
Vol.:(0123456789)

Neuroinformatics (2024) 22:635–645
https://doi.org/10.1007/s12021-024-09665-7

RESEARCH

Teaching Research Data Management with DataLad: A Multi‑year,
Multi‑domain Effort

Michał Szczepanik1 · Adina S. Wagner1 · Stephan Heunis1 · Laura K. Waite1 · Simon B. Eickhoff1,2 · Michael Hanke1,2

Accepted: 22 April 2024 / Published online: 7 May 2024
© The Author(s) 2024

Abstract
Research data management has become an indispensable skill in modern neuroscience. Researchers can benefit from follow-
ing good practices as well as from having proficiency in using particular software solutions. But as these domain-agnostic
skills are commonly not included in domain-specific graduate education, community efforts increasingly provide early career
scientists with opportunities for organised training and materials for self-study. Investing effort in user documentation and
interacting with the user base can, in turn, help developers improve quality of their software. In this work, we detail and
evaluate our multi-modal teaching approach to research data management in the DataLad ecosystem, both in general and
with concrete software use. Spanning an online and printed handbook, a modular course suitable for in-person and virtual
teaching, and a flexible collection of research data management tips in a knowledge base, our free and open source collection
of training material has made research data management and software training available to various different stakeholders
over the past five years.

Keywords Research data management · Version control · Online course · Software documentation · Tutorial · Workshop

Introduction

While experts in their respective domains and methodolo-
gies, scientists may not have domain-agnostic technical
skills which are useful for efficient research data manage-
ment (RDM). Managing the life cycle of digital objects
which constitute research data requires a broad set of techni-
cal skills, however, research curricula seldom teach comput-
ing ecosystem literacy (Grisham et al., 2016). In fact, even
computer science curricula often miss critical topics about
the computing ecosystem. At the Massachusetts Institute of
Technology (MIT), USA, this lack famously resulted in the
internationally popular, self-organized class, “The missing

semester of your CS education”1. In addition, the high usa-
bility of modern computers’ and applications’ front ends
spares users the need to develop the same level of familiarity
with their computers that previous generations of computer
users had (Mehlenbacher, 2003). Yet, making research data
and results findable, accessible, interoperable, and reusable
(FAIR, Wilkinson et al., 2016) can benefit, among others,
from efficient use of various research software tools (Wiener
et al., 2016). This makes general technical skill and RDM
training a crucial element in preparing the next generation
of neuroscientists.

In an ongoing multi-modal, multi-year effort, we com-
bined various interconnected activities into a comprehen-
sive RDM training centered around the software tool Data-
Lad (datal ad. org; Halchenko et al., 2021). These activities
spanned a community-led online RDM handbook with a
printed paperback option and knowledge base, a matching
online RDM course, and various workshops. In this reflec-
tive piece, we evaluate this teaching ecosystem, review its
advantages and shortcomings, and share lessons learned over
its 5-year long history.

Michał Szczepanik and Adina S. Wagner both contributed equally
to this work.

 * Michał Szczepanik
 m.szczepanik@fz-juelich.de

1 Institute of Neuroscience and Medicine, Brain
and Behaviour (INM-7), Research Center Jülich, Jülich,
Germany

2 Institute of Systems Neuroscience, Medical Faculty, Heinrich
Heine University Düsseldorf, Düsseldorf, Germany 1 missi ng. csail. mit. edu

http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-024-09665-7&domain=pdf
https://www.datalad.org/
https://missing.csail.mit.edu/about/

636 Neuroinformatics (2024) 22:635–645

DataLad

DataLad is a Python-based, MIT-licensed software tool for
the joint management of code, data, and their relationship.
It builds up on git-annex, a versatile system for data logistics
(Hess, 2010), and Git, the industry standard for distributed
version control. To address the technical challenges of data
management, data sharing, and digital provenance collec-
tion, it adapts principles of open-source software develop-
ment and distribution to scientific workflows. Like Git and
git-annex, DataLad’s primary interface is the command line.
This makes familiarity with the computer terminal, common
file system operations, and general knowledge about one’s
operating system beneficial for software users.

Overarching Goals for Training Materials

Our training material aims to provide even technical novices
with the opportunity to use the software quickly, produc-
tively, and to easily integrate with other tools and services
in real-world research. In part, it was motivated by concrete
user needs, such as early career researchers in a research
consortium. Beyond this, we aimed for the training mate-
rial to be fully open source, accessible (both regarding lan-
guage and technical requirements), flexible, multi-modal
(everyone should find something that fits their learning
needs), directly applicable to various research contexts,
and maintainable.

A DataLad Research Data
Management Handbook

Since the first release (0.0.1, March 2015), DataLad had tech-
nical documentation with a design overview and reference
documentation. Although any amount of documentation is
better than no documentation at all, existing documentation
can still be insufficient if it does not meet the needs of the
target audience. Solely technical or reference documentation,
for example, can be suboptimal for novices: it may be incom-
plete, narrowly focused on individual commands, or assume
existing knowledge readers lack (Segal, 2007; Pawlik et al.,
2015), and can thereby discourage potential users or inhibit
the adoption of a tool. Even though technical documentation
is useful for developers, a central target audience for docu-
mentation of the DataLad ecosystem are scientists. A con-
siderable part of this target audience can thus be considered
technical novices for whom technical documentation is not
ideal. Research also suggests that scientists need documenta-
tion to go beyond reference manuals. In an analysis of user
questions in support forums of scientific software packages,
Swarts (2019) found that the focus in 80% of inquiries was on

operations and tasks, such as a required sequence of opera-
tions to achieve a specific goal, instead of reference lists.
In breaking down user questions by purpose, Swarts (2019)
further found that users were most interested in a descrip-
tion of operations or tasks, followed by insights about the
reasons behind the action. Separating documentation types
into feature-based (closer related to the concept of refer-
ence documentation) or task-based, Swarts (2019) reports
twice as many questions seeking explanations in software
with feature-based compared to task-based documentation.
This hints at a disconnect between knowing how something
should be done and why it should be done this way. Overall,
this highlights that users of scientific software show a clear
need beyond the documentation of individual commands,
but seek to understand general usage principles and master
complex combinations of features to achieve specified goals.
This type of empowerment is what the DataLad Handbook
project aimed to achieve by complementing DataLad’s exist-
ing technical documentation.

Design Considerations

We identified three types of stakeholders with different
needs: researchers, planners and trainers. Researchers need
accessible educational content to understand and use the
tool; planners, such as principal investigators or funders,
need high-level, non-technical information in order to make
informed yet efficient decisions on whether the tool fulfills
their needs; and trainers need reliable, open access teaching
material. Based on this assessment, the following goals for
the Handbook’s contents were set:

– Applicability for a broad audience: The Handbook
should showcase domain-agnostic, real-world RDM
applications.

– Practical experience: The Handbook should enable a
code-along style usage, with examples presented in code
that users can copy, paste, and run on their own com-
puter. To allow a read-only style usage, too, the Hand-
book should also reveal what a given code execution’s
output would look like. For an optimal code-along or
read-only experience, the code output should match the
current software behavior.

– Suitable for technical novices: The Handbook’s lan-
guage should be accessible. Gradually, by explaining
technical jargon and relevant tools or concepts in pass-
ing, it should provide readers with a broad set of relevant
RDM skills rather than requiring prior knowledge.

– Low barrier to entry: The Handbook’s contents should
be organized in short, topical units to provide the pos-
sibility to re-read or mix and match.

637Neuroinformatics (2024) 22:635–645

– Integrative workflows: The Handbook’s contents should
build up on each other and link back to content already
introduced to teach how different software features interact.

– Empowering independent users: Instead of showcas-
ing successful code only, it should also explicitly dem-
onstrate common errors to enable users to troubleshoot
problems in their own use cases independently.

The following structure arose from this specification analy-
sis (Wagner et al., 2020):

Introduction: The first part of the Handbook, covering
high-level descriptions of the software and
its features and detailed installation instruc-
tions for all operating systems.

Basics: The second part of the Handbook, written in
the form of a continuous, code-along tuto-
rial, set in a domain-agnostic fictional sto-
ryline about an RDM application, and cov-
ering all stable software features in chapters
that build up on one another.

Advanced: The third part of the Handbook covering
features beyond the basics in stand-alone
chapters, added prior to the second release.

Use cases: The last part of the Handbook, containing
short, standalone start-to-end descriptions of
real-world use cases, with concise step-by-
step instructions, and references to further
reading in the Basics part.

Finally, the design and content requirements were accom-
panied by technical goals: from using expandable details
to keep visible "core" text short and making the Handbook
available in multiple formats, to developing the Handbook
alongside the versioned software and using integration tests
to ensure functioning of included code examples. The result-
ing implementation of the Handbook fulfilled these require-
ments as follows.

The Technical Backbone

The development environment of the Handbook was chosen
with the intent to support declared goals, and to maximize
configurability, autonomy, and reusability of the project. It
builds up entirely on flexible and extendable open source
infrastructure: on the highest level, it uses Sphinx as a
documentation generator (sphinx- doc. org). Sphinx trans-
forms documents written in reStructuredText, a lightweight
markup language, to a variety of output formats, among
them HTML, PDF, LaTeX, or EPUB. Initially a by-product

of the Python documentation, it has been adopted by the
Open Source community at large; GitHub’s dependency
graph reports that it is used by more than 300.000 projects
in January 20242.

Sphinx supports an extension mechanism with which
additional functionality can be integrated. Leveraging this
mechanism, the Handbook project extended standard Sphinx
features with custom admonitions and designs, for example
toggle-able boxes for optional details. This is implemented
as a Python package alongside the Handbook source code,
making the Handbook project a reusable and installable
Sphinx extension. Figure 1 provides an overview of the cus-
tom-developed design features. A major functional enhance-
ment is provided with a separate Python package, auto-
runrecord, an additional custom-made Sphinx extension
that allows sequential execution of code in a specified envi-
ronment, and embedding a record of the code and its output
as code snippets into the documentation3. Instructors can
further use it to automatically create scripts from selected
code blocks which can then be demonstrated in a remote-
controlled terminal in live-coding tutorials.

Hosting for the project is provided by Read the Docs
(readt hedocs. org), a full-featured software documentation
deployment platform that integrates with Sphinx. Notably, it
supports semantic versioning of documentation, which helps
to ensure that users of a past software version can find the
corresponding version of the conjointly developed Hand-
book. Illustrations in the Handbook are based on the undraw
project by Katerina Limpitsouni (undraw. co).

The ability of the documentation to sequentially execute
code and record its outcomes allows using the Handbook as
an integration test for the DataLad software in addition to
a user guide. If new software developments in the DataLad
core packages break documented workflows, a continuous
integration test suite will fail, alerting developers to the fact
that their changes break user workflows.

To ensure reusability, such as the adaptation by Brooks
et al. (2021), the project is released under a CC-BY-SA 4.0
license. Under its terms, all elements can be reused in origi-
nal or derived form for all purposes under the condition that
the original project is attributed and that derivative work is
shared under an identical (“not more restrictive”) license4.

Content

As of January 2024, the web and PDF versions of the
Handbook were organized into four parts – “Introduction”,
“Basics”, “Advanced”, and “Use cases” – which comprised

2 github. com/ sphinx- doc/ sphinx/ netwo rk/ depen dents
3 github. com/ mih/ autor unrec ord
4 creat iveco mmons. org/ licen ses/ by- sa/4.0

https://www.sphinx-doc.org/en/master/
https://readthedocs.org/
https://undraw.co/
https://github.com/sphinx-doc/sphinx/network/dependents
https://github.com/mih/autorunrecord
https://creativecommons.org/licenses/by-sa/4.0/

638 Neuroinformatics (2024) 22:635–645

a total of 21 chapters. The “Introduction” part has two dif-
ferent target audiences: first, it provides researchers with
detailed installation instructions, a basic general command
line tutorial, and an overview of the Handbook. Beyond this,
it gives a high-level overview of the software and its capa-
bilities to planners.

The “Basics” part is organized into nine chapters. Follow-
ing a narrative about a fictional college course on RDM, it
teaches different aspects of DataLad functionality and gen-
eral RDM to researchers in each topical chapter. Broadly,
those topics can be summarized as follows: 1) Local version
control, 2) Capturing and re-executing process provenance,
3) Data integrity, 4) Collaboration and distributed version
control, 5) Configuration, 6) Reproducible data analysis, 7)
Computationally reproducible data analysis, 8) Data publica-
tion, and 9) Error management.

The “Advanced” part includes independent chapters on
advanced DataLad features and workflows, big data projects,
DataLad use on computational clusters, DataLad’s internals,
and selected DataLad extensions. The latter two parts are
accompanied with code demonstrations, slides, executable
notebooks, and/or video tutorials that trainers can reuse
freely to teach tool use and improve scientific practice. The
last part, “Use cases”, targets planners and researchers with
short step-by-step instructions which show planners what is

possible, and help researchers to connect their knowledge
into larger workflows.

Project and Community Management

Ensuring the longevity of software projects beyond the
duration of individual researchers’ contracts requires
community building (Koehler Leman et al., 2020). A user-
driven alternative to documentation by software develop-
ers, “Documentation Crowdsourcing”, has been success-
fully employed by the NumPy project (Pawlik et al., 2015).
The Handbook project extends this concept beyond refer-
ence documentation. To achieve this, it is set up to encour-
age and welcome improvements by external contributors.
The project is openly hosted on GitHub. Mirroring pro-
cesses in larger crowd-sourced documentation projects
such as “The Turing Way handbook for reproducible,
ethical and collaborative research” (The Turing Way Com-
munity, 2022), credit is given for both code-based and non-
code-based contributions. Contributors are recognized in
the source repository, on the DataLad Website, and as co-
authors in both the printed version of the Handbook and
its Zenodo releases. As of January 2024, a total of 60 con-
tributors provided input in the form of content, bug fixes,
or infrastructure improvements.

Fig. 1 Custom admonitions and code blocks used in the Handbook.
In each pair of admonitions, the top image corresponds to the web
version, and the bottom image corresponds to its PDF rendering.
Windows-wits (green), toggle-able in the HTML version, contain
information that is only relevant for the Windows operating system
(DataLad supports GNU/Linux, MacOS, and Windows, but the lat-
ter is fundamentally different compared to the other two, sometimes
leading to different behaviour or necessitating workarounds when
using DataLad). Find-out-more admonitions (orange), also toggle-
able in the HTML version, contain miscellaneous extra information

for curious readers. Git user notes (blue) are colored boxes with refer-
ences to the underlying tools of DataLad, intended for advanced Git
users as a comparison or technical explanation. Code blocks show
one or more commands and the resulting output, provided using the
autorunrecord Sphinx extension. In the web version, a copy-
button (top right corner) allows to copy relevant commands automati-
cally to the clipboard. Internal annotations allow generating custom
scripts from any sequence of code-blocks for live coding demonstra-
tions

639Neuroinformatics (2024) 22:635–645

Paperback Version

A digest of the Handbook was published via the Kindle
Direct Publishing (KDP) print-on-demand service to make
the Handbook available in a printed paperback version. This
fulfilled user demands for physical copies of the documen-
tation, and was possible with minimal additional technical
work, building up on the automatically generated LaTeX
sources of the Handbook. The printed book’s contents were
sub-selected for longevity, graphics or graphical in-text ele-
ments were optimized for black-and-white printing, and a
dedicated hyperlink index was created.

RDM Online Course

While documentation is the primary way of disseminating
information about software, workshops are another often
practiced way of software education. As maintainers and
contributors of DataLad, we receive invitations to teach such
workshops for different audiences, most commonly involv-
ing early career researchers. Some such events arise from
obligations related to consortium participation (such as the
CRC 14515, Collaborative Research Center, investigating
mechanisms of motor control, where RDM training was
organised with course credit for involved doctoral students);
others stem from more informal collaborations. To be better
prepared for organizing training events, we decided to cre-
ate a curriculum for a short RDM course centered around
DataLad6. Our design approach aligns with the “Ten simple
rules for collaborative lesson development” (Devenyi et al.,
2018), and the course content and format were inspired by
the Software Carpentry courses (Wilson, 2016).

Design Considerations

While the Handbook is meant to be a comprehensive set of
documentation covering multiple aspects, the course materi-
als were intended as a more focused overview of the key fea-
tures of DataLad software; self-contained, but linking to the
Handbook for detail or context when needed. They introduce
DataLad via interdependent examples which help present
both usage and purpose of its basic commands. While the
course focuses on DataLad, software-independent informa-
tion about good practices in research data management is
also included. The structure was tuned for presentation dur-
ing a hands-on workshop (online or in-person) as well as
self-study. The intended workshop duration was two half-
days. Making it easy for tutors (also those who were not

involved in course preparation) to reuse the materials on dif-
ferent occasions was an important goal; as time constraints
and target audiences can differ, contents were divided into
four core blocks and two optional additions. Finally, the aim
was to create an open resource, not just by publishing the
materials as a public website, but also by hosting the col-
laboratively edited sources in a public repository, licensing
the content under Creative Commons Attribution License,
and reusing other permissively licensed materials.

During the planning phase, we identified a set of data
management tasks which should be covered, from dataset
creation and local version control, through data publish-
ing in external repositories and collaboration, to reusing
datasets published by others and creating an analysis with
modular datasets. The major theme for the software-agnostic
part about good RDM practices, which came up in an
informal poll among our colleagues, was file naming and
organisation. Although it may sound trivial at first glance,
this includes topics such as rationales for naming schemes,
interoperability considerations related to file names (lengths,
character sets), avoiding leakage of identifying information
through file names, using sidecar files for metadata, clear
semantics for separating inputs and outputs, and standard
file organization structures, e.g. BIDS (Gorgolewski et al.,
2016) or research compendium (Gentleman & Temple Lang,
2007). In addition to these, we also decided to discuss the
distinction between text and binary files, and show examples
of how the former can be used to store different kinds of
data and metadata in an interoperable fashion (tabular files,
serialization formats, lightweight markup).

The Technical Backbone

The course website with the full course material is created
based on The Carpentries7 lesson template8. Website content
is written in Markdown, and the website is built with the
Ruby-based static site generator Jekyll (note, however, that
The Carpentries recently redesigned their tooling to use R’s
publishing ecosystem instead9). Course material is split into
sections, each starting with an overview (questions, objec-
tives, time estimate), and ending with a summary of key
points. The content is presented using a combination of text
paragraphs and template-defined boxes with code samples,
expected output, call-outs, challenges, and more.

During courses, we use Jupyter Hub to provide a uni-
fied, pre-configured software environment for partici-
pants, accessible through a web browser. While Jupyter
Hub is mainly associated with notebooks, we mostly use

5 crc14 51. uni- koeln. de
6 psych oinfo rmati cs- de. github. io/ rdm- course

7 carpe ntries. org
8 github. com/ carpe ntries/ styles
9 carpe ntries. github. io/ workb ench/

https://www.crc1451.uni-koeln.de/
https://psychoinformatics-de.github.io/rdm-course/
https://carpentries.org/
https://github.com/carpentries/styles/
https://carpentries.github.io/workbench/

640 Neuroinformatics (2024) 22:635–645

its terminal feature, effectively providing participants with
browser-based access to a terminal running on a remote
machine. To simplify deployment, we use The Littlest Jupy-
terHub10 (TLJH) distribution to set up the hub for all users
on a single machine. We have used Amazon Web Services
to provision virtual machines, but other cloud computing
providers or local infrastructure can be used to the same
effect. Setup instructions, expanded from TLJH’s docu-
mentation, were included in the course website, in the “For
instructors” section.

Content

Following the design considerations, we organized the
course in the following modules:

– Content tracking with DataLad: learning the basics of
version control, working locally to create a dataset, and
practicing basic DataLad commands.

– Structuring data: listing good practices in data organi-
zation, distinguishing between text and binary data, and
exploring lightweight text files and how they can be use-
ful.

– Remote collaboration: exercising data publication
and consumption, and demonstrating the dissociation
between file content and its availability record.

– Dataset management: demonstrating dataset nesting
(subdatasets), investigating structure and content of
a published dataset, and creating a simple model of a
nested dataset.

– (optional) The basics of branching: understanding Git’s
concept of a branch, creating new branches in a local
dataset and switching between them, and mastering the
basics of a contribution workflow.

– (optional) Removing datasets and files: learning how to
remove dataset content, and removing unwanted datasets.

Additionally, the course website contains a short glossary,
setup instructions for users (if using their own computers),
slides, and instructor notes about the technical setup.

Knowledge Base and Online Office Hours

The educational resources were designed to be broadly
applicable and domain-agnostic, but could not necessarily
cover arbitrary use cases. Practical application of DataLad
in RDM scenarios involves developing solutions to complex
problems. No individual solution will always be one-size-
fits-all, and no documentation can ever be comprehensive

for everyone without becoming overwhelming for some.
Likewise, while useful for discovering and learning usage
patterns, most resources were of limited utility for trouble-
shooting software issues. To this end, we offer a weekly
online office hour to provide flexible assistance, and we
invested resources into creating a knowledge base11. Office
hours are a one-hour open video call during which (prospec-
tive) users can join flexibly and without prior notice, and ask
questions or discuss use cases, often live-demoing relevant
information via screen-sharing. The knowledge base, on the
other hand, is a collection of documents, each document
focusing on a particular topic (application, problem, solu-
tion) and considered standalone with respect to other docu-
ments. The nature of these documents resembles technical
reports, the creation of which has a long-standing tradition
in science and engineering (Pinelli et al., 1982; Brearley,
1973). When explorations in an office hour uncover tech-
nical limitations requiring workarounds or interesting use
cases that are too peculiar to be prominently documented
in the Handbook or RDM course, they typically inspire an
entry in the knowledge base.

Design Considerations

A knowledge base provides resources to anyone seeking
particular solutions. It can also be used to accumulate the
outcomes of investigations of technical issues as they occur
when supporting users, thereby yielding persistent resources
that streamline future support efforts, and increasing the
efficacy of resources invested in support (turning incom-
ing feedback into knowledge). An analysis of the content
written on-demand, or its access frequency can also be used
to inform prioritization of development efforts to improve
technical implementations and/or documentation elsewhere.

Suitable topics for a knowledge base item (KBI) include:
an answer to a frequently asked question (be that from office
hours, issue trackers, or community forums); tips and strat-
egies for a particular use case; a description of a techni-
cal limitation and possible workaround. Each KBI needs to
have: a descriptive title; metadata, such as keywords, to aid
discovery; and a persistent URL to share it.

The Technical Backbone

The technical framework for the knowledge base is a sim-
plified version of that used for the Handbook. In summary,
KBIs are plain-text documents with reStructuredText
markup. All KBI files are kept in a Git repository. A ren-
dered knowledge base in HTML format is created with the
Sphinx tool. A knowledge base Git repository is managed

11 knowl edge- base. psych oinfo rmati cs. de10 tljh. jupyt er. org

https://knowledge-base.psychoinformatics.de/
https://tljh.jupyter.org/

641Neuroinformatics (2024) 22:635–645

with the aid of a Git hosting solution, such as GitHub/
GitLab. Respective continuous integration and website
publishing tools are used to publish the knowledge base.
Coordination for the office hour is done using a public
matrix12 chatroom, in which questions can also be asked
asynchronously.

Content

As of January 2024, the knowledge base contains 29 KBIs of
varying length, describing various use cases. For example,
the first KBI that we created describes a situation in which
DataLad (or Git) users working on shared infrastructure
can trigger Git’s safety mechanism, added to Git versions
released after March 2022, which causes certain operations
to end with an error message displayed to the user. The
knowledge base format allowed us to explain in detail not
only the configuration options that need to be set in order
to perform the operation, but also the broader rationale for
the safety mechanism being present in Git in the first place
(quoting, e.g., the informative commit messages which
accompanied the changes made in Git).

Impact and Scope

Online Handbook

Work on the Handbook began in June 2019, and the first
release followed in January 2020. It has been under continu-
ous development for more than four years, averaging two

releases per year, and complements the DataLad ecosystem
with a comprehensive user guide. Its PDF version spans
more than 600 pages. Releases of the DataLad core pack-
age are coordinated with matching releases of the Handbook
project, and past release versions remain accessible online.

Confirming observations from the literature (van Loggem
& van der Veer, 2014), the conjunct development of user
documentation has positive effects on software quality. As
the writing process involved manual software testing, ini-
tial developments were accompanied by a higher discovery
rate of software errors. This user-focused approach uncovers
deficiencies of the technical documentation and API ele-
ments with suboptimal user experience. The workflow-based
nature of demonstrations highlights API inconsistencies, and
the integration test that the Handbook constitutes catches
incompatibilities between the software and common usage
practice. These documentation features facilitate software
development, and had a major impact on the conjoint 0.12.0
release of DataLad (Jan 2020), the first with a matching
Handbook release. The popularity data confirms a marked
increase in downloads of the DataLad Debian package from
this date onward13. In addition, differences in web traffic
confirm that user documentation is in higher demand than
the technical documentation. An analysis of visits to the web
version of the Handbook from December 2022 to July 2023
revealed that handbook.datalad.org averaged 22 000 total
page views per 30 days, compared to 6600 for the technical
documentation at docs.datalad.org. In summary, the devel-
opment of the DataLad Handbook had a measurable positive
impact on the number of users, the popularity of the pack-
age, and the software quality.

Fig. 2 Responses of the
participants of the first two
installments of the workshop,
conducted online for early
career researchers, to the fol-
lowing questions. Recommend:
How likely are you to recom-
mend this workshop to a friend
or colleague? Overall: What is
your overall assessment of this
event (1-insufficient, 5-
excellent)? Pace: What do you
think about the learning pace
of the workshop (ie. material vs
time)? Applicability: Will the
knowledge and information you
gained be applicable in your
work?

12 matrix. org 13 qa. debian. org/ popcon. php? packa ge= datal ad

https://matrix.org/
https://qa.debian.org/popcon.php?package=datalad

642 Neuroinformatics (2024) 22:635–645

Workshops

We conducted a post-workshop survey among participants
of the first two instances of the workshop conducted for the
CRC 1451 early career researchers. Most participants were
PhD students (who received course credit for workshop par-
ticipation), and the workshops were conducted online. The
workshop received high overall ratings, with participants
stating that they are likely to recommend it to their col-
leagues; ratings of learning pace and applicability to partici-
pants’ work were mixed (Fig. 2). Given that the CRC 1451
project combines clinical, preclinical, and computational
neuroscience, we see these responses as indicative of the
diversity of backgrounds that PhD students in neuroscience
have, as well as of a varying degree to which formal RDM
is an already established practice across research fields. One
recurring suggestion for improvement was to include more
examples of real-world applications. This highlights that
although a course dedicated to software basics is a good
start, transferring the knowledge to specific applications is
the real challenge, which can be made easier with existing
written documentation.

Knowledge Base

In the span of ten months we accumulated 29 knowledge
base items of various length. The knowledge base has been
useful in answering recurring questions, or communicat-
ing recommended workflows. Beyond this, it was also a
valuable method to keep the official handbook and course
material lean, as it provided a home to more temporary or
niche use cases.

Lessons Learned

In the previous sections we described the design considera-
tions and their practical applications for the documentation
and education aspect of the DataLad project. In our opinion,
creating and maintaining this growing collection of mate-
rials was a worthwhile investment, which helped users to
apply the software and developers to improve it. The open
source, flexible approach to creating educational content was
particularly valuable for its maintainability, adaptability, and
applicability to various research contexts. In this closing sec-
tion we want to share our comments – lessons learned in the
process – on various related aspects.

Customization vs Complexity

Our technical choices for the Handbook had to be weighed
against non-technical features. Compared to other handbook

projects such as the Turing Way project (The Turing Way
Community, 2022), sources based on reStructuredText and
Sphinx, as well as the many custom admonitions, consti-
tute a higher barrier to entry for contributors. The Turing
Way community, for example, explicitly chose Markdown-
based Jupyter Book tooling to ease contributing for technical
novices. Indeed, Handbook maintainers regularly have to
assist new contributors with technical details, and complex
technical contributions almost always come from the core
contributor team. Nevertheless, in our case - especially with
the requirements for multiple formats, integration tests, and
reuse in print editions - the customization opportunities of
Sphinx made up for slightly higher complexity than alterna-
tive documentation frameworks.

Yes, there Can be too much Documentation

Although a large amount of documentation appears univer-
sally positive, there are concrete downsides that can increase
with the amount of documentation. If more content leads
to duplication, maintenance costs increase steeply, and so
does the threat of showcasing outdated information. Thus,
wherever possible, information is only detailed in a single
location, and other places refer or link this source rather than
duplicating its content.

Additionally, a large amount of documentation can appear
intimidating. In our experience, information that educa-
tional resources exists is met positively, but the notion of
a “600 page handbook” can diminish this enthusiasm. We
find anecdotal evidence that a (surprisingly) large amount
of available documentation can be perceived as a warning
sign regarding software complexity, and is interpreted as a
requirement to process all available documentation before
a meaningful proficiency can be be reached. Designing all
resources as best as possible in a modular, pick-what-you-
need style proved to be important to allow for selective con-
sumption and to lower the perceived cost of entry.

Keeping Online Workshops Interactive

Keeping participants engaged during an online workshop
is a particular challenge, as it is much harder to “read the
room”. We have had positive experiences with using inter-
active poll and Q&A platforms, such as, e.g. DirectPoll14 or
Slido15. Additionally, we believe that having co-presenters
who can monitor text chat or take part of the questions is
invaluable.

14 direc tpoll. com
15 slido. com

https://directpoll.com
https://www.slido.com

643Neuroinformatics (2024) 22:635–645

Avoiding Installfest

Software should be easy to install, and we believe this is
the case for DataLad. However, the preferred method of
installation will differ between users. DataLad can cur-
rently be installed through several methods: conda, pip,
apt and several other package managers (GNU/Linux),
homebrew (MacOS). Selecting one of these methods will
depend on how it integrates (or clashes) with the methods
used for managing the entire software environment(s),
and, if chosen hastily, may lead to future issues. To this
end, we provide an overview of installation methods in the
Handbook, and a note on debugging issues related to using
multiple Python versions in the knowledge base. For this
reason, performing an installation as part of the workshop
may turn out to be time consuming, and we tend to avoid
it. If installing a given software on participants’ comput-
ers is a goal (because it is required for the workshop or for
future work), one approach that we found useful (at least
with certain audiences) is to provide a link to detailed
installation instructions beforehand and ask participants to
e-mail the instructor with the output of a diagnostic com-
mand (or describe encountered problems). This encour-
ages engagement from the participants, and may also pro-
vide instructors (maintainers) with an insight into how
well the installation process works in practice.

Software Environment Nuances

Exploring a command-line tool (particularly one for
managing files) can hardly be separated from using basic
command-line utilities (e.g. for changing the working
directory or listing files). Although their usage can be
weaved into the narrative of a workshop, this introduces
additional complexity for command-line interface (CLI)
novices. Moreover, while core utilities are similar across
systems, there are differences, often subtle, in how they
should be used to produce the same effect (e.g., compare
tree vs tree /F, or which vs Get-Command, in Bash and
PowerShell, respectively). The impact of these differences
can be mitigated by providing toggle-able OS-specific
instructions in the published materials, however, they still
present a major challenge during live workshops when
participants use different operating systems with their
default sets of tools. For this reason, we prefer to use a
common JupyterHub deployment for hands-on sessions.

Cloud Computing

Both virtual and in-person workshops benefit from pre-
pared virtual computing environments in particular. Costs
per workshop amount to a few Euros, and typically never

exceed 15 Euro even for multi-day workshops. The setup
of the respective Amazon EC2 Cloud instance takes a few
hours at most.

Data Production and Data Consumption

The RDM course was created from the data producer perspec-
tive, and walks users through the process of building a dataset
from scratch, covering data consumption only at a later stage.
Aside from the fact that data analysis in computational neuro-
science projects may just as often start with obtaining existing
datasets, this narrative creates a situation where multiple steps
are needed to reach a situation where benefits of version con-
trolling the data can be seen. It could be an interesting change
of perspective to start with obtaining a copy of an already
created dataset, something which currently gets introduced in
a later part of the workshop, and inspect its properties (such
as content, history, and file availability information) in order
to highlight the value added by RDM software. We tried this
approach during shorter software demos, where having the
target state communicated upfront was particularly useful for
streamlining the presentation.

Technical Writing Takes Time

Preparing a description of a discovered solution in the shape
of a knowledge base item is time consuming, and a task on
its own. However, it generates a resource which becomes
useful with time, as the solution is captured with its context.
Working on such solutions is a valuable way to learn about
the program – also for developers who need not be familiar
with all parts of the code base, or all potential applications.

Conclusion

As the mere existence of software is insufficient to ensure
its uptake and use according to best practices, maintaining
user-oriented documentation became an important part of
the DataLad project. Having users can not just validate the
development effort, but it can also help enhance the soft-
ware: users can diagnose problems, propose solutions, and
suggest improvements (Raymond, 1999). A lack of docu-
mentation hinders knowledge transfer between users and
developers, impedes maintenance, and creates a steep learn-
ing curve for new users and new developers alike (Theunissen
et al., 2022). As described by Parnas (2011), “reduced
[documentation] quality leads to reduced [software] usage,
[r]educed usage leads to reductions in both resources and
motivation, [r]educed resources and motivation degrade
quality further”. Turning the argument around, improving
documentation can improve software, which (for research
software) can improve research.

644 Neuroinformatics (2024) 22:635–645

Different kinds of documentation are needed for differ-
ent audiences; in our case this led to creation of the Hand-
book, course materials, and knowledge base, in addition to
the technical reference. In our interactions with users, we
observe positive effects of having these resources available.
We hope that our experiences in creating them, both in terms
of design and practical aspects, can be helpful for other pro-
jects in research software development and for education in
research data management.

Information Sharing Statement

The sources of all projects described in this manuscript are
available from GitHub and licensed under CC-BY, CC-BY-
SA, or MIT licenses:

– github. com/ datal ad- handb ook/ book,
– github. com/ datal ad- handb ook/ book- datal ad- intro,
– github. com/ psych oinfo rmati cs- de/ rdm- course,
– github. com/ psych oinfo rmati cs- de/ knowl edge- base

Acknowledgements The authors wish to thank Tosca Heunis for her
feedback on earlier versions of this manuscript. The DataLad software
and its documentation are the joint work of more than 100 individuals.
We are deeply grateful for these contributions to free and open source
software (FOSS) and documentation. Likewise we are grateful to the
many more people that produce and maintain the FOSS ecosystem
that DataLad is built on. We are particularly indebted to Joey Hess,
the author of the git-annex software, without which DataLad would
not be what it is today.

Author Contributions ASW and MS contributed equally to the work.
ASW and MS conceptualized and wrote the first draft of the manu-
script. All authors reviewed and edited the manuscript. ASW, LKW,
and MH conceptualized the RDM Handbook. ASW, LKW, MH, MS,
SH maintained the RDM Handbook and curated the majority of its con-
tent. ASW and MH prepared the print version of the RDM Handbook.
MS conceptualized the RDM course, created the technical backbone,
and curated its content. ASW, MH, and SH contributed to the technical
backbone and content of the RDM course. ASW, MH, MS, and SH pre-
sented multiple online and in-person workshops based on the content
of both the Handbook and RDM course. MH and MS conceptualized
the knowledge base. ASW, LKW, MH, MS, and SH contributed to the
technical backbone and content of the knowledge base. MH and SBE
acquired funding.

Funding Open Access funding enabled and organized by Projekt
DEAL. The RDM course was developed with funding from the
Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under grant SFB 1451 (431549029, INF project). The DataLad
project received support through the following grants: US-German
collaboration in computational neuroscience (CRCNS) project “Data-
Git: converging catalogues, warehouses, and deployment logistics into
a federated ‘data distribution”’, co-funded by the US National Sci-
ence Foundation (NSF 1429999) and the German Federal Ministry of
Education and Research (BMBF 01GQ1411); CRCNS US-German
Data Sharing “DataLad - a decentralized system for integrated dis-
covery, management, and publication of digital objects of science”,

(NSF 1912266, BMBF 01GQ1905); Helmholtz Research Center Jül-
ich, FDM challenge 2022; German federal state of Saxony-Anhalt
and the European Regional Development Fund (ERDF), Project:
Center for Behavioral Brain Sciences, Imaging Platform; ReproNim
project (NIH 1P41EB019936-01A1); Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under grant SFB 1451
(431549029, INF project); European Union’s Horizon 2020 research
and innovation programme under grant agreements Human Brain Pro-
ject SGA3 (H2020-EU.3.1.5.3, grant no. 945539), VirtualBrainCloud
(H2020-EU.3.1.5.3, grant no. 826421); EBRAINS 2.0 (HORIZON.1.3,
grant no. 101147319).

Data Availability No datasets were generated or analysed during the
current study.

Declarations

Competing Interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Brearley, N. (1973). The role of technical reports in scientific and
technical communication. IEEE Transactions on Professional
Communication, PC–16, 117–119. https:// doi. org/ 10. 1109/ tpc.
1973. 65926 85

Brooks, P. P., McDevitt, E. A., Mennen, A. C., Testerman, M., Kim,
N. Y., Visconti di Oleggio Castello, M., & Nastase, S. A. (2021).
Princeton handbook for reproducible neuroimaging (Version
v0.2.0). Zenodo. https:// doi. org/ 10. 5281/ zenodo. 43176 23

Devenyi, G. A., Emonet, R., Harris, R. M., Hertweck, K. L., Irving,
D., Milligan, I., & Wilson, G. (2018). Ten simple rules for col-
laborative lesson development (S. Markel, Ed.). PLOS Compu-
tational Biology, 14, e1005963. https:// doi. org/ 10. 1371/ journ al.
pcbi. 10059 63

Gentleman, R., & Temple Lang, D. (2007). Statistical analyses and
reproducible research. Journal of Computational and Graphical
Statistics, 16, 1–23. https:// doi. org/ 10. 1198/ 10618 6007x 178663

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, C. R., Das, S.,
Duff, E. P., Flandin, G., Ghosh, S. S., Glatard, T., Halchenko, Y.
O., et al. (2016). The brain imaging data structure, a format for
organizing and describing outputs of neuroimaging experiments.
Scientific Data, 3, 1–9. https:// doi. org/ 10. 1038/ sdata. 2016. 44

Grisham, W., Lom, B., Lanyon, L., & Ramos, R. (2016). Proposed
training to meet challenges of large-scale data in neuroscience.
Frontiers in Neuroinformatics, 10, 28. https:// doi. org/ 10. 3389/
fninf. 2016. 00028

Halchenko, Y. O., Meyer, K., Poldrack, B., Solanky, D. S., Wagner, A.
S., Gors, J., MacFarlane, D., Pustina, D., Sochat, V., Ghosh, S.
S., Mönch, C., Markiewicz, C. J., Waite, L., Shlyakhter, I., de la

https://github.com/datalad-handbook/book
https://github.com/datalad-handbook/book-datalad-intro
https://github.com/psychoinformatics-de/rdm-course
https://github.com/psychoinformatics-de/knowledge-base
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/tpc.1973.6592685
https://doi.org/10.1109/tpc.1973.6592685
https://doi.org/10.5281/zenodo.4317623
https://doi.org/10.1371/journal.pcbi.1005963
https://doi.org/10.1371/journal.pcbi.1005963
https://doi.org/10.1198/106186007x178663
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.3389/fninf.2016.00028
https://doi.org/10.3389/fninf.2016.00028

645Neuroinformatics (2024) 22:635–645

Vega, A., Hayashi, S., Häusler, C. O., Poline, J.-B., Kadelka, T., ...
Hanke, M. (2021). Datalad: Distributed system for joint manage-
ment of code, data, and their relationship. Journal of Open Source
Software, 6, 3262. https:// doi. org/ 10. 21105/ joss. 03262

Hess, J. (2010). git-annex. https:// git- annex. branc hable. com/
Koehler Leman, J., Weitzner, B. D., Renfrew, P. D., Lewis, S. M., Moretti,

R., Watkins, A. M., Mulligan, V. K., Lyskov, S., Adolf-Bryfogle,
J., Labonte, J. W., et al. (2020). Better together: Elements of suc-
cessful scientific software development in a distributed collaborative
community. PLoS Computational Biology, 16, e1007507. https://
 doi. org/ 10. 1371/ journ al. pcbi. 10075 07

Mehlenbacher, B. (2003). Documentation: Not yet implemented, but
coming soon. The HCI handbook: Fundamentals, evolving tech-
nologies, and emerging applications, (pp. 527–543).

Parnas, D. L. (2011). Precise documentation: The key to better soft-
ware. In S. Nanz (Ed.), The Future of Software Engineering (pp.
125–148). Berlin, Heidelberg: Springer. https:// doi. org/ 10. 1007/
978-3- 642- 15187-3_8

Pawlik, A., Segal, J., Sharp, H., & Petre, M. (2015). Crowdsourcing
scientific software documentation: A case study of the NumPy
documentation project. Computing in Science & Engineering,
17(1), 28–36. https:// doi. org/ 10. 1109/ mcse. 2014. 93

Pinelli, T. E., Glassman, M., & Cordle, V. M. (1982). Survey of reader
preferences concerning the format of NASA technical reports.
Technical Report NASA-TM-84502, National Aeronautics and
Space Administration.

Raymond, E. (1999). The cathedral and the bazaar. Knowledge,
Technology & Policy, 12, 23–49. https:// doi. org/ 10. 1007/
s12130- 999- 1026-0

Segal, J. (2007). Some problems of professional end user developers.
IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC 2007). https:// doi. org/ 10. 1109/ vlhcc. 2007. 17

Swarts, J. (2019). Open-source software in the sciences: The challenge
of user support. Journal of Business and Technical Communica-
tion, 33, 60–90. https:// doi. org/ 10. 1177/ 10506 51918 780202

The Turing Way Community. (2022). The Turing Way: A handbook for
reproducible, ethical and collaborative research (Version 1.0.2).
Zenodo. https:// doi. org/ 10. 5281/ zenodo. 76257 28

Theunissen, T., Heesch, U., & Avgeriou, P. (2022). A mapping study on
documentation in continuous software development. Information and
Software Technology, 142, 106733. https:// doi. org/ 10. 1016/j. infsof.
2021. 106733

van Loggem, B., & van der Veer, G. C. (2014). A documentation-
centred approach to software design, development and
deployment. In A. Ebert, G. C. van der Veer, G. Domik, N.
D. Gershon, & I. Scheler (Eds.), Building Bridges: HCI,
Visualization, and Non-formal Modeling (pp. 188–200). Berlin,
Heidelberg: Springer.

Wagner, A. S., Waite, L. K., Waite, A. Q., Reuter, N., Poldrack, B.,
Poline, J. -B., Kadelka, T., Markiewicz, C. J., Vavra, P., Paas,
L. K., Herholz, P., Mochalski, L. N., Kraljevic, N., Heckner,
M. K., Halchenko, Y. O., & Hanke, M. (2020). The DataLad
Handbook: A user-focused and workflow- based addition to
standard software documentation. 25th annual meeting of the
Organization for Human Brain Mapping (OHBM). https:// doi.
org/ 10. 5281/ zenodo. 79067 18

Wiener, M., Sommer, F., Ives, Z., Poldrack, R., & Litt, B. (2016). Ena-
bling an open data ecosystem for the neurosciences. Neuron, 92,
617–621. https:// doi. org/ 10. 1016/j. neuron. 2016. 10. 037

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G.,
Axton, M., Baak, A., Blomberg, N., Boiten, J. -W., da Silva
Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark,
T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T.,
Finkers, R., ... Mons, B. (2016). The fair guiding principles for
scientific data management and stewardship. Scientific Data, 3(1).
https:// doi. org/ 10. 1038/ sdata. 2016. 18

Wilson, G. (2016). Software carpentry: Lessons learned. F1000Re-
search, 3, 62. https:// doi. org/ 10. 12688/ f1000 resea rch.3- 62. v2

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.21105/joss.03262
https://git-annex.branchable.com/
https://doi.org/10.1371/journal.pcbi.1007507
https://doi.org/10.1371/journal.pcbi.1007507
https://doi.org/10.1007/978-3-642-15187-3_8
https://doi.org/10.1007/978-3-642-15187-3_8
https://doi.org/10.1109/mcse.2014.93
https://doi.org/10.1007/s12130-999-1026-0
https://doi.org/10.1007/s12130-999-1026-0
https://doi.org/10.1109/vlhcc.2007.17
https://doi.org/10.1177/1050651918780202
https://doi.org/10.5281/zenodo.7625728
https://doi.org/10.1016/j.infsof.2021.106733
https://doi.org/10.1016/j.infsof.2021.106733
https://doi.org/10.5281/zenodo.7906718
https://doi.org/10.5281/zenodo.7906718
https://doi.org/10.1016/j.neuron.2016.10.037
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.12688/f1000research.3-62.v2

	Teaching Research Data Management with DataLad: A Multi-year, Multi-domain Effort
	Abstract
	Introduction
	DataLad
	Overarching Goals for Training Materials

	A DataLad Research Data Management Handbook
	Design Considerations
	The Technical Backbone
	Content
	Project and Community Management
	Paperback Version

	RDM Online Course
	Design Considerations
	The Technical Backbone
	Content

	Knowledge Base and Online Office Hours
	Design Considerations
	The Technical Backbone
	Content

	Impact and Scope
	Online Handbook
	Workshops
	Knowledge Base

	Lessons Learned
	Customization vs Complexity
	Yes, there Can be too much Documentation
	Keeping Online Workshops Interactive
	Avoiding Installfest
	Software Environment Nuances
	Cloud Computing
	Data Production and Data Consumption
	Technical Writing Takes Time

	Conclusion
	Information Sharing Statement
	Acknowledgements
	References

