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Abstract
This work focusses on extending the deep compartment model (DCM) framework to the estimation of mixed-effects. By 
introducing random effects, model predictions can be personalized based on drug measurements, enabling the testing of 
different treatment schedules on an individual basis. The performance of classical first-order (FO and FOCE) and machine 
learning based variational inference (VI) algorithms were compared in a simulation study. In VI, posterior distributions 
of the random variables are approximated using variational distributions whose parameters can be directly optimized. We 
found that variational approximations estimated using the path derivative gradient estimator version of VI were highly 
accurate. Models fit on the simulated data set using the FO and VI objective functions gave similar results, with accurate 
predictions of both the population parameters and covariate effects. Contrastingly, models fit using FOCE depicted erratic 
behaviour during optimization, and resulting parameter estimates were inaccurate. Finally, we compared the performance of 
the methods on two real-world data sets of haemophilia A patients who received standard half-life factor VIII concentrates 
during prophylactic and perioperative settings. Again, models fit using FO and VI depicted similar results, although some 
models fit using FO presented divergent results. Again, models fit using FOCE were unstable. In conclusion, we show that 
mixed-effects estimation using the DCM is feasible. VI performs conditional estimation, which might lead to more accurate 
results in more complex models compared to the FO method.
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Introduction

Non-linear mixed effect (NLME) models serve as the estab-
lished methodology for the analysis of time-series data 
within the domain of pharmacometrics. These models allow 
for the simultaneous estimation of population and individ-
ual level effects using (semi-)mechanistic models, and are 
particularly useful for disentangling different sources of 

variability from data. The inclusion of random variables η 
imposes a distribution over the model parameters and can 
be thought of as representing the effect of unseen covari-
ates. At prediction-time, an individual estimate of the param-
eters can be obtained based on the observations. Aside from 
improving prediction accuracy, these individual estimates 
can also be used to simulate drug exposure or effects based 
on unseen treatment strategies, facilitating the selection of 
optimal treatment on a personalized basis.

Recently, the field of pharmacometrics has seen an influx 
of interest in the use of machine learning (ML) methods 
[1–3]. Most ML techniques favour data-driven learning of 
relationships between covariates and observations based on 
large amounts of data. However, the availability of large 
data sets is often a limiting factor within the context of 
pharmacometrics, rendering most standard ML methods 
ineffective. Moreover, algorithms such as neural networks 
and tree-based methods require the utilization of drug dose 
as model input, which has been shown to be problematic 
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for reliable extrapolation to unseen data [1, 4]. Combining 
prior knowledge with machine learning methods in so-called 
hybrid model architectures poses a promising alternative, 
potentially improving both data efficiency and predictive 
performance.

One such architecture is the deep compartment model 
(DCM), which uses neural networks to learn the relationship 
between covariates and the parameters of a system of differen-
tial equations representing the (semi-)mechanistic model [5]. 
This architecture is highly flexible: it supports all problems 
involving ODEs, can learn the effects of specific covariates 
only (using explicit equations for others), or can be used to 
learn the partial differential equations describing drug kinet-
ics/dynamics or parts thereof using Neural-ODEs [4, 6, 7]. 
In its current form, the framework focusses on the estimation 
of fixed effects. As these models use highly flexible neural 
networks, failing to assign part of the variability to random 
effects can potentially result in the model internalizing noise. 
Another downside is that model predictions cannot be indi-
vidualized, limiting its potential for use in clinical practice.

In the work by Lu et al., a variational auto-encoder (VAE) 
[8] is used to produce individual prior distributions over the 
Neural-ODE parameters, enabling the personalization of pre-
dictions [4]. In VAEs, neural networks are used to estimate 
parameters (e.g. mean and variances) for a set of random vari-
ables describing the Neural-ODE parameters. Optimization 
is simplified by amortization of the learning procedure [8, 
9], often optimizing the mean squared error of predictions 
combined with a regularizing term restricting complexity of 
the latent variables (e.g. using hyper-priors such as a standard 
Normal). However, this approach breaks the typical assump-
tion that random effects are independent of the covariates, and 
in practice often results in the variance of (part of) the latent 
variables shrinking to zero to benefit prediction accuracy [10, 
11]. To circumvent these issues, estimation of random effects 
should be decoupled from the estimation of fixed-effects as is 
the case in classical NLME models.

The aim of this work is to formulate a robust approach to 
jointly estimate fixed and random effects within the DCM 
framework. We investigate the performance of classical 
first-order approximation methods used in NLME models 
as well as machine learning based variational methods [12]. 
The accuracy and stability of these different algorithms are 
tested on a simulated data set using a population pharma-
cokinetic (PK) approach. Finally, we showcase the use of 
the mixed-effect DCM on two real world data sets of hae-
mophilia A patients receiving standard half-life (SHL) factor 
VIII (FVIII) concentrates during prophylaxis and surgery.

Estimation of random variables

Given a data set of covariates X, interventions I (e.g. drug 
administration), and measurements y for each subject i ∈ {1, 

…, n}, we typically use an ODE-based model A(t) to represent 
the evolution of yi over time:

Here, matrix Ii contains individual treatment information 
with corresponding time points and ζi = f(xi; θ) are typical ODE 
parameters (e.g. PK parameters) whose relationship to the covar-
iates X are described by a set of functions f with fixed effect 
parameters θ. Mixed effects models introduce a subject-specific 
random variable ηi ∈ ℝK on (part of) the parameters of the ODE 
in order to account for additional heterogeneity between subjects:

Here, zi represents the individual estimate of the ODE param-
eters and Ω is a K × K covariance matrix. We drop the subscript i 
in subsequent equations to reduce cluttering. Following from the 
Bayes rule p(�|y) = p(y|�)p(�)∕p(y) , we can obtain maximum 
a posteriori (MAP) estimates of η based on the measurements y 
by maximizing the joint likelihood p(y, �) = p(y|�)p(�) . How-
ever, obtaining maximum likelihood estimates of the fixed effect 
parameters is more complicated. One way is to marginalize out 
the random variables, which results in a complex integral often 
lacking a closed-form solution:

Classical methods approximate this integral using a Laplace 
approximation around the mode of the random effects and lin-
earize the model by performing a first-order Taylor expansion. 
This results in a Gaussian approximation of the random effect 
posterior, and is known as the First-Order Conditional Estima-
tion (FOCE) extended least squares objective function (see 
supplementary data 1 for derivation) [13, 14]. When using the 
FOCE objective, the model iterates through producing MAP 
estimates of η followed by optimization of Θ based on the 
linearized model. Further approximation of the FOCE objec-
tive results in the FO objective function, where the mode of η 
is fixed at the population mean (i.e. zero), removing the need 
for the calculation of MAP estimates (see supplementary data 
1) [15]. However, individual random effects are rarely located 
at zero (unless shrinkage is high) and the resulting objective 
function is less accurate. In practice, the FO method is only 
appropriate when the inter-individual variances are small [16].

Variational inference

Model performance likely depends on the accuracy of the 
approximation. The Laplace approximation (and the FO and 
FOCE by extension) suffers especially when η posteriors are 
non-Gaussian, or have multiple modes. Alternatively, we can 
apply Markov Chain Monte Carlo (MCMC) methods to obtain 

(1)yi(t) = A
(
t;�i, Ii

)
+ �, where � ∼ N(0,Σ)

(2)zi = g
(
�i, �i

)
, where �i ∼ N(0,Ω)

(3)p(y;Θ) = ∫ p(y, �;Θ)d�, where Θ = {�,Ω,Σ}
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samples of model parameters that converge to their true pos-
terior distributions. Unfortunately, MCMC quickly becomes 
computationally prohibitive when the number of subjects and 
dimension of the random variables increases. This is especially 
the case when the fixed effects model is a neural network with 
ill-defined posterior distributions over its weights [17]. For-
tunately, several approximate methods for Bayesian inference 
have been developed to reduce computational complexity.

A notable example is Variational Inference (VI), where the 
true posterior is approximated by a (simpler) variational distri-
bution q [12]. The variational approximation is optimized by 
minimizing its Kullback–Leibler (KL) divergence with respect 
to the true posterior. Since the true posterior is unknown, the 
evidence lower bound (ELBO) is maximized instead, which 
places a lower bound on the marginal likelihood p(y) (see sup-
plementary data 1):

Here, qφ is a tractable distribution parametrized by φ (e.g. 
φ = {μ, σ} in the case of a Normal distribution). Since p(y) is 
a constant, maximizing the ELBO implicitly minimizes the 
KL divergence. An unbiased estimate of the expectation in 
Eq. 4 can be obtained using Monte Carlo methods, but the 
resulting gradients have high variance. Roeder et al. describe 
the path-derivative gradient estimator of the ELBO, which 
has the property that the gradient variance shrinks to zero as 
qφ(η) approaches p(η | y) [18]. This means that a potentially 
very close approximation of the true posterior can be obtained 
based on the chosen complexity of qφ. Choosing a Gaussian 
approximation will result in a similar approximation of the 
integral in Eq. 3 as with FOCE, albeit a stochastic one due to 
the Monte Carlo approximation in Eq. 4.

It is of interest to compare VI to the classical first-order 
approximations when using the DCM framework to see if 
there are differences in performance. Since VI performs con-
ditional estimation, we expect improved performance over the 
FO method in more complex models. A potential benefit of 
VI over FOCE might be reduced computational time as MAP 
optimization over η is not required. It is also unknown how 
well these models will behave when simultaneously learning 
fixed and random effect parameters when covariate effects are 
learned during the optimization, as is the case in the DCM.

Methods

Synthetic data generation
A total of 500 samples of patient age, height, weight, blood 
group, and von Willebrand factor antigen (VWF:Ag) levels 

(4)

log p(y) = �q�(�)

�
log p(y, �) − log q�(�)

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ELBO

+KL
�
q�(�)‖p(��y)

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
divergence

were simulated from a recently proposed generative model for 
haemophilia A patients [19]. This generative model imple-
ments non-linear relationships to represent the joint distribu-
tion over these covariates. Covariate relationships were based 
on a directed acyclic graph (DAG) representing the causal 
effects of the covariates. The resulting samples are more real-
istic than samples from multivariate normal or marginal distri-
butions. After generating synthetic covariate data, factor VIII 
levels were simulated based on a hypothetical population PK 
model implementing the following covariate effects:

where leaky_sof tplus
(
x, � =

1

20
, � =

1

10

)
= � ⋅ x + (1 − �) ⋅

log(exp(x⋅�)+1)

�
.

Each virtual patient was given a single dose of 25 IU/kg 
rounded to the nearest 250 IU. Random samples � ∼ N(0,Ω) 

with Ω =

[
0.037 0.0113

0.0113 0.017

]
 were drawn to produce individ-

ual estimates of the PK parameters. Next, simulated FVIII 
concentration–time curves were generated based on a two 
compartment model. FVIII measurements were collected at 
4, 24, and 48 h after dose.

Evaluating the accuracy of variational 
approximations

The accuracy of variational posterior approximations was 
determined by comparing learned random effect posteriors 
obtained from VI to those obtained from MCMC sampling 
when using the true model from the simulation. Posteriors 
were compared in two settings: (1) using the true typical PK 
and population parameters (i.e. Ω and Σ), and (2) when only 
using the true typical PK parameters (also approximating 
the posterior over Ω and Σ). Covariance matrices M were 
decomposed in terms of marginal standard deviations S and 
correlation matrix C such that M = S · C · S’. More informa-
tion on prior and hyper-prior selection for the MCMC model 
can be found in supplementary data 2.5.

For the MCMC model in scenario 1, a single chain was 
run to generate 10000 posterior samples using the NUTS 
algorithm. In scenario 2, 5000 samples were taken. Models 
were fit to the first data fold of the simulated data set, and 20 
replicates of the VI algorithm were fit to compare to results 
from MCMC. The same prior distributions were used in the 
VI model. Posterior similarity was determined based on vis-
ualizations and quantified using the Wasserstein distance. 
The ADAM optimizer using a learning rate of 0.1 was used.

(5)

CL = 0.1 ⋅
weight

70

0.75
⋅

(
leaky_sof tplus(VWF+100)

55
+ 0.9

)

V1 = 2.0 ⋅
weight

70
⋅ exp(�2)

Q = 0.15

V2 = 0.75
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Comparison of methods for estimating random 
variables

Given our computational budget, we decided on fitting 100 
models for each of the methods. The complete data set was 
divided into 20 random subsets of 60 subjects drawn with 
replacement for model training with the remaining samples 
for determining model accuracy. Previous results indicated 
that data from 60 subjects was sufficient to fit accurate 
models [5, 20]. On each data fold, five replicates of model 
training were performed which we deemed to be a minimal 
requirement to represent variability induced by random ini-
tialization of model parameters. We chose to run a larger 
number of training replicates over data folds rather than 
within a single data fold (i.e. 20 vs. 5) as we assumed that 
the specific training data had a larger effect on parameter 
variability compared to random initialization following pre-
vious findings [21].

A multi-branch network based architecture of the DCM 
[21] was fit to each training fold of the simulated data set. 
In a multi-branch network, covariates are linked to specific 
ODE parameters such that each covariate effect is learnt in 
isolation. This contrasts standard fully-connected networks 
where all covariates are linked to all ODE parameters, poten-
tially making the model susceptible to learning spurious 
covariate effects. In addition, the approach enables the direct 
visualization of learned functions for each of the covariates, 
making the model inherently interpretable without the need 
for post-hoc ML explanation methods. Subject weight and 
VWF:Ag were used as covariates. Global parameters were 
estimated for Q and V2. In the multi-branch network, weight 
was connected to CL and V1, and VWF:Ag was connected 
to CL. The same model was optimized using each of the 
objective functions. For each training replicate, random ini-
tial parameters were drawn from initial distributions. More 
information on model architecture and initial parameter set-
tings can be found in supplementary data 2.

Again, covariance matrices M were decomposed in 
marginal standard deviations and correlation matrices. All 
variance estimates were constrained to be positive using the 
softplus function. Models were compared based on the root 
mean squared error (RMSE) of typical predictions, accuracy 
of the estimated population parameters (represented by the 
KL divergence of Ω and mean absolute error (MAE) of σ), 
and the similarity of the learned functions with respect to 
the true covariate effects. Models were fit based on the MSE 
(no estimation of population parameters), FO, FOCE, and VI 
objective functions. When using the VI objective, random 
effect posteriors were approximated using full-rank multi-
variate normal distributions. The expectation in the ELBO 
was approximated using Monte Carlo simulation, taking 
three random samples and using the reparametrization trick 
[8] to generate samples from q. For the models trained using 

FOCE, MAP estimates of the random effects were obtained 
by minimization of the negative joint likelihood for each 
subject using the BFGS method at the start of each epoch 
of training. Estimates were constrained between [-3, 3] to 
improve stability during optimization.

Models were trained for 2000 epochs and parameters 
were saved every 25 epochs to determine model conver-
gence and stability during training. Most models converged 
within 250 – 500 epochs, so additional training iterations 
allowed insights into parameter stability after convergence 
and risks of overfitting when overextending training time. 
The ADAM optimizer using a learning rate of 0.1 or 0.01 
was used depending on training stability. Results at the end 
of optimization were compared based on the mean of saved 
parameter estimates from the last 500 epochs of training. 
Uncertainty estimates over model parameters were obtained 
by taking the standard deviation of final parameter esti-
mates for each of the training replicates.An overview of the 
approach is shown in Fig. 1.

First, a data set was simulated containing 500 virtual 
subjects based on a previously published generative model 
p(X). The data set was divided in 20 random data subsets 
with replacement to create the training (n = 60) and testing 
(n ≈ 440) data sets. On each data fold, models were fit using 
based on the different methods (FO, FOCE, and VI). In the 
FOCE method, a Gaussian approximation q̃ of the random 
effect posterior p(Z|y) centered at its maximum a posteriori 
estimate (white circle) is obtained. In the FO method, the 
mode is fixed at zero, resulting in lower accuracy due to a 
potential mismatch with the true posterior. In VI, the diver-
gence between a variational approximation q(Z) and the true 
posterior is minimized. After fitting the models, the methods 
were compared based on the accuracy of parameter esti-
mates, their stability during training, and the similarity of 
learned covariate effects to true effects.

Evaluation on real world data

The performance of the algorithms was also evaluated on 
two real world data sets of haemophilia A patients receiv-
ing SHL FVIII concentrates during prophylaxis (data set 
one) and following surgery (data set two). The data origi-
nates from the OPTI-CLOT clinical trial [20], were FVIII 
consumption was compared between standard weight-
based dosing regiments and PK-guided dosing in mod-
erate and severe haemophilia A patients undergoing sur-
gery. The first data set contains a total of 69 subjects who 
received a PK profile following a 25–50 IU/kg test dose of 
one of five SHL FVIII concentrates. Three FVIII measure-
ments were collected roughly 4, 24, and 48 h after admin-
istration. Available covariates were haemophilia severity, 
body weight, height, age, and VWF:Ag levels. A large 
proportion of VWF:Ag levels were missing (65.2%), with 
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some subjects missing body weight or height data (1.4% 
and 4.3%, respectively). Missing values were imputed 
based on the mode of prior distributions produced by the 
generative model (i.e. the same model used for generation 
of the synthetic data) [19].

The second data set contained data on 66 subjects from 
data set one who underwent a minor or moderate risk surgi-
cal procedure within 12 months after their PK assessment. 
FVIII levels were measured before and after surgery and 
FVIII peak and trough levels were collected during fol-
low-up. Compared to the first data set, follow-up time was 
longer (median of 144 vs 44 h) and subjects received a more 
complex combination of bolus doses and continuous infu-
sions. Available covariates were haemophilia severity, body 
weight, height, VWF:Ag and VWF activity (VWF:act) lev-
els, pre-assessed surgical risk scores, blood loss, and NaCL 
administration during surgery. In this data set, most subjects 
had multiple VWF measurements. Missing VWF:Ag val-
ues were imputed based on the mode of the prior distri-
butions from the generative model multiplied by a factor 
of 1.3 (VWF:Ag levels are higher following surgery [22]). 
This factor was calculated from the mean difference between 
imputed VWF levels in data set one and average VWF levels 
per subject in data set two. The mean VWF:Ag value was 
used for each individual.

We fitted a multi-branch DCM with either an additive or 
combined residual error model to both data sets. Subject CL 
and V1 was predicted based on fat-free mass (FFM) calculated 
from body weight, BMI, and age using Al Sallami’s equation 
[23], with an additional effect of VWF:Ag on CL. Random 
effects were estimated for CL and V1 and global parameters 
were estimated for Q and V2. These choices match the results 

from a recent study on the PK of FVIII [19]. The goal of our 
analysis was to compare results from the different algorithms 
rather than to produce optimal models for these two data sets. 
For this reason, no additional covariate selection was per-
formed. Models were trained until convergence (roughly 1000 
epochs for MSE, FO, and VI; 2000 for FOCE) and param-
eters were saved every 25 epochs. Mean parameters from the 
last 250 epochs were presented. The ADAM optimizer with 
a learning rate of 0.1 was used. A larger number of epochs 
(2000 instead of 1000) were required for the FOCE model to 
converge when using a lower learning rate (0.01 instead of 
0.1). Models were again compared based on the accuracy of 
typical predictions, final parameter estimates and their stability 
during training, and the learned functions.

Model code

Model code and the simulated data set are available at https://​
github.​com/​Janss​ena/​ME-​DCM.​jl.

Results

Accuracy of variational approximations compared 
to MCMC

First, we compared the accuracy of the variational poste-
rior approximations obtained using VI to those obtained 
from MCMC. In Fig. 2, we can see that applying the path 
derivative gradient estimator results in accurate poste-
riors approximations and low variability across repli-
cates compared to the standard estimator. Results for the 

Fig. 1   Comparison of the different methods in the simulation study

https://github.com/Janssena/ME-DCM.jl
https://github.com/Janssena/ME-DCM.jl
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two scenarios (with and without estimation of Ω and Σ 
posteriors) are summarized in supplementary Table 1. 
Approximate posteriors were most similar (represented by 
the Wasserstein distance) to the MCMC posteriors when 
using the path derivative gradient estimator. In both sce-
narios, variational posteriors of the individual random 
effects were highly accurate (see supplementary Fig. 1). 
Contrastingly, posteriors for the population parameters 
were less accurate as variational posteriors tended to 
underestimate the variance of the MCMC posteriors. We 
focus the remainder of the manuscript on results obtained 
using the path derivative estimator.

95% confidence regions of the posterior produced by 
MCMC (dashed lines) and VI (coloured ellipses) are 
shown for a single subject across 20 replicates of model 
training. Variational approximations when using the 
standard VI algorithm (left figure) and the path derivative 
estimator (right figure) are shown. The path-derivative 
estimator results in highly accurate posterior approxima-
tions compared to the standard VI objective.

Comparison of VI to first‑order objectives

Next, we compare the performance of the different objec-
tive functions on the simulated data. We found that models 
fit using the FOCE objective function behaved erratically 
during optimization. Several models failed optimization 
(non-positive definite Ω) which seemed to be related to the 
specific formulation of the objective function used (supple-
mentary Fig. 2). A reduction of the learning rate (from 0.1 to 
0,01) also improved stability of models fit using FOCE (data 
not shown). In the remainder of the manuscript we thus show 
results from the FOCE formulation based on Eq. s10 using 
a learning rate of 0.01 (supplementary data 1).

In Fig. 3, we display the objective function value, log KL 
divergence of Ω, and residual error estimate during training 
for the FO, FOCE (Eq. s10 + reduced learning rate), and VI 
objectives. We notice that the FO and VI objectives quickly 
converge to accurate estimates of the population parame-
ters. These models were not affected by an over-extension 
of training time, as judged by the stability of parameter 
estimates during the final 1500 epochs. In contrast, large 
fluctuations in the KL divergence of Ω are observed when 
using the FOCE objective. These fluctuations are not always 
reflected by the objective function value, making it diffi-
cult to determine actual model convergence. Looking at the 
individual elements of the Ω matrix (i.e. marginal standard 
deviations S and correlation matrix C), we notice that esti-
mates obtained using FOCE generally underestimated the 
variances (supplementary Fig. 2).

Objective function value (top row), log KL divergence of Ω 
(middle row), and the residual error estimate (bottom row) are 
shown for the models fit using the FO, FOCE, and VI method. 
Solid lines indicate median value across replicates along with 
95% confidence intervals. Dashed line indicates the true value 
of the additive error (sigma). Crosses indicate models that failed 
optimization. Models fit using the FOCE objective present 
higher bias of estimated and lower stability during training.

The results at the end of optimization for the MSE, FO, 
FOCE, and VI objectives are summarized in Table 1. All 
methods resulted in similar median root mean squared error 
of typical predictions. Results for the FO and VI objectives 
were highly similar, with low error of population parameter 
predictions. Models fit using the FOCE objective displayed 
biased parameter estimates as well as high variability between 
replicates. We can see that models fit using VI completed 
training slightly faster than models fit using FO (median 
run time of 14.7 vs. 16.2 min), with FOCE models taking 

Fig. 2   Accuracy of variational 
approximations of the random 
effect posterior obtained trough 
MCMC
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significantly longer (37.7 min). The computational burden of 
VI can potentially be further reduced close to the training time 
of MSE-based models by decreasing the number of Monte 
Carlo samples to 1 (median run time of 5.2 min) without loss 
of parameter accuracy (see supplementary Table 2).

Results for the models at the end of convergence are 
shown. Parameter estimates obtained from the FOCE objec-
tive function presented higher error and variability between 
training replicates.

Finally, we investigate the learned functions at the end of 
optimization for each of the models (supplementary Fig. 4). 
For all objectives, median covariate effects were very similar 
to the ground truth functions used in the simulation. Interest-
ingly, we notice a low degree of bias of the learned covariate 
effects when using the FOCE objective, even though the 
population parameters were inaccurate. Compared to the 

mixed-effects models, use of the MSE objective seemed 
to potentially result in a higher degree of variance in the 
learned effects between model replicates.

Comparison on real world data

Next, we evaluated the performance of the different algorithms 
on two real-world data sets. Patient characteristics for both data 
sets are shown in Table 2. Models fit using a combined error 
model depicted at least a 20 point decrease in objective func-
tion value for all methods. In Table 3, we show the final param-
eter estimates for the models with combined error. Models fit 
using FO or VI resulted in similar median parameters estimates 
after convergence. However, parameter estimates in some of 
the replicates of the FO model were less stable, most notably 
with respect to ω1 and the proportional error estimate (see 

Fig. 3   Objective function value 
and parameter accuracy during 
training on the simulated data

Table 1   Accuracy of model parameters after convergence for the simulated data set

SD standard deviation, RMSE root mean squared error, KL Kullback–Leibler, MAE mean absolute error

Method Run time 
(minutes; 
median ± SD)

RMSE
(IU/dL; median ± SD)

KL divergence of 
Ω (median ± SD)

MAE of ω1 ± SD MAE of ω2 ± SD MAE of additive 
error ± SD (IU/dL)

MSE 3.2 ± 0.73 6.34 ± 0.37 - - - -
FO 16.2 ± 6.5 5.86 ± 0.25 0.009 ± 0.01 0.011 ± 0.01 0.0087 ± 0.001 0.47 ± 0.12
FOCE (Eq. s10) 37.7 ± 7.5 5.75 ± 0.36 1.0 ± 313 0.11 ± 0.05 0.046 ± 0.03 0.92 ± 0.60
VI 14.7 ± 2.6 5.80 ± 0.59 0.011 ± 0.005 0.013 ± 0.008 0.0086 ± 0.002 0.23 ± 0.03
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supplementary Fig. 5). Parameter estimates obtained from the 
FOCE method were again different from the other algorithms. 
Both the ω2 and additive error estimates were notably higher 
in both data sets. Again, the FOCE objective function value 
was a poor indicator of model convergence, with parameters 
still changing after apparent convergence (see supplementary 
Fig. 5). In contrast, models fit using VI quickly converged and 
parameter estimates were stable.

Patient characteristics and missing data are shown for 
data set one and two. A point to note are the differences 
in the amount of missing data between the two clinical 
settings. Most prominently, VWF:Ag levels were missing 
for most (65%) subjects in data set one.

Coefficient of variation was calculated using the follow-
ing formula: CV(%) =

√
exp

(
�2

)
− 1 ⋅ 100% . Compared 

to the other methods, the FOCE objective results in diver-
gent parameter estimates. Higher RMSE in data set two is 
indicative of the higher inter-individual variability in 
FVIII levels observed during surgical procedures.

Visualization of covariate effects can help to provide 
insights in the covariate effects learned by the models, as 
well as regions of higher uncertainty due to data sparsity 
in parts of the covariate space (see Fig. 4). Learned func-
tions in the perioperative setting (data set two) were similar 
to those learned based on the PK profiles (see Fig. 4 and 
supplementary Fig. 6). Lower uncertainty over the learned 
functions was observed when using FOCE, but this result 
could be replicated for the other objectives by lowering the 
learning rate (see supplementary Fig. 7).

Covariate effects for models fit using the MSE (left col-
umn), FO (centre left column), FOCE (centre right column), 

Table 2   Patient characteristics for the two real-world data sets

kg kilogram, cm centimeter, FVIII blood clotting factor VIII, aPTT activated partial thromboplastin time, s seconds, PT Prothrombin time, VWF 
von Willebrand factor, NA not applicable

Covariate Data set one: PK profiles (n = 69) Data set two: following surgery (n = 66)

Number (%-age)
or mean [range]

Number of entries with 
missing values (%)

Number (%-age)
or mean [range]

Number of entries 
with missing values 
(%)

Body weight (kg) 86.0 [50.4—134] 1 (1.4%) 85.7 [50.4—134] 0 (0%)
Height (cm) 179 [148—198] 3 (4.3%) 178 [148—198] 0 (0%)
Age (years) 47.6 [12.1—76.9] 0 (0%) 47.6 [12.4—76.9] 0 (0%)
Blood group 0 (0%) 0 (0%)
- A 19 (28%) 18 (27%)
- B 3 (4.3%) 3 (4.5%)
- AB 5 (7.2%) 5 (7.5%)
- O 42 (61%) 40 (61%)
Pre-assessed surgical risk NA 0 (0%)
- Low NA 35 (53%)
- Medium NA 31 (47%)
Haemophilia severity 0 (0%) 0 (0%)
- Moderate 22 (32%) 22 (33%)
- Severe 47 (68%) 44 (67%)
Expected blood loss NA 0 (0%)
- Mild NA 42 (64%)
- Moderate NA 24 (36%)
Blood loss during surgery (mL) NA NA 227 [0—1200] 21 (32%)
Brand of FVIII concentrate 0 (0%) 0 (0%)
- Octocog alfa (Kogenate©) 18 (26%) 18 (27%)
- Octocog alfa (Advate©) 22 (32%) 21 (32%)
- Moroctocog alfa (ReFacto AF©) 4 (5.8%) 4 (6.1%)
- Plasma-derived FVIII Concentrate 

(Aafact©)
3 (4.3%) 3 (4.5%)

- Turoctocog alfa (NovoEight©) 22 (32%) 20 (30%)
VWF:Ag (%) 113 [61—225] 45 (65.2%) 131 [0.43—384] 9 (13.6%)
VWF:act (%) 106 [58—185] 45 (65.2%) 127 [32—396] 9 (13.6%)
FVIII measurements per patient 3.26 [3–10] - 8.61 [2–21] -
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and VI (right column) are shown. Learned functions are 
shown for the effect of fat-free mass on clearance (top row), 
fat-free mass on volume of distribution (middle row) and 
von Willebrand factor antigen levels on clearance (bottom 
row) at the end of training on data set one. Median covariate 
effect (solid line) along with 95% confidence intervals are 
shown. Grey histograms represent the corresponding covari-
ate distributions.

Discussion

In this work, we investigated the performance of classical 
first-order approximations as well as ML-based variational 
methods for estimating mixed-effects in DCMs. Results from 
our simulation experiment suggest that both the FO and VI 
objectives reliably converged to accurate solutions, whereas 
the FOCE objective function resulted in biased estimates and 
high variability amongst training replicates. These results 
were replicated in two real-world data sets, where we again 
observed divergent results when using the FOCE objective. 
Here, VI resulted in the most reliable results as some models 
fit using FO depicted lower parameter stability during train-
ing. Learned covariate effects for all models could be visu-
alized by using the multi-branch architecture of the DCM. 
This enables model interpretation and is useful for critiquing 
the model during development.

Even though the FOCE objective function is widely 
regarded to be more accurate than the FO method, our 
results indicate that this is not always the case. When the 
underlying model is highly flexible and is trained using gra-
dient descent, as is the case when using neural networks, 
the FOCE algorithm seemed to result in poor convergence 
behaviour. Although a different formulation of the objective 

function and lowering of the learning rate slightly improved 
results, optimization still was not reliable. Population param-
eter estimates were highly variable during training, even 
after apparent convergence based on the stabilization of 
the objective function value. We hypothesize that frequent 
changes to the loss landscape affect the stability of optimi-
zation when using gradient descent. Since the fixed effects 
model initially has low accuracy, early η estimates shrink to 
the prior mean with relatively high posterior variance. As 
a result, the prior variances (Ω) might have a tendency to 
shrink to zero. After a few iterations, the accuracy of typi-
cal PK parameter improves, resulting in jumps in the esti-
mates of η away from zero and potentially large changes to 
the loss landscape. Methods such as gradient descent might 
perform poorly in such settings, getting stuck in poor local 
optima and frequently changing the direction of gradients 
in response to changes to the loss landscape. For both the 
FO objective and VI such changes do not occur, since the 
random effects are either fixed during training (as in FO) or 
part of the parameter space (as in VI). Additional research 
is needed to investigate why the FOCE objective fails in 
this setting.

As an alternative to the FOCE objective, we suggest VI 
for the concurrent optimization of fixed effect parameters 
and subject-specific random effect posteriors. We show 
that variational posteriors were very accurate when using 
the path derivative gradient estimator, which is simple to 
implement. Most probabilistic programming languages 
such as Turing.jl or Pyro provide functionality for fast 
implementation of VI [24, 25]. Results from our experi-
ments indicate fast and stable convergence to an accurate 
set of parameter estimates. Additional benefits of VI are 
improved computational speed compared to FOCE (even 
outperforming FO for one of our data sets) as well as it 

Table 3   Accuracy of model parameters on real world data sets

SD standard deviation, RMSE root mean squared error, CV coefficient of variation
a  = convergence after 2000 epochs, b = convergence after 1250 epochs,

Method Run time 
(minutes; 
median ± SD)

RMSE
(IU/dL; median ± SD)

Median ω1 
(%CV) ± SD

Median ω2 
(%CV) ± SD

Median addi-
tive error (IU/
dL) ± SD

Median propor-
tional error ± SD

Data set one (prophylactic setting)
MSE 2.1 ± 0.16 14.1 ± 0.24 - - - -
FO 9.1 ± 2.2 14.3 ± 0.77 0.289 (29.5) ± 0.044 0.127 (12.8) ± 0.020 3.09 ± 0.43 0.105 ± 0.013
FOCE (Eq. s10) 54.2 ± 14a 19.0 ± 4.3 0.240 (24.4) ± 0.019 0.465 (49.1) ± 0.052 3.70 ± 0.05 0.108 ± 0.004
VI 8.0 ± 0.51 14.3 ± 0.69 0.282 (28.8) ± 0.012 0.160 (16.1) ± 0.004 2.89 ± 0.077 0.094 ± 0.017
Data set two (perioperative setting)
MSE 2.3 ± 0.17 27.6 ± 1.13 - - - -
FO 19.5 ± 3.8 32.0 ± 1.66 0.300 (30.7) ± 0.012 0.211 (21.3) ± 0.018 2.89 ± 1.63 0.151 ± 0.012
FOCE (Eq. s10) 113 ± 20a 31.5 ± 1.66 0.321 (32.9) ± 0.014 0.326 (33.5) ± 0.020 4.53 ± 0.37 0.152 ± 0.005
VI 14.6 ± 1.2b 30.0 ± 1.17 0.316 (32.4) ± 0.005 0.179 (18.0) ± 0.001 2.46 ± 0.024 0.165 ± 0.001
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being part of an active field of research, potentially bring-
ing more improvements in terms of speed and accuracy 
[26]. Furthermore, the complexity of the variational 
approximation can be controlled, making the method suit-
able for problems where the random effect posterior is 
multi-modal or better described by a more complex dis-
tribution by for example using Gaussian mixture models 
or normalizing flows based variational posteriors, respec-
tively [18, 27]).

VI is conceptually very similar to (stochastic) expecta-
tion maximization (EM) procedures [28, 29]. In Stochastic 
approximation EM (SAEM), samples from the random effect 
posterior are taken (for example using MCMC) and a sto-
chastic averaging procedure with adaptive step sizes is per-
formed to approximate the integral in Eq. 3 [29]. This is fol-
lowed by maximization of the fixed-effects parameters based 
on the obtained approximation. In VI, samples are instead 
taken from a Variational distribution whose parameters are 
directly optimized along with the fixed-effects parameters. A 
benefit of the latter approach is that we obtain a closed-form 

expression for the random effect posterior and that no adap-
tive step size procedures are required. It might be of interest 
to compare the performance of these two approaches to see 
if there are notable differences.

Even though the FO method resulted in reasonable 
median parameter estimates in our experiments, the use 
of VI might be preferred. In more complex models, FO is 
likely to result in less accurate parameter estimates. We 
already found that some training replicates on the second 
real-world data set showed signs of lower stability and 
poor accuracy. It has been shown that the FO method can 
often produce biased parameter estimates with incorrect 
uncertainty estimates in certain settings [30]. Further-
more, it is well known that the FO method is not suited 
for problems with high levels of inter-individual variabil-
ity [16]. Especially in the context of pharmacodynamic 
(PD) models, this variability is expected to be relatively 
large (often > 100% coefficient of variation) and so the 
FO method might be unsuited in most cases. In con-
trast, accuracy of VI depends on the chosen variational 

Fig. 4   Learned covariate effects from models fit on real-world data set one
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approximation (Gaussian approximations are often suf-
ficient) and the number of Monte Carlo samples, both 
of which can be adapted based on the complexity of the 
problem at hand.

There were also some limitations to this work. First, our 
results indicated that variational approximations estimated 
over population parameters depicted an underestimation of 
posterior variance compared to MCMC. Unfortunately, esti-
mation of the population parameter posteriors using MCMC 
is computationally intensive as it still requires iteration over 
all subjects in the data set. This might only be feasible in 
small data sets (e.g. ≤ 30 subjects) and when using relatively 
simple models (simple ODEs, small neural network, and 
small number of random effect parameters). To estimate 
uncertainty over model parameters we might need to resort 
to deterministic methods to estimate standard errors. Simi-
lar to the approach used by NLME models, reasonable esti-
mates can be obtained based on post-hoc Gaussian approxi-
mations based on the Fisher information matrix. Second, 
we use deterministic methods to optimize neural network 
weights. Since models could be prone to overfitting, we 
might want to marginalize over predictions from many 
model replicates to reduce spurious effects and to obtain 
estimates of functional uncertainty. Ideally, uncertainty 
over covariate effects can be estimated in a single model 
replicate. Alternatively, the use of priors over the desired 
function space in this context can be of interest in order to 
regularize function complexity. It would be of interest to 
investigate how these improvements can be implemented in 
practice. Finally, we did not perform an exhaustive evalua-
tion of the performance of the objective functions in many 
different data sets, different degrees model complexity, or 
for very different initial parameter and prior distributions 
settings. More research might be desirable to evaluate the 
performance of VI in multiple practical settings.

Conclusion

In summary, our work introduces mixed-effects estimation in 
the DCM framework. Highly accurate posterior approxima-
tions for the random effects could be obtained using VI, and 
estimated population parameters were accurate and stable 
during training. We found that the FOCE method did not 
provide reliable results and might not be suited for this pur-
pose. In our experiments, VI was the most reliable approach 
for the estimation of mixed effects and might perform better 
in more complex models compared to FO. Mixed-effects 
models enable the individualization of predictions based on 
clinical measurements, enhancing the likelihood of the clini-
cal adoption of these algorithms. This extension to the DCM 
framework further promotes the use of ML-based methods 
as a viable alternative to classical NLME models.
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