative datasets will be vital in

reducing bias and improving healthcare outcomes across different

populations. Continued collaboration between healthcare providers,

AI developers, and policymakers will help develop safeguards,

ensuring that AI solutions promote equity and inclusivity.

Furthermore, as AI becomes more embedded in healthcare

workflows, the importance of safeguarding patient privacy through

secure cloud-based infrastructure and informed consent

mechanisms cannot be overstated. Dynamic consent models and

advanced encryption techniques must become standard practices to

ensure that patient data is not only protected but also used

ethically. Investments in securing cloud platforms, particularly with

a focus on mitigating risks from adversarial attacks, will help ensure

the sustainability and trustworthiness of AI-driven healthcare systems.
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Moving forward, research into adversarial attacks and their

potential to expose patient health data underscores the necessity

for enhanced cybersecurity protocols in AI healthcare systems.

As these models grow in complexity, healthcare institutions

must prioritize building robust defenses, such as adversarial

training and differential privacy, to mitigate the risks of data

breaches. With the right regulatory oversight, secure cloud

environments, and ongoing innovations, AI in clinical

summarization can continue to develop, offering unprecedented

improvements in patient care while maintaining ethical and

privacy standards.
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