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Abstract
The black box nature of deep neural networks (DNNs) makes researchers and clinicians hesitant to rely on their findings. 
Saliency maps can enhance DNN explainability by suggesting the anatomic localization of relevant brain features. This 
study compares seven popular attribution-based saliency approaches to assign neuroanatomic interpretability to DNNs that 
estimate biological brain age (BA) from magnetic resonance imaging (MRI). Cognitively normal (CN) adults (N = 13,394, 
5,900 males; mean age: 65.82 ± 8.89 years) are included for DNN training, testing, validation, and saliency map generation 
to estimate BA. To study saliency robustness to the presence of anatomic deviations from normality, saliency maps are also 
generated for adults with mild traumatic brain injury (mTBI, N = 214, 135 males; mean age: 55.3 ± 9.9 years). We assess 
saliency methods’ capacities to capture known anatomic features of brain aging and compare them to a surrogate ground truth 
whose anatomic saliency is known a priori. Anatomic aging features are identified most reliably by the integrated gradients 
method, which outperforms all others through its ability to localize relevant anatomic features. Gradient Shapley additive 
explanations, input × gradient, and masked gradient perform less consistently but still highlight ubiquitous neuroanatomic 
features of aging (ventricle dilation, hippocampal atrophy, sulcal widening). Saliency methods involving gradient saliency, 
guided backpropagation, and guided gradient-weight class attribution mapping localize saliency outside the brain, which is 
undesirable. Our research suggests the relative tradeoffs of saliency methods to interpret DNN findings during BA estima-
tion in typical aging and after mTBI.
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Introduction and Background

Deep neural networks (DNNs) can assist clinical decision-
making (Becker, 2019; Wang et al., 2024) but often oper-
ate as black boxes that offer little insight into underlying 

processes (Durán & Jongsma, 2021). To address this con-
cern, interpretable DNNs have been developed to facili-
tate deeper understanding of DNN inferences and predic-
tions (Vellido, 2020). This allows researchers and clinical 
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professionals to improve patient care by leveraging DNN-
assisted diagnostics and treatment strategies (Petch et al., 
2022).

Biological brain age (BA) is the estimated age of an indi-
vidual’s brain according to its structural characteristics, as 
opposed to that individual’s chronological age (CA) (Arleo 
et al., 2024; Irimia et al., 2015; Yin et al., 2023). BA is often 
estimated using DNNs that inspect the T1-weighted (T1w) 
magnetic resonance images (MRIs) of cognitively normal 
(CN) individuals to identify neuroanatomic features trending 
with CA. In the absence of disease or injury, one’s CA and 
BA are expected to be about equal (Beheshti et al., 2019). 
A BA much older than one’s CA may reflect a history of 
abnormal/accelerated aging and/or higher risk for cogni-
tive decline or neurodegenerative diseases (Wrigglesworth 
et al., 2021). For example, adults with mild cognitive impair-
ment (MCI) or Alzheimer’s disease (AD) exhibit larger gaps 
between BA and CA than CN adults (Wittens et al., 2024). 
Similarly, adults exhibit older BAs after mild traumatic 
brain injury (mTBI) (Amgalan et al., 2022; Cole et al., 2015; 
Hacker et al., 2024). For these reasons, BA estimation can 
provide insights into clinical risk that are challenging for 
clinicians to obtain otherwise (Cole et al., 2019).

Three-dimensional convolutional neural networks 
(3D-CNNs) can estimate BAs for CN participants 
within ± 2.5 years of their CAs (Yin et  al., 2023). One 
drawback of BA, however, is that it condenses informa-
tion on aging into a single numerical measure. To trust 
BA estimates, clinicians need to understand how a DNN 
makes its predictions and on what neuroanatomic features 
it relies (Massett et al., 2023; Tonekaboni et al., 2019). One 
strategy to provide DNN interpretability involves saliency 
mapping (Yan et al., 2021), which specifies each input MRI 
voxel’s importance or contribution towards DNN BA esti-
mation (Keles et al., 2023). This pathway to interpretability 
can confirm that, during BA estimation, DNNs harness ana-
tomic brain features known to change with age. In addition, 
clinicians can monitor the maps of mTBI patients to moni-
tor recovery over time. Because DNNs can capture feature 
abnormalities difficult for clinicians to identify, saliency 
maps can also be used to discover previously unknown neu-
roanatomic features that contribute to BA estimation.

The use of saliency maps to classify AD and related 
dementias (ADRD) is well documented (Mahmud et al., 
2024; Oh et al., 2019). However, the emergence of new sali-
ency methods necessitates the investigation of their relative 
merits. In this study, we assess seven commonly used sali-
ency methods to interpret 3D-CNN findings for BA estima-
tion in CN subjects and in patients with mTBI. The latter 
are included to clarify whether saliency is robust to input 
MRI deviations from neuroanatomic normality, as induced 
by blunt trauma and related processes. Agreement among 
saliency methods may also suggest consistency in saliency 
mapping as a form of visual and quantitative interpretabil-
ity for BA estimation. These methods differ in whether/how 
they identify the anatomic regions or MRI intensity features 
most indicative of BA. We compare the seven methods qual-
itatively and quantitatively relative to established anatomic 
markers of brain aging. Notably, we perturb anatomic MRI 
features in a CA-dependent manner, synthesize surrogate 
ground truths, and use similarity metrics to quantify how 
well each saliency method identifies such age-dependent 
MRI perturbations. This research elucidates the relative 
(dis)advantages of saliency methods to identify anatomic 
features of brain aging, whether in the presence or absence 
of trauma-related deviations from normal anatomy.

Materials and Methods

Data Acquisition

T1w MRIs (N = 13,608) were sourced from four repositories: 
370 from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI), 3,027 from the National Alzheimer’s Coordinat-
ing Center (NACC), 9,997 from the UK Biobank (UKBB), 
and 214 from the Federal Interagency Traumatic Brain 
Injury Research Informatics System (FITBIR) Transform-
ing Research and Clinical Knowledge in Traumatic Brain 
Injury (TRACK-TBI). Participant demographics are listed 
in Table 1. Inclusion and exclusion criteria were designed 
for comparison of saliency maps between CN adults and 
adults with mTBI. For ADNI participants, inclusion criteria 
included a lack of memory complaints, a clinical demen-
tia rating (CDR) score equal to 0, a lack of significant 

Table 1   Participant 
demographics according to 
repository. Sample size (N), 
minimum (min), maximum 
(max), mean (μ), standard 
deviation (σ) and the male-to-
female (M:F) ratio of participant 
CAs are shown

FreeSurfer ver-
sion

Respiratory Status N Min Max µ σ M:F 6.0.0 7.1.1

ADNI CN 370 55 89 75.8 5.1 1:1.08 250 110
NACC​ CN 3,027 18 100 69.3 10.7 1:1.99 0 3,027
UKBB CN 9,997 46 82 64.4 7.8 1:1.11 9,997 0
FITBIR TBI 214 40 85 55.3 9.9 1:0.59 0 214
ALL 13,608 18 100 65.82 8.89 1:1.27 10,247 3,241
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impairment in cognitive functions or activities of daily liv-
ing, and a score of at least 9 (out of 25) on the Logical Mem-
ory II subscale of the Wechsler Memory Scale-Revised. The 
selected NACC participants had no physician diagnosis of 
dementia or cognitive impairment based on personal history, 
psychosocial function, and neuropsychological performance. 
Cognitive assessments for NACC participants were per-
formed by interdisciplinary consensus teams. TRACK-TBI 
subjects from presented within 24 h of injury with clinical 
indications necessitating a brain scan under the American 
College of Emergency Medicine/Center for Disease Control 
and Prevention Criteria (Jagoda et al., 2008).

Data were collected with approval from respective insti-
tutional review boards. The ADNI was launched in 2003 
as a public–private partnership led by principal investigator 
Michael W. Weiner, MD. Its primary goal is to test whether 
serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clini-
cal and neuropsychological assessment can be combined to 
measure the progression of MCI and early AD. The NACC 
is responsible for maintaining patient information from 37 
AD resource centers funded by the National Institute on 
Aging (Beekly et al., 2004, 2007). FITBIR is a collaborative 
biomedical informatics system created by the Department of 
Defense and the National Institutes of Health to provide a 
national resource to support and accelerate research in TBI. 
TRACK-TBI is a prospective, multicenter observational 
study conducted at 18 U.S. trauma centers.

Data Preprocessing

T1w MRI acquisition protocols vary across the ADNI (Jack 
et al., 2000), NACC (Besser et al., 2018), UKBB (Alfaro-
Almagro et al., 2018) and FITBIR TRACK-TBI (https://​
track​tbi.​ucsf.​edu). For NACC, T1-w MRI acquisition proto-
cols vary across the 20 ADRCs included in this study. For 
TRACK-TBI, T1-w MRIs were acquired in three dimensions 
with a multi-echo magnetization-prepared rapid gradient-
echo sequence. Scans were acquired on several approved 
scanners and underwent quality control to ensure compli-
ance with necessary protocols for inclusion in the TRACK-
TBI Consortium. Quality control was also conducted 

through visual assessment both before and after processing 
using FreeSurfer (FS, versions 6.0.0 and 7.1.1, see Table 1) 
(Fischl, 2012). Standard FS preprocessing includes motion 
correction, removal of non-brain tissues, and intensity nor-
malization, but not segmentation. FS-processed scans are 
linearly registered to MNI atlas space to reduce transla-
tional and rotational variance between participants’ brain 
scans. To accommodate the hardware limitations of training 
3D-CNNs on NVIDIA A100 GPUs, the FS processed scans 
were down-sampled to 2 mm3 voxels from their original 
resolution of 1 mm3.

Convolutional Neural Networks

Three interpretable 3D-CNNs ( M
BA

 , M
ND

 , and M
D

 ) were 
designed with identical architectures but optimized by train-
ing the 3D-CNNs on different datasets. This ensures that 
saliency map differences between models are due to dif-
ferences in input MRIs and saliency methods, rather than 
model architectures. M

BA
 (BA for brain age, Section "Quali-

tative Assessment of ") utilized the MRIs of 13,394 CN 
individuals from ADNI, NACC, and UKBB (Table 1), all 
of whom were randomly split into non-overlapping train 
(80%), validation (10%), and test (10%) sets. Saliency maps 
of M

BA
 were generated for CN participants from the M

BA
 

test set and for mTBI patients from 214 TRACK-TBI indi-
viduals. M

ND
 (ND for non-dilated) utilized 3,027 CN NACC 

individuals (age range: 18–100 years), randomly split into 
non-overlapping training (80%) and validation (20%) sets. 
M

D
 (D for dilated) was trained and validated on the same set 

of subjects as M
ND

 . However, in each scan, we artificially 
dilated the lateral ventricles in proportion to each partici-
pant’s CA (Section "MRI Perturbation"). For M

ND
 and M

D
 , 

saliency maps were generated for an independent cohort of 
370 ADNI individuals aged 55 to 89. M

BA
 included the larg-

est training set, acquired from multiple sites (NACC, ADNI, 
UKBB) such that M

BA
 learns to identify features independent 

of acquisition parameters and generalizable across cohorts. 
This makes M

BA
 the most relevant model of the three for 

state-of-the-art BA estimation. M
ND

 and M
D
 were trained on 

unperturbed and perturbed MRIs of the same smaller set of 
participants, such that discrepancies in their saliency maps 

Fig. 1   3D-CNN architecture 
for all models. T1w MRI inputs 
are downsampled from a 2563 
matrix size to a 1283 matrix. 
The CNN output is estimated 
BA

https://tracktbi.ucsf.edu
https://tracktbi.ucsf.edu
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are a result of the perturbation process. For these reasons, 
we assess M

BA
 saliency maps qualitatively and the saliency 

maps of M
ND

 and M
D
 quantitatively.

The model architecture used for all 3D-CNNs is sum-
marized in Fig. 1. 3D-CNNs were designed and imple-
mented in Python 3.7.16 and PyTorch 1.13.1 on dual Intel 
Xeon Platinum 8358 central processing units (CPUs) with 
a 2.60 GHz clock speed. Model training and saliency map 
generation were accelerated using an NVIDIA A100 80 GB 
graphical processing unit (GPU) running CUDA 12.2. All 
3D-CNNs comprise four convolutional blocks with an ini-
tial input (MRI volume) whose voxel matrix size is 1283 
for each participant. These dimensions correspond to the 
participant’s down-sampled T1w skull-stripped brain output 
by FS in the brain.mgz file. The 3D-CNN concludes with 
two dense layers producing a single output (estimated BA). 
Each convolutional block consists of a 3D convolutional 
layer with a kernel size of 63 voxels, a batch normaliza-
tion layer, and a max-pooling layer with a kernel size of 23 
voxels. The second, third, and fourth convolutional blocks 
each have a dropout layer with a dropout factor of 0.2. Con-
volutional blocks have 16, 32, 64, and 128 filters, respec-
tively, each of size 63. The last convolutional block pools the 
information into a 1282 array, and the final two dense layers 
reduce this array’s size to 128 × 1, respectively. A Recti-
fied Linear Unit (ReLU) activation function is applied to all 
convolutional and dense layers, ensuring nonlinearity, and 
mitigating vanishing gradients. Models were trained using 
a mean absolute error (MAE) loss function and an Adam 
optimizer with a learning rate of 0.0001. Manual hyperpa-
rameter search included equally-spaced increases in learning 
rate from 1 × 10–1 to 1 × 10–5. The final learning rate was 
chosen to balance training time and model accuracy. Early 
stopping is implemented to terminate the training process 
after 20 epochs when no improvement in the validation loss 
is observed. A 3D-CNN model optimized for BA estimation 
(Yin et al., 2023) is available from https://​github.​com/​irimia-​
labor​atory/​USC_​BA_​estim​ator.

MRI Perturbation

A Matlab R2024a pipeline is used to preprocess the T1w 
MRIs in the training set of M

D
 . The lateral ventricles are 

isolated from FS segmentations. Each participant’s CA is 
used to calculate her/his dilation coefficient, which ranges 
from 0 to 1. This coefficient determines the proportion of 
ventricle-adjacent white matter voxels whose intensities are 
to be replaced by that of ventricles. Participants with CAs in 
the lowest 5th percentile of the CA distribution undergo no 
change in ventricular volume, whereas participants with CAs 
in the highest 95th percentile of the distribution undergo 
maximum dilation, where all adjacent white matter voxels 
have their intensities set to that of the ventricles. Remaining 

participants have dilation coefficients assigned in direct pro-
portion to their CA, so as to achieve a continuous extent 
of dilation coefficients appropriate for a regression-based 
model.

The lateral ventricles are dilated into adjacent white mat-
ter as follows. Each subject’s FS aparc.a2009s + aseg.mgz 
file was used to identify voxels in the input T1w volume 
corresponding to the lateral ventricles. Then, the outermost 
(edge) voxels of the ventricles were identified. Next, all 
voxels adjacent to an edge voxel were found. These adja-
cent voxels were split into two sets according to whether 
they corresponded to AWM or adjacent non-white matter 
(ANWM). Each subject’s dilation coefficient indicates the 
percentage of adjacent white matter voxels whose intensities 
are set to that of ventricle voxels. For example, a dilation 
coefficient of 0.8 leads to 80% of adjacent white matter vox-
els being randomly selected. These selected voxels’ intensi-
ties are set to the those of corresponding ventricle voxels, 
thereby simulating dilation of the ventricles into white mat-
ter. Voxels at the periphery (i.e., boundary or edge) of brain 
structures typically exhibit intensity distributions different 
from those of non-peripheric voxels. For this reason, periph-
eric voxels that were originally been peripheric have their 
mean intensity assigned from the intensity distribution of 
adjacent non-white matter voxels.

Saliency Methods

Saliency maps are generated using the open-source model 
interpretability library Captum, available in PyTorch 
(Kokhlikyan et al., 2020). We examine seven attribution-
based saliency methods, categorized into three groups: (1) 
gradient-based [Saliency (G), input × gradient (IXG), and 
masked gradient (MG)], (2) backpropagation-based [guided 
backpropagation (GB) and guided gradient-weighted class 
activation mapping (GradCAM) (GGC)], and (3) linear 
interpolation-based (integrated gradients (IG) and gradient 
SHapley Additive exPlanations (GSHAP)].

Gradient‑Based Methods

Saliency is the Captum library’s baseline method for map-
ping input MRI features to feature attributions. It uses gra-
dient based saliencies to provide a visual representation of 
output sensitivities to changes in the input (Simonyan et al., 
2014). IXG computes the product between each participant’s 
input MRI and the output of G (Shrikumar et al., 2017), 
thereby directing attribution attention exclusively to features 
within the brain. MG is a modified version of G where vox-
els outside the brain are set to zero to focus attribution upon 
brain features only. IXG and MG are similar in principle; 
however, differences in their masking procedures produce 

https://github.com/irimia-laboratory/USC_BA_estimator
https://github.com/irimia-laboratory/USC_BA_estimator
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unique results that distinguish the two. MG explicitly 
removes saliency values from voxels in non-anatomic areas 
outside the brain, while leaving saliencies for the (inside 
of) the brain unaltered. While IXG also removes saliencies 
outside the brain, its multiplication step modifies the origi-
nal output of G to also focus on higher intensity areas in the 
MRI input.

Backpropagation Methods

GB utilizes the same forward-propagation methods as G, 
but back-propagates only non-negative gradients (Sprin-
genberg et al., 2015). Guided GradCAM (GGC) leverages 
GB and GradCAM to produce refined, region-focused 
saliency maps. First, a coarse saliency map is generated 
using GradCAM by computing gradients with respect to 
the model’s final convolutional layer. These are used to 
weight the final prediction attributions. The second step 
takes advantage of GB to refine the regions produced by 
GradCAM (Selvaraju et al., 2020).

Linear Interpolation Methods

IG assigns an importance score to each input MRI voxel 
(Sundararajan et al., 2017). This process first generates a 
linear interpolation between a provided baseline MRI vol-
ume (usually a zero-valued tensor, as recommended by 
Captum) and the actual input MRI. The baseline provides a 
reference, relative to which one can measure feature impor-
tance. Gradients are then computed for the model at points 
along this linear interpolation. The integral of each gradi-
ent is approximated using Gauss–Legendre quadrature at 50 
points along the domain of interpolation, thereby reducing 
noise and balancing accuracy with computational efficiency. 
The approximated integral for each voxel then becomes its 
importance score. GSHAP is a variation of the original 
implementation of SHAP values, which typically provide 
a unified measure of feature importance (Lundberg & Lee, 
2017). In GSHAP, inputs are first perturbed with Gaussian 
noise five times to explore model behavior under slight input 
changes. A baseline is then selected randomly from the dis-
tribution of participants’ original MRIs, and a linear inter-
polation is drawn between the input and the baseline. Lastly, 
a gradient is computed with respect to a randomly selected 
point along the domain of the linear interpolation. The final 
SHAP values thus computed represent the expected value 
of gradients multiplied with the difference between inputs 
and baselines. In a broader sense, GSHAP can also be con-
sidered an approximation of IG through the expectations of 
gradients given various baselines.

Saliency Map Assessments

Because saliency units are arbitrary, absolute values of sali-
ency are normalized to convert saliency values into unitless 
saliency probability densities. This assists consistent and 
fair comparison between saliency methods. Hence forward, 
for convenience, these densities are referred to simply as 
saliencies.

Qualitative Assessment

Qualitatively, robust saliency methods are expected to high-
light and reproduce known neuroanatomic features of aging. 
Saliency methods highlighting MRI volume features outside 
the brain are not informative of cerebral atrophy or BA. The 
scope of this research is strictly to investigate saliency in the 
context of aging-related neuroanatomic brain features, rather 
than to quantify saliency dependence on variations in brain 
or skull shape. We compare saliency methods qualitatively 
according to location (spatial distribution relative to neuro-
anatomic landmarks), prominence (magnitude of saliency), 
and focality (spatial precision of saliency localization) of 
age-related neuroanatomical regions.

Quantitative Assessment

Ground truth maps are created by averaging, across all par-
ticipants, differences between perturbed and non-perturbed 
MRIs to highlight the synthetic enlargement of the lateral 
ventricles. We compare saliency maps to surrogate ground 
truth maps to quantify the extent to which each saliency 
method recovers the known anatomic features of aging. For 
example, studies have confirmed the useful role of the lateral 
ventricles in assisting classification of subjects according to 
their AD diagnostic status (Dartora et al., 2024; Levakov 
et al., 2020).

By comparing saliency maps to surrogate ground truth 
maps, we quantify the extent to which each saliency method 
recovers established anatomic features of aging. Similarity 
measures (Sections "Gradient-Based Methods" and "Back-
propagation Methods") quantify each saliency method’s 
ability to capture the synthetic ventricular enlargement 
resulting from MRI perturbations. High similarity scores 
between a saliency map and ground truth indicate superior 
capacity to capture aging-related features, as represented by 
the surrogate ground truth. M

ND
 saliency maps serve as a 

baseline and validation for M
D
 saliency maps.

Saliency maps are compared using five quantitative sim-
ilarity measures that can be categorized into two groups: 
image similarity measures [the Sorensen-Dice coefficient 
(DC) and normalized mutual information (NMI)] and sali-
ency similarity measures used in the MIT/Tuebingen Sali-
ency Benchmark [normalized scan path saliency (NSS), 
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Pearson’s correlation coefficient (CC), and similarity (SIM)] 
(Kummerer et al., 2018).

Image Similarity Measures

The DC measures similarity between a source and target 
image. It represents twice the intersection (area of overlap) 
between two images, divided by the union (total number 
of voxels) in both. The measure ranges from 0, indicating 
no overlap, to 1, indicating perfect overlap. NMI measures 
the predicted intensity in one image given the intensity of 
another. Scores range from 1 (perfectly uncorrelated) to 2 
(perfectly correlated).

Saliency Benchmark Measures

NSS compares saliency maps to ground truth fixation maps. 
Values are normalized to a mean and standard deviation 
of 0 and 1, respectively. Corresponding saliencies at each 
voxel in the fixation map are extracted to provide an aver-
age saliency attention to ground truth regions (Kummerer 
et al., 2018). This is similar to an average z-score, where 
larger NSS indicates better predictor fit. CC quantifies how 
well a saliency map predicts human/machine visual atten-
tion. Predicted and empirical saliency maps, as defined by 
subject matter experts, are normalized to have means of 0 
and standard deviations of 1. The CC is then computed by 
dividing the covariance of the two maps by the product of 
their standard deviations (Kummerer et al., 2018). Correla-
tions of -1, 0 and + 1, respectively, indicate perfect negative 
relationships, no relationships, and perfect positive rela-
tionships. Similarity (SIM) measures the degree of overlap 
between a predicted and ground truth saliency map. Maps 
are provided as normalized probability distributions, so no 
further normalization is done. Minima between correspond-
ing voxel pairs are summed, producing values ranging from 
0 (no overlap) to 1 (perfect similarity) (Kummerer et al., 
2018).

Results

Figures 2 and 3 display saliency maps (G, IXG, MG, GB, 
GGC, IG, GSHAP) for M

BA
 as generated for CN and mTBI 

participants, respectively, and overlaid on the MNI 152 
atlas. Figure 4 displays M

D
 saliency maps generated for CN 

participants. Supplementary Fig. 1 displays saliency maps 
for M

ND
 ; supplementary Figs. 2, 3, 4, and 5 depict saliency 

maps without the MNI 152 atlas overlay. Saliency maps 
highlight brain regions that contribute most significantly to 
BA estimates made by the 3D-CNN. The saliency at each 
voxel indicates the extent to which that voxel influences the 
model’s predictions.

Qualitative Assessment of M
BA

M
BA

 Achieves an MAE of 3.3 years on its test set of 1,339 
individuals from UKBB, ADNI, and NACC. M

BA
 saliency 

maps are displayed for CN participants (Fig. 2) and mTBI 
participants (Fig. 3) in axial cross sections, at MNI coor-
dinates with z-values of 48 mm, 32 mm, 16 mm, 0 mm, 
-16 mm, and -32 mm. Saliency maps of CN and mTBI par-
ticipants exhibit similar behaviors. Saliency maps generated 
using IG, GSHAP, IXG, and MG consistently highlight 
aging-related features, including ventricular enlargement, 
hippocampal atrophy, and cortical thinning. By contrast, G, 
GB, and GGC exhibit broad, diffuse saliency largely outside 
the brain, which diminishes their clinical relevance by fail-
ing to localize meaningful neuroanatomical structures. This 
distinction underscores the interpretive value of methods 
like IG and GSHAP, which are more aligned with estab-
lished markers of brain aging.

In IG, GSHAP, IXG, and MG, saliency is more promi-
nent in the left hemisphere than in the right hemisphere, 
especially in gray matter near the brain's surface (z = 48 mm, 
z = 32 mm). In IXG and IG, saliency is more prominent and 
focal around the ventricles (z = 16 mm), and less so along the 
longitudinal fissure (z = 40 mm, z = 32 mm). In contrast, MG 
and GSHAP saliency is more prominent inside the ventricles 
(z = 16 mm) and along the longitudinal fissure (z = 40 mm, 
z = 32 mm). In IG and GSHAP, saliency in the cerebellum 
and brainstem is highly prominent and focal. IXG and MG 
exhibit moderate focality in the thalamus and basal ganglia 
(z = 16 mm, z = 0 mm). These differences in spatial distribu-
tion and focality offer clinicians nuanced, interpretable visu-
alizations of how aging and trauma influence brain structure. 
IXG displays high focality in the frontal and parietal lobes 
(z = 48 mm). G, GB, and GGC perform similarly to each 
other, producing broad, diffuse saliency outside the brain 
but far less saliency in the brain. Saliency in the left half of 
the MRI volume is more prominent than in the right half, but 
still fails to capture any anatomic features inside the brain.

Quantitative assessment for M
ND

 and M
D

M
ND

 And M
D
 achieve MAEs of 4.87 years and 4.33 years, 

respectively, on an independent test set of 370 ADNI partici-
pants. Axial cross sections of M

D
 saliency maps are shown 

in Fig. 4. In M
D

 , saliency inside the brain is more promi-
nent, focal, and localized for known aging-related (peri)
ventricular features compared to M

ND
 saliency maps (Sup-

plementary Fig. 1). Quantitative measures of similarity were 
computed between each saliency map and the ground truth. 
Within each measure, we computed the percentage differ-
ence between each saliency method and the reference MG 
method used by others (Wang et al., 2023; Yin et al., 2023). 
Table 2 lists percentage differences of M

D
 saliency maps. 
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For the ground truth, similarity metrics indicate higher sali-
ency in ventricular regions for M

D
 , compared to M

ND
.

In Table 2 for M
D

 , NMI indicates negligible differ-
ences between saliency methods, thus providing little dif-
ferentiating ability when comparing saliency methods. 
IG offers substantial improvements in NSS (87.73%), 
CC (87.08%), and SIM (78.00%) over MG. Similarly, 
IXG offers moderate improvement in NSS (49.29%), CC 
(56.37%), and SIM (39.59%), but negligible differences 
in overlap according to the DC. GSHAP exhibits a slight 
decrease in performance from MG according to the DC 
(-5.61%), NSS (-2.13%), and CC (-10.16%), but performs 

similarly to SIM. G, GB, and GGC underperform sub-
stantially relative to MG in all metrics (typically over 
75% decrease in performance). Supplementary Table 1 
illustrates again, for M

ND
 , that IG offers the highest quan-

titative improvements over MG. For M
ND

 and M
D

 , this 
indicates that IG best captures the synthetic ventricular 
enlargement of the ground truth. Supplementary Table 2 
lists percentage differences in MG saliency (baseline) 
for M

D
 over M

ND
 , especially in NSS (293.68%) and CC 

(328.15%) indicating an increase in each metric from M
ND

 
to M

D
 across all saliency methods.

Fig. 2   Saliency probability maps (columns) averaged across all par-
ticipants in the M

BA
 test set of 1,339 participants from ADNI, NACC, 

and UKBB. Axial cross sections are overlaid on an MNI 152 atlas. 

Each row is for a unique MNI z-coordinate value in millimeters, as 
indicated in the leftmost column. The saliency of each voxel indicates 
the degree to which that voxel influences the model’s BA estimation
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Discussion

Our findings suggest that IXG, MG, IG, and GSHAP have 
strong ability to capture aging-related brain features, espe-
cially in the lateral ventricles. IG can be seen as providing 
the best quantitative and qualitative results in both our 
perturbed and non-perturbed models, with considerable 
improvements across almost all measures compared to the 
next best method. IXG, MG, and GSHAP share the next-
best results depending on the measures utilized, or qualita-
tive focuses desired. Our work also offers improvements, 
including more robust and validated results, over Wang 
et al.’s (2023) saliency map evaluation for AD classifica-
tion. Our research provides a setting for future assessments 

of saliency methods to interpret 3D-CNNs findings in neu-
roimaging tasks beyond BA estimation.

M
BA

Qualitative Analysis of CN Individuals using M
BA

Qualitatively, IG maps saliency of CN individuals in the 
most neuroanatomically insightful way compared to other 
methods. IG’s capacity to highlight age-related neuroana-
tomic features precisely indicates its strong potential to 
support clinical practice. IXG highlights similar features 
but with less prominence and focality. Similarly, GSHAP 
highlights aging-related neuroanatomic features in all the 
regions that MG does, but with higher prominence and 
focality.

Fig. 3   Saliency probability maps (columns) averaged across 214 
adults with mTBI from M

BA
 . Axial cross sections are overlaid on an 

MNI 152 atlas. Each row is for a unique MNI z-coordinate value in 

millimeters, as indicated in the leftmost column. The saliency of each 
voxel indicates the degree to which that voxel influences the model’s 
BA estimation
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IG Best Captures Prefrontal Cortical Saliencies

We observe higher feature prominence in the left half of 
the MRI volume (G, GB, GGC) and left hemisphere of 
the brain (IXG, MG, IG, GSHAP), reflecting prior works’ 
findings of accelerated atrophy in the left hemisphere com-
pared to the right (Raz et al., 2007; Terribilli et al., 2011; 
Tisserand & Jolles, 2003). In IXG, MG, IG, and GSHAP, 
we observe inter-hemispherical discrepancies in gray mat-
ter regions of the prefrontal cortex (PFC), extending to the 
frontal and parietal lobes. This reflects the asymmetric 

atrophy of gray matter in PFC (Toga & Thompson, 2003) 
and other cortical regions (Shan et al., 2005), suggesting 
that regions undergoing considerable changes during aging 
greatly influence BA estimation.

High saliency prominence in the PFC reflects the strong 
relationship between cortical thinning and aging (Salat 
et al., 2004). While both GSHAP and MG similarly pro-
duce higher saliency around the outermost layer of the 
PFC, GSHAP produces more focal features, indicating 
superior ability to capture the relationship between BA, 
cortical thinning, and sulcal widening (Blinkouskaya et al., 

Fig. 4   Saliency probability maps (columns) averaged across all par-
ticipants in M

D
 test set of 370 participants from the ADNI. Axial 

cross sections are overlaid on an MNI 152 atlas. Each row is for a 
unique MNI z-coordinate value in millimeters, as indicated in the left-

most column. The last row zooms in to the lateral ventricles. The sali-
ency of each voxel indicates the degree to which that voxel influences 
the model’s BA estimation
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2021). IG and IXG capture this relationship as well as 
diffuse saliencies towards the medial PFC. IG highlights 
structures in PFC and frontal cortex with higher focal-
ity than IXG, demonstrating superior ability to capture 
atrophy indicative of aging and neurodegeneration (Jobson 
et al., 2021).

IG Best Captures Ventricular Saliencies

IG highlights voxels surrounding the ventricles with higher 
prominence and focality than IXG, whereas GSHAP high-
lights intraventricular voxels with higher prominence and 
focality than MG. Ventricular volume increases slowly 
throughout the first six decades of life, but faster thereaf-
ter (Barron et al., 1976). IXG, MG, IG, and GSHAP cap-
ture this strong relationship of ventricular volume to age 
(LeMay, 1984; Padhy, 2014) which is especially prominent 
in individuals over 65 who are at high risk of ADRD (Hou 
et al., 2019). All methods produce higher saliency in the 
ventricles compared to subcortical structures, suggesting 
that the ventricles are among the most critical structures for 
BA estimation. IG and GSHAP exhibit increased saliency 
specifically in the third ventricle, corresponding to findings 
that ventricular correlation with aging is strongest in the 
third ventricle (Apostolova et al., 2012; Chen et al., 2011).

IG Best Captures Subcortical Saliencies

IG captures saliency in subcortical structures more promi-
nently and more focally than other methods. Nevertheless, 
all approaches find less saliency in these structures than 
in the ventricles or cortical walls. The subcortex contains 
structures whose features change with age, including the 
thalamus and basal ganglia (Hughes et al., 2012; Sullivan 
et al., 2004; Wang et al., 2019a, b) as well as the hippocam-
pus and amygdala (J. Wang et al., 2019a, b), all shown here 
to influence BA estimations considerably. However, these 
structures are less salient than the ventricles and cortical 
walls, indicating potential difficulties for the 3D-CNN to 

capture more complex structural associations with BA. For 
example, hippocampal atrophy is a well-established hall-
mark of neurodegenerative disease (Jack et al., 2000); how-
ever, voxels are less focal and salient in the hippocampus 
than in the ventricles for IXG, MG, IG, and GSHAP. The 
3D-CNN appears to prioritize larger and more obvious age-
related features like ventricular enlargement. For smaller or 
more complex structures, IG still produces the highest sali-
ency and focality, followed by GSHAP. IXG and MG capture 
these features with less consistency and saliency.

GSHAP highlights saliency most prominently around 
the midbrain, while IG diffuses saliency into the cerebel-
lum and brainstem (z = -32 mm). GSHAP focuses mostly on 
the negative correlation between midbrain volume and age, 
as measured by the maximum anteroposterior length of the 
midbrain [43]. IG captures this relationship in addition to 
the association between cerebellar volume and age, which is 
especially prominent in individuals with neurodegenerative 
disease (Arleo et al., 2024).

Benefits of Masking

G, GB, and GGC fail to highlight neuroanatomic features, 
therefore offering negligible insights into the BA estimation 
process. In contrast, IXG, MG, IG, and GSHAP identify 
a considerable range of neuroanatomic structures within 
the brain. IXG, MG, IG, and GSHAP utilize either implicit 
(multiplying against the input) or explicit (removing sali-
ency outside the brain) masking to avoid capturing saliencies 
outside the brain, like in G, GB, and GGC.

Clinical Relevance of IG

IG saliency maps have potential in clinical practice, par-
ticularly for conditions like mTBI and Alzheimer's dis-
ease (AD). In mTBI, IG maps can detect subtle structural 
changes reflecting diffuse injury or early tissue loss, which 
are easily overlooked by conventional imaging. IG empha-
sizes key regions including the ventricles, hippocampus, 

Table 2   M
D
 percentage differences between each saliency map and the masked gradient saliency map. Masked gradient is used as a baseline for 

comparing saliency methods. The largest percentage improvement according to each measure is shown in bold

Model D NMI Dice NSS CC SIM

Gradient -0.03% -94.68% -157.79% -163.15% -95.13%
Input X Gradient 0.02% -0.04% 49.29% 56.37% 39.59%
Masked Gradient 0.00% 0.00% 0.00% 0.00% 0.00%
Guided Backprop -0.03% -94.28% -157.19% -163.05% -94.99%
Guided GradCAM -0.03% -85.78% -115.60% -117.24% -95.71%
Integrated Gradient 0.04% 0.40% 87.73% 87.08% 78.00%
Gradient SHAP -0.01% -5.61% -2.13% -10.16% 1.14%
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and PFC, supporting clinicians to identify neuroanatomic 
correlates of cognitive deficits or mood disorders and aid-
ing in the personalization of rehabilitation strategies or in 
the timely initiation of neuroprotective interventions. In 
AD, IG maps could provide precise visualizations of hall-
mark changes, including hippocampal atrophy and corti-
cal thinning. This can assist in distinguishing between 
normal aging and early changes in AD, thereby possibly 
enabling earlier and potentially more targeted therapeutic 
interventions. As treatments for neurodegenerative diseases 
advance, IG maps could also guide therapeutic decision-
making by offering insights into specific regions affected 
by disease progression.

Beyond diagnostics, IG saliency maps are valuable for 
monitoring treatment efficacy. Clinicians can track neuro-
anatomic changes over time, thus making these tools useful 
in longitudinal studies, where monitoring the progression of 
structural brain changes in response to therapy is essential 
for optimizing patient outcomes.

Qualitative Analysis of Adults with mTBI using M
BA

Overall, findings in mTBI patients confirm that saliency 
methods are robust to the typical range of anatomic altera-
tions encountered in this condition. Future research should 
study whether this remains true in the presence of gross 
lesions. mTBI saliency maps confirm the finding that IG 
saliency maps are the most neuroanatomically insightful, 
whereas gradient-based methods fail to capture aging-related 
anatomic changes. IXG and MG display diffuse saliency in 
deep white matter regions and in superficial grey matter near 
the cortical surface. GSHAP identifies grey matter along the 
cortical surface with higher focality than IXG and MG but 
fails to highlight saliency in subcortical and white matter 
regions.

IG and IXG Capture Periventricular Changes after mTBI

Compared to CN participants, IG and IXG exhibit high 
saliency prominence and focality in and around the 
periventricular regions of mTBI participants. This find-
ing may reflect the ventricular enlargement associated 
with brain atrophy and the loss of brain tissue integrity 
in the context of diffuse axonal injury (Bigler, 2013; 
Farbota et al., 2012). Compared to CN saliency maps, 
the clearer delineations of the lateral ventricles and sur-
rounding white matter in mTBI participants reflect the 
typical patterns of ventricular expansion observed in 
mTBI patients (Bigler, 2013). MG and GSHAP identify 
periventricular brain aging less consistently: MG sali-
ency is diffuse across the entire region, whereas GSHAP 
highlights the lateral ventricles but not the surrounding 
areas.

IG and GSHAP Saliencies are most Focal

Similarly to the M
BA

 saliency maps of CN individuals, IG 
and GSHAP produce the most focal saliencies, especially 
in the ventricles. However, GSHAP appears to bias gray 
matter towards the cortical surface and along the medial 
longitudinal fissure, reflecting mTBI-related changes in 
gray matter (Shida et al., 2023) and cortical shape (Irimia 
et al., 2014; Mahoney et al., 2022). IG better captures the 
changes in deep white matter (Braun et al., 2017; Robles 
et al., 2022; Rutgers et al., 2008) and subcortical gray mat-
ter (Xue et al., 2022) associated with mTBI. In contrast, 
IXG and MG methods identify spatially diffuse (non-focal) 
saliency in CN and mTBI individuals. This lack of focal-
ity suggests that these methods struggle to isolate subtle or 
complex features, such as those known to occur in mTBI 
because of microhemorrhages or localized axonal damage 
(van Eijck et al., 2018).

Why IG and GSHAP Outperform IXG and MG for mTBI

mTBI often involves complex interactions between different 
brain regions, including disruptions in white matter tracts, 
alterations in cortical thickness, and changes in subcortical 
structures. IXG (the direct product of input values and gradi-
ents) and MG (the gradient masked with the input) may not 
fully capture these complex, multi-region interactions that 
are critical for understanding the full extent of mTBI-related 
damage. Methods like IG and GSHAP, which integrate gra-
dients over multiple points or account for all possible altera-
tions, are better suited to capture these interactions and to 
provide a more comprehensive view of the neuroanatomic 
changes in mTBI.

Why Models Trained on CN Participants are useful for mTBI

mTBI can accelerate typical brain aging processes involving 
ventricular enlargement, cortical thinning, and white mat-
ter alterations (Irimia et al., 2022). M

BA
 accurately identi-

fies these changes in CN participants and, when applied to 
mTBI patients, identifies similar structural changes with 
high saliency. This indicates a strong capacity of saliency 
approaches to capture brain aging in non-CN groups with 
minor-to-moderate deviations from normal anatomy. Dis-
crepancies in saliency prominence between CN and mTBI 
groups may reflect the higher variation in mTBI patients’ 
MRIs compared to CN participants.

Data Perturbation Comparisons

Similarity measures verify that IG best captures ventricular 
changes pertinent to BA estimation, followed, in order, by 
IXG, MG, and GSHAP. G, GB, and GGC exhibit notably 
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poorer performance compared to MG, suggesting their poor 
potential to identify aging-related ventricular changes. IXG 
performs most similarly to IG, whereas MG and GSHAP 
have similar results. We quantitate substantially better per-
formance in the MG (baseline) saliency maps from M

ND
 to 

M
D
 , further suggesting the better performance of M

D
 across 

all saliency methods. This improvement is consistent with 
the ventricular dilation applied to the training data for M

D
 . 

Within M
D
 , saliency methods with the best improvements 

relative to MG suggest the capacity of the former to capture 
BA through ventricular enlargement. NMI, although com-
monly used in image processing, has little differentiating 
ability to evaluate neuroimaging saliency maps. By contrast, 
the DC is commonly used in medical segmentation and neu-
roimaging, and effectively highlights the poor ability of G, 
GB, and GGC to capture ventricular changes. However, this 
measure still provides little ability to compare IXG, MG, 
IG, and GSHAP.

Whereas Wang et al. (2023) utilized only the DC to evalu-
ate saliency methods, our study illustrates the need for mul-
tiple metrics. For example, we found that saliency methods 
are better assessed quantitatively by saliency specific meas-
ures in the MIT/Tuebingen Saliency Benchmark, i.e., by 
NSS, CC, and SIM, as opposed to just the DC. These meas-
ures share their assessment that IG best relies on ventricular 
enlargement, followed, in order, by IXG, MG, and GSHAP. 
The need for multiple metrics is further highlighted by 
GSHAP metrics, where DC, NSS and CC suggest a decline 
in utility, whereas SIM indicates slight improvement. This 
discrepancy could not be captured when utilizing only one 
measure.

Saliency Method Profiles

Our research complements Wang et al.’s (2023) comparison 
of saliency methods by assessing seven (as opposed to only 
three) attribution-based approaches that are popular in the 
explainable AI community (Li et al., 2021). Saliency meth-
ods were grouped into gradient, backpropagation, and lin-
ear-interpolation methods, according to their computational 
procedures and requirements. Grouping saliency methods in 
this manner is also employed by others (Li et al., 2021) and 
has the benefit of enabling intra- and inter-group comparison 
(i.e., gradient versus backpropagation) in addition to the tra-
ditional comparison between individual saliency methods.

Like IG, IXG appears to produce higher saliency focality 
in neuroanatomic structures. In contrast, GSAHP and MG 
focus saliency on the cortical walls. Qualitative similarities 
between IXG and IG result from similar behaviors in their 
computational approaches. Both methods compute gradients 
of the model’s output with respect to input features. IXG can 
be seen as the simplest version of IG, where only one point 
(input features) is multiplied by the gradient of the output. In 

contrast, IG integrates the gradient at 50 points along a domain 
of linear interpolation from a baseline to the input gradient.

The use of different saliency value ranges, thresholding, 
and smoothing parameters across saliency methods improves 
the appearance of saliency maps (Wang et al., 2023). How-
ever, inconsistent post-processing techniques can introduce 
biases, as they arterially modify each saliency map, making 
direct comparisons between methods less reliable. Our study 
reduces post-processing by only normalizing saliency maps 
to unit range to ensure as all maps are evaluated on the same 
standardized scale.

Training set Effects on Saliency

Differences in saliency due to training set composition under-
score the importance of large, diverse datasets in producing gen-
eralizable and reproducible results. Our training/testing sets are 
larger than in existing studies (Wang et al., 2023) and have more 
diverse samples. We include over 13,000 MRIs from the ADNI, 
NACC, and UKBB, thereby improving the generalizability of our 
results. Additionally, we observe considerable differences in the 
saliency maps produced by M

ND
 (trained on 3,027 NACC partici-

pants, Supplementary Fig. 1) compared to those of M
BA

 (trained 
on 10,716 participants from NACC, ADNI, and UKBB, Fig. 2). 
Although we do not focus on comparing saliency maps as a func-
tion of cohort, IXG, MG, IG, and GSHAP highlight M

BA
 saliency 

maps’ better saliency, focality, and ability to identify important 
aging-related brain features. Discrepancies are apparent outside 
the brain as well: M

BA
 saliency is spatially diffuse unlike M

ND
 

saliency, which is localized focally along the brain’s surface.

Computational Requirements

This study down sampled MRIs to 2 mm3 to account for 
hardware limitations. Future studies should investigate 
the association between MRI resolution, BA estimation 

Table 3   Computation time to calculate 1283 saliency maps per par-
ticipant and across 370 participants in the data perturbation test set. 
Results are reported for the GPUs and CPUs listed in Section "Con-
volutional Neural Networks"

GPU CPU

All (mm:ss) Per par-
ticipant 
(s)

All (mm:ss) Per par-
ticipant 
(s)

Gradient 0:17 0.03 1:42 0.26
Input X Gradient 0:08 0.02 1:05 0.17
Masked Gradient 0:10 0.03 1:03 0.16
Guided Backprop 0:10 0.03 1:09 0.17
Guided GradCAM 0:15 0.03 1:19 0.20
Integrated Gradient 4:31 0.68 51:37 7.80
Gradient SHAP 0:29 0.07 4:20 0.65
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accuracy, and saliency mapping. Execution times for sali-
ency map calculations are listed in Table 3. IG saliencies 
offer better neuroanatomic interpretability but take almost 
ten times longer to compute compared to GSHAP and 
at least 15 times longer for all other methods. Using the 
NVIDIA A100 GPU with 80 GB of random-access memory, 
most methods require ~ 10 s to generate saliency maps for 
the test cohort whereas IG requires ~ 4.5 min. This dispar-
ity is even more significant when only the dual Intel Xeon 
Platinum 8358 CPUs are used, where computation times for 
the test dataset rise from one minute (for most methods) or 
four minutes (for GSHAP) to over 50 min for IG. GSHAP 
requires three to four times more time than non-IG meth-
ods while still providing acceptable neuroanatomic insights 
into BA estimation. IXG can be used to achieve compara-
ble, though still inferior results to IG, in settings with more 
limited computational resources. Although computational 
requirements are not factored into our saliency method 
evaluations, they should be considered in environments with 
limited access to high-performance computing tools.

Limitations

Our model’s MAE (3.3 years for M
BA

 ) is relatively low 
according to the consensus on published BA estimates 
(Peng et al., 2021; Yin et al., 2023). How saliency varies 
as a function of model accuracy (e.g., MAE) is unknown 
and should be investigated by future studies. While CNNs 
are commonly used for image analysis tasks, future studies 
should explore saliency interpretability in settings where 
other architectures are used. Because we do not explicitly 
differentiate between positive and negative saliencies, future 
research should also investigate how saliency sign affects 
BA estimation and model saliency. Masking was applied to 
the saliency maps generated using certain methods to ensure 
that the latter identified anatomical structures of clinical 
interest. Qualitative and quantitative differences between G 
and MG indicate that GB and GGC may also benefit from 
brain masking. We speculate that saliency outside the brain 
may be the result of brain boundary shape trending with 
age. The purpose of this study, however, is to assess popular 
saliency methods. Masking GB and GGC saliency maps is 
relatively novel in the literature and should be explored in 
future studies.

Aside from the ventricles, many neuroanatomic structures 
are affected by aging. Thus, future works should investigate 
the performance of saliency methods against additional sur-
rogate ground truths reflecting cortical thickness and white 
matter integrity. Saliency evaluations can rely on clinical 
experts to generate ground truth annotations for quantitative 
and qualitative assessment (Jin et al., 2021). Aggregating 
such annotations from human experts is time consuming and 
prone to expectation bias but may prove beneficial when 

comparing highly performing saliency methods such as IG 
and GSHAP. Additionally, future studies should investigate 
the capacity of 3D-CNNs to capture smaller more complex 
relationships with aging with more complex architectures 
and larger training cohorts.

Few studies explore the saliency maps of mTBI patients. 
Due to the smaller size of the mTBI sample compared to 
the CN sample, the cohort used to generate mTBI maps is 
smaller than that used for CN maps. Furthermore, the male-
to-female ratio is 1:0.59 in mTBI participants, reflecting the 
higher prevalence of TBI in males (Biegon, 2021; Eom et al., 
2021). Future research should investigate saliency in larger 
mTBI cohorts, and in the presence of gross lesions and mass 
effects.

Conclusion

As DNNs become more prevalent in neuroimaging and in 
its clinical applications, the need for interpretable findings 
grows as well. This study advances the field of neuroimage 
deep learning through comprehensive evaluation of seven 
popular attribution-based saliency methods to provide neu-
roanatomic interpretability to 3D-CNNs for BA estimation. 
We leverage a large dataset sourced from four neuroimag-
ing repositories to offer qualitative and quantitative insights 
into saliency methods’ neurological accuracies. Our find-
ings suggest that linear-interpolation methods, especially IG, 
provide some of the most accurate neuroanatomic insights 
for BA estimation. GSHAP, IXG, and MG also hold poten-
tial to highlight key aging-related neuroanatomic structures. 
Notably, IXG provides similar insights to IG at a lower 
computational cost. In contrast, G, GB, and GGC methods 
demonstrate limited capacity to capture aging-related neu-
roanatomic features at all, instead highlighting saliency out-
side the brain. These results suggest that careful selection of 
saliency methods is crucial for deriving meaningful insights 
from DNNs in neuroimaging.
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