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Parkinson’s Disease is a progressive neurodegenerative disorder afflicting almost 12 million people.
Increased understanding of its complex and heterogenous disease pathology, etiology and symptom
manifestations has resulted in the need to design, capture and interrogate substantial clinical
datasets. Herein we advocate how advances in the deployment of artificial intelligence models for
Federated Data Analysis and Federated Learning can help spearhead coordinated and sustainable
approaches to address this grand challenge.

The drug development process remains an arduous task spanning target
identification, drug design, preclinical development, clinical evaluation and,
finally, regulatory approval. The current investment required to bring a
successful drug tomarket is estimated to exceed$2B1 in aggregated costs and
yielding clinical success rates of <10%2. Within the neurosciences, the
success rates are often lower, a consequence of the added complexities in
drug transport, brainphysiology, and target heterogeneity, promptingmany
pharmaceutical companies to prioritize investments in other indications3.
Despite these challenges the search for new CNS agents continues at a fast
pace due to high unmet need, high disease burden and rapidly growing

societal needs. Neurodegenerative diseases such as Alzheimer’s and PD
represent someof the greatest challenges for the healthcare system, afflicting
over 50 million people and inflicting a >$300B economic burden4. Indeed,
PD is regarded as the world’s fastest-growing neurodegenerative condition,
with a growth that takes the shape of a pandemic5. The latest data show that
currently 11.8 million people worldwide are affected by PD6. Reflecting the
magnitude of the task, it is little surprise that current efforts involve colla-
borative approaches between industry, research communities and patient
associations, further facilitated in the PD arena by consortia and founda-
tions such as the Critical Path Institute for PD (CPP), Michael J Fox
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Foundation (MJFF), Accelerating Medicines Partnership Program for PD
(AMP-PD), the Parkinson’s Progression Markers initiative (PPMI), the
Innovative Medicines Initiative (IMI), and others. Such public-private
dialog has already begun to have an impact in theAlzheimer’sDisease (AD)
community, where coordinated inputs from patient groups have played a
key role in the market access debate for recently approved therapeutics7.

In PD, although symptomatic relief is available through L-Dopa and
other treatments, the pursuit of the first disease-modifying therapies con-
tinues apace with over sixty active clinical studies involving candidate
drugs8, and complimentary approaches investigating lifestyle interventions9.
The diversity of pharmacological approaches being pursued (small mole-
cule, biologics, cell & gene therapies, anti-inflammatories) is reflective of the
complexities of the disease, with a multifaceted pathophysiology, broad
phenotypic heterogeneity and pro-dromal periods which can span several
decades before evolving into clinically diagnosable motor and non-motor
clinical entities10. There are now suggestions to redefine Parkinson’s bio-
logically based on genetic and biomarker classification systems11–13. For
example, a large part of the spectrum of PD and related disorders could be
considered “Neuronal alpha-Synuclein Disease” (NSD), in a spectrum,
which would also encompass disorders such as dementia with Lewy bodies,
which display characteristic Lewy body and Lewy neurite pathology in
neurons of the central and peripheral nervous systems11,12. The complexities
of designing and evaluating drugs, which might function to attenuate,
ameliorate or reverse patient symptoms, are compounded by the lack of
validated markers of disease progression. Drug development for PD would
benefit from the identification of measures that can more accurately detect
changes in the early stages of the disease, to assist in the evaluation of
therapeutic agents both in terms of efficacy demonstration and clinical
effectiveness.

Traditional assessment instruments such as the Movement Disorders
Society revision of the Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) are subjective, performed in clinic environments in which patient
responsesmay be affected by a variety of extrinsic factors (fatigue, emotional
state etc), and are typically administered episodically, all ofwhichmay result
in incomplete or inaccurate representation of patients’ actual functioning
under real-world conditions. Rating scales are also unable to capture minor
sub-clinical changes in patient performance or state, and can be partially
reliant on the person’s recall, which can pose additional challenges as cog-
nitive function becomes impaired as the disease advances. They may also
include an element of subjectivity derived from the external rater. Digital
monitoring technologies offer the promise for more frequent, objective and
likelymoreprecise assessments and there is considerable interest in applying
both active and passive digital approaches to gather evidence for diagnosis,
staging, progression, sign and symptom relevance, and drug efficacy
studies14. Working alongside non-profit research foundations, the clinical
research community and the pharmaceutical industry, the Critical Path
Institute has spearheaded efforts to drive meaningful data capture
approaches for digital drug development tools15. A framework for digital
biomarker development has been articulated in collaboration with the
Digital Medicine Society16, and sustained efforts are underway on how to
integrate these data alongside benchmark conventional measures (genetic,
serologic, imaging, rating)17. Herein we outline elements that may be useful
to capitalize on thismomentum, and believe that insights from data sharing
or federated learning approaches could help to accelerate the development
and approval of the first disease-modifying drugs for PD. Any successful
approach will reflect the needs of facilitators (clinical investigators, study
delivery teams), end users (patient and advocate community), the approval
process (regulators, payers), and developers (pharmaceutical industry,
digital technology innovators). A common thread for approaching such a
grand ‘moonshot’ challenge is the pivotal role of medical data, including
what it contains, when and how it is captured, andhow it is stored andmade
available for analysis. Separately from digital monitoring technologies,
striking advances in the federated use of Artificial Intelligence (AI) and
MachineLearning (ML) technologiesmayhave thepotential to springboard
this pursuit by building on foundational frameworks18–20. We also outline

the potential for this challenge and offer models for near-term deployment
to accelerate standardization and harmonization of measures from which
the data are derived.

Application of Federated Learning in drug discovery
and development
Drug development programs provide high-quality andwell-curated sources
of data, but patient numbers in any individual clinical program are small
compared to the large volumes of data typically used to trainAI/MLmodels.
Combining data frommultiple programs could enablemore effective use of
AI/ML approaches, but this is challenging due to the complexity of
acquiring, managing, standardizing and preserving the data. Furthermore,
commercially sensitive clinical trial data are considered highly proprietary
and any patient-derived data are also subject to strict regulations regarding
governance and confidentiality. This makes data sharing challenging and
historically federated approaches to data analysis have been limited. The
Latin term foederatus roughly translates to ‘federated, combined, andbound
by treaty’. This latter phrase holds the key to how drug developers are
beginning to work together on complex data projects through codified
approaches and pre-agreed principles21. For the purpose of drug develop-
ment, we use the term Federated Learning (FL) to encompass sharing data,
samples or other knowledge in a pre-competitive space to accelerate ther-
apeutic development for the benefit of all parties. Given dramatic devel-
opments in AI methodologies, increasing computational power, data
storage capacities and data security advances, leveraging FL in drug devel-
opment should no longer be an insurmountable challenge if barriers to
making the data accessible can be removed22. AI has been identified as a
game-changing technologyby thedrugdevelopment community andmajor
pharmaceutical companies are investingheavily in its deployment23.Among
numerous potential applications, its use in analyzing patient derived data
from clinical trials is attracting considerable interest, heightened by the
prospect of de-risking through collaborative approaches and high levels of
data security.

In the case of federated data sharing networks, collaborating parties can
collectively access and analyze geographically distributed datasets through a
series of decentralized, interconnected locations (nodes). Each participant
maintains control and independence of their respective de-identified
database as local policies and procedures will vary based on environment24.
This approach has been used for numerous collaborations between clin-
icians and researchers at academic medical centers and healthcare institu-
tions, overcoming barriers to disparate, inaccessible and siloed datasets.
Levels of access and data types under these agreements can be specified to
help maintain data sovereignty and security and define the network and its
degree of federation (versus conventional open data-sharing repositories).
An early example of data sharing was the Alzheimer’s Disease Neuroima-
ging Initiative (ADNI) formed in 2004 and which paved the way for col-
laborative data sharing in dementias25. Numerous data repositories have
since emerged ranging from the NIH National Centralized Repository for
Alzheimer’s Disease (NCRAD)26, to the PPMI, and the Accelerating Med-
icines Partnership (AMP) program, a precompetitive partnership between
government, non-profit and industry27. Another notable example is the
collaboration between the Global Alliance for Genomics and Health
(GA4GH) and the International Neuroinformatics Coordinating Facility
(INCF)28. The partners share multivariate data (imaging, genomic, bio-
marker, DMPK and phenotypic) in order to help maximize predictive
power in clinical studies. Data are shared under the now-established FAIR
(Findable, Accessible, Interoperable, and Reusable) principles29. A recent
study also examined the potential impact of federated analyses on post-
marketing drug safety studies emanating from the EMA, concluding that
improvement in precision is attainable30. Adaptations of this approach
(query-based data interrogation) have been utilized among partners in the
Dementia Platform UK (DPUK)31, the Global Alzheimer’s Association
Interactive Network (GAAIN)32, the Alzheimer’s Disease Data Initiative
(ADDI)33, the Neurodegenerative Disease Knowledge Portal (NDKP)34,
the NIH Cloud Platform Interoperability program (NCPI)35, and the
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European Medical Information Framework Alzheimer’s Disease program
(EMIF-AD)36.

Federated learning (FL) approaches use decentralized raw data held by
participants that is not shared or moved but, instead, subjected to AI
machine learningmodels sent to the locus of the data where they are locally
trained. These learnings from the analysis are subsequently shared with a
global model through updates of parameters as the model evolves. This
approach ensures that sensitive (patient) data fidelity and privacy are pre-
served but pooled data analysis can nonetheless be effected37. Examples of
their use in clinical studies range fromrefinement of clinical trial approaches
to drive primary outcomes, identifying optimal patient inclusion criteria,
uncovering subtle signals on drug effects in specific populations and com-
paring longitudinal real-world evidence across different patient cohorts. A
well-publicized example of this approach was the MELLODDY (MachinE
Learning LedgerOrchestration forDrugDiscoverY) project orchestrated by
the Innovative Medicines Initiative in Europe38. Ten pharmaceutical com-
panies participated in the project from 2019-2022 which assessed the
potential of model-driven FL to enhance predictive learnings from QSAR
data. 20 million small molecule drug candidates across 40,000 biological
screens and 2.6 billion proprietary data points were assessed through the
SAR data warehouses of the participating institutions. Outcomes were
positive with increases of up to 4% on the key RIPtoP (Relative Improve-
ment of Proximity to Perfection) measure. Each consortium partner con-
tributed to specific tasks, and this is regarded as a first-in-kind federated
learning project at data warehouse scale in the pharmaceutical industry38. A
potential limitation lay in the need for institutions to disclose assay details
among partners, thereby precluding the inclusion of highly sensitive and
proprietary exemplars.

Another FL-based platform involving the pharmaceutical industry is
Effiris. Developed by Lhasa Ltd, this fully functional solution provides
secondary pharmacology prediction by interrogation of data from within a
consortium of pharmaceutical companies39. Beyond drug discovery there
are numerous rapidly developing applications of FL in clinical research
relevant to neurodegenerative disease. In one example, FL was used to
develop AI models for PD by analyzing speech patterns from different
languages40. This is noteworthy as the resultingmodels were comparable or
superior to local approaches based onmono-lingual models and bodes well
for a unified (global) approach to speech-based detection of disease. Of
direct significance, an evaluationof FLalgorithmshasbeen conductedbased
onmulti-omic diagnostic data from people with PD41. Derived fromAMP-
PD warehouses, which include genomic, transcriptomic and clinic-
demographic data, it involved splitting of the PPMI and PDBP cohorts
for the development of the training set. The performance of the federated
algorithm derived from aggregation strategies was within 2% of the top-
performing central ML algorithm, suggesting high potential for collabora-
tive deployment41.

FL strategies are also being deployed among clinical networks. For
example, theMayoClinic has established a new venture, the Clinical Data
Analytics Platform, allowing external parties to interrogate its data for
algorithm refinement42. Similarly, Kings College in London have estab-
lished an FL network among four teaching hospitals and three Uni-
versities to stimulate improvements among clinical pathways43. Of note,
the patient data represents approximately 33% of London’s 9 million
population. Examples of FL in clinical research include the Federated
Tumor Segmentation Tool network, a consortium of 30 institutes com-
mitted to refinement in the detection of tumor boundaries44, the Kaapana
Project involving radiologic imaging data among 36 University hospitals
in Germany45, and AI for value based healthcare (AI4VBH) where 12 UK
hospital trusts are deploying FL to improve patient pathways46. In all cases
a primary consideration is ensuring data privacy laws are adhered to
(HIPAA, GDPR) and that the approaches are future-proofed as far as
possible for potential changes in these laws that might impact use. This is
especially important in neurodegenerative diseases, where prodromal
periods can last decades and longitudinal monitoring may span over
multiple decades.

The examples cited above bode well for the deployment of FL
approaches in PDand other neurodegenerative indicationswith their utility
in diagnostics clearly demonstrated. A grand challenge however will be to
deploy such approaches for understanding and modeling longitudinal
progression in PD. This will require sustained and coordinated long-term
effort among multiple stakeholders, and would benefit from harmonized
approaches at the outset. Herein we outline how this might be pursued.

A harmonized FL model for Parkinson’s Disease?
The pursuit of therapeutics for PD is evolving and dynamic with over 130
active clinical trials roughly split between symptomatic therapies and
disease-modifying therapies8. Therapeutics span all drug modalities and
include repurposed and reformulated agents and a limited number of
nondrug-based interventions. Although encouraging, there is a dramatic
reduction in interventions transitioning from phase 2 to 3 and this may
reflect the heterogeneity and complexities of the disease and its tapestry of
symptoms. Sources of variability include:
• Genomic and epigenetic variants affecting PD and comorbidities
• Prodromal periods that can exceed 10 years
• Differing rates of disease progression
• Episodic assessment methods, which cannot fully represent changes

occurring in the underlying disease
• Heterogeneity in motor and non-motor manifestations
• Differential impact of demographics, lifestyle variables, co-morbidities

and polypharmacy on symptom manifestation and drug efficacy

Given the magnitude of the challenge faced there have been sustained
and coordinated efforts on clinical care and trial design resulting in sub-
stantial andgrowingdata repositories around theglobe47. Compounding the
complexity of clinical studies is the realization that current methods of
assessment for detection, staging and monitoring are imprecise, compli-
cating and potentially limiting the inter-operability of datasets48. Recent
advances in Digital Health Technologies (DHT’s) seem poised to help
address this problem as they offer the potential for standardized, quantified
means for collection, storage, analysis and sharing of archival quality data to
track disease over multi-decade timelines (Table 1)49.

Beyond patient care, such data is also critical to inform decisions by
regulatory bodies for enablingmedical product decisions, andproviders and
payers for prescribing and reimbursement decisions.Accordingly, we sit at a
pivotal juncture where decisions need to be made on what data are most
relevant to serve different stakeholder needs, how we can best capture such,
and what format is the most conducive to shared learnings. The latter is of
key significance ifwe are to harness the transformative promise ofAI andFL
to advance treatment options in PD. In terms of progress toward this goal, a
number of PD cohorts have established multi-modal datasets derived from
traditional and digital measures including the Oxford Parkinson’s Disease
Centre (OPDC), MJFF, PPMI50–52, the Personalized Parkinson’s Project
(PPP)53, and the CPP global consortium17. As an example, the latter, over-
seen by the Critical Path Institute (CPath), hosts an aggregated database
made available to qualified research investigators, which contains obser-
vational cohort and clinical trial data from 31 datasets covering over 15,000
participants. An overview of the complexity and diversity of clinically
relevant patient-derived data is depicted in Fig. 1, representing a blend of
conventional and digitally derived assessment methods.

In each category, there are growing volumes of data available from a
wide variety of clinical, epidemiological and longitudinal studies, including
clinician-reported outcomes, patient-reported outcomes, digital, imaging
and physiological data that is ideally suited to use of FLmethods to identify
definitive signals. Moreover, as these data evolve over time, including
symptom modulation by patients’ prescribed therapeutics (including for
comorbidities e.g., GLP-1 inhibitors for Diabetes Mellitus), they could also
represent de facto, real world phase 4 clinical data. A major opportunity
clearly exists for FL approaches to iteratively identify and integrate ortho-
gonal learnings from these various datasets. Such an approachmay have the
potential to identify and address biases inherent in existing datasets (e.g.
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from demographic, comorbidity) and present an opportunity to promote
inclusivity in data capture for future interventional and observational
studies.

In addition to designing optimal FL networks for data analysis, the
question of network composition itself is also pertinent. The existing FL
networks for drug development have involved clinical research centers,
nonprofit organizations, and pharmaceutical companies. In the present
case, the engagement of technical developers (hardware,firmware, software)
may also be critical, as they play a key role in the devices used to capture and
calibrate patient data. This could encompass large and smaller technology
companies, whose business models will differ widely in terms of deliverable
timelines, monetization formats, and incentivization strategies54. This is

likely to raise new questions about intellectual property, and ownership of
any AI/ML models trained through the FL process. There is also the
omnipresent concern regarding data privacy and security when sharing
among this industry group and the need to strictly adhere to informed
consent protocols pertaining towhen the datawas captured and its intended
use. Such concerns are readily addressable under the tenets of FL approaches
(as opposed to Federated Data Analyses) as source data are retained by the
owner, and rigid firewalls protect both its fidelity and sovereignty55. Like-
wise, these data could also play an enabling role in informing post-
marketing assessment and safetymonitoring. A representative overviewof a
hypothetical FL model composed of four collaborating partners is outlined
in Fig. 256. Source data are preserved at each client site but algorithms are

genomic markers
e.g. LRRK2

serologic & urologic markers MRI, DaTscan, FDG

microbiota
16s rRNA seq

REM sleep cycles
nocturnal breathing

gait, asymmetry
morning Bradykinesiaspeech phonation

prosody, intonation
memory, cognition
executive function

essential tremor
limb dexterity

Clinical safety data,
polypharmacy effects

e.g. -syn, DATe.g. -syn, sNFL

Fig. 1 | Diversity of clinical data from people with PD in the CPath database.

Table 1 | Selected clinical and observational studies in PD utilizing digital technologies84

Technology Exploratory measurements NCT Sponsor #Months/Subjects

Smartphone Symptom self-management 05120609 Beats medical 12/40

Wearable devices Multiple activities 05529121 VA medical center 48/85

Wearable devices Motor function correlations 03681015 University of Rochester 35/132

IoMT & smart objects Activities of daily living 05830253 ICS Maugeri SpA 36/30

Multiple devices Cognitive and motor 04139551 University of Oxford 86/300

Smartwatch Motor and activities of daily living 04985539 Radboud Medical Center 40/144

Smartphone Speech analysis 05421832 Northwestern U 24/120

Digital walking aid Freezing of gait 03978507 Sourasky Medical Center 51/62

Digital on-body sensor Functional studies 05874739 Newcastle / NHS Trust 26/751

Eye tracking Digital phenotyping 05638477 Misericordiae Hospital 20/122

Smartphone/watch Motor, cognition, speech 03100149 Hoffman-La Roche 104/316

Smartwatch Cognitive and motor 03364894 Radboud Medical Center 75/520

Contactless sensor Gait and sleep metrics 05363046 BlueRock Therapeutics 24/50

Contactless sensor Gait and sleep metrics 06344026 Aspen Neuroscience 60/9
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trained on the datasets and are then aggregated and subsequently dis-
tributed in the formof a globalmodel.A third-party, nonprofit coordinating
body could play a pivotal role in enabling and promoting such practices in
PD (and potentially other disease areas) as exemplified by the CPath, the
Foundation for the National Institutes of Health AMP®-PD program, and
MJFF. Several of these third parties also oversee consolidated datasets that
could help in refining the algorithms, for the benefit of data generated by the
independent partners and other interested parties (Fig. 2).

Defining a three-year roadmap for FL-inspired
approaches to PD
In order to capitalize on the momentum surrounding FL methods, funda-
mental decisions are needed on the scope and nature of data to be assessed.
We outline three key parameters that should be considered as part of a
roadmap to success in the design and adoption of a FL model in PD.

What should be measured and when?
Given the wide range of data sources (Fig. 1) there is a need to agree on
common sub-features of highest relevance for drug development. For
example,measures such as bradykinesia57, gait58, tremor59, falls60, sleep61, and
speech pattern abberations62 are all Concepts of Interest (COI’s) that might
be considered depending on various Contexts of Use (CoU’s). Digital ver-
sions of these measures come with obvious advantages, including being
objective innature, the possibility of beingmeasuredmore frequently than is
possible for periodic in-clinic visits, ecological validity (as assessments are
performed in patients’ real-world, day-to-day environments), and the
promise of being more sensitive to dynamic changes compared to in-clinic.
Two challenges, however, present themselves: 1) the need to demonstrate
that any changes measured have direct relevance to the patient’s disease
status and quality of life and 2) it has yet to be determined from longitudinal
studies whether variability between patients in rates of progression will
nullify the advantage that precision of measurement might bring when
using digital measures as study outcomes.

In terms of imaging data, the power of DaTscan and potentially
multimodal imaging modalities, including PET, may provide insights63, as
underscored in recent AD research64. Finally, fluid markers such as α-
synuclein derived from CSF, serum and potentially other non-invasive
matrices might play a key role6, and additional emerging fluid biomarkers
such as NfL and GFAP can be considered. Collectively these represent
potentially powerful tools but how they can be best leveraged for the drug
developmentprocess remains anopenquestion, and onewhich is crucial for
determining their intended use in terms of CoU. A clear opportunity exists,
however, for FL approaches to integrate insights frommultiple studies that
collect different subsets of information from diverse types of behavioral and
physiological measures.

How should we measure it?
Though many of the analytics in Fig. 1 are deployed under highly stan-
dardized conditions, there is considerable variability in the capture of cog-
nitive,motor, and non-motor changes. The use of wearables or smartphone
devices to capture patient data has been exemplified by numerous studies,
including the landmarkOXQUIP65, andWATCH-PDstudies66,67, and there
is compelling evidence that device-deriveddata can complement traditional,
physician conducted, assessments68. Importantly, digital measures and
biomarkers cangive insight into thepatient’s functioningoutside of in-clinic
visits, i.e. at home, which may well be very different from how the patient
performswhile being examined in a clinical environment, as illustrated by a
recent 12-month comparative study69. Given the rapidly evolving digital
technologies that can capture real-time data longitudinally, there is also the
consideration of the merits of passive over active measuring methods for
long term monitoring61,70. For example, passive contactless home sensors
employingArtificial Intelligence can analyzewireless signals that bounce off
patients’ bodies to measure gait speed, mobility, respiration, and sleep
metrics, while patients go about their daily activities without the need for
wearable devices. These sensors have been shown to provide signals (digital
measures / biomarkers) for detecting PD71, as well as monitoring disease
progression and response to treatment72, and are nowbeing deployed for at-
home monitoring in PD clinical trials73,74. Such approaches offer the
potential for reducing patient bias and burden, and potentially increasing
likelihood of capturing clean, standardized data over time. With all
approaches it will be imperative to also consider best practice in data col-
lection methodology and metadata documentation in order to permit
accurate interpretation in future years. Capturing raw data, for example,
would enable future processing with newer, refined algorithms as they
become available.

Leveraging existing data sources
Akey enabler in pursuing the vision outlined in Fig. 2 will be to springboard
from the insights provided by existing data sources for the development and
refinement of operating models and algorithm design. Among numerous
opportunities, data from the Oxford Parkinson’s Disease Cohort50, PPMI51,
MJFF52, AMP®-PD75, Mobilise-D76, PPP53, OXQUIP65, the Global Parkin-
son’s Genetics Program77, and European Platform for Neurodegenerative
Diseases78 are potential sources. Machine learning techniques are already
well advanced across these initiatives, but there is acknowledgment that
multi-modal longitudinal data still remains relatively under-utilized, espe-
cially for early PD79.

Arriving at consensus on these topics will require active coordination
from an independent entity, with partner foundations, researchers and
sponsor companies and theMovementDisorders clinical community. Itwill
also be essential to engage with the regulatory bodies at an early stage to

Fig. 2 | Hypothetical Federated learning network
composed of four partners with a fifth, nonprofit
coordinating body overseeing aggregation and
strategy.
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ensure key principles and plans are aligned with regulatory expectations.
Key pivotal issues to achieve consensus on include:
• Inclusion criteria and consent for participation in FL approaches
• Addressing potential limitations and biases within datasets
• System architecture
• Standardization of minimal datasets, protocols and algorithms
• Data heterogeneity
• Privacy/security
• Information leakage
• Traceability and accountability
• Ownership of IP in models trained on federated data
• Roles and accountabilities of consortia members

As a next step we anticipate facilitating a series of stakeholder work-
shops at upcoming events in the annual cycle of PD-focused research
gatherings, including congresses (AD/PD, MDS etc.) and CPP meetings to
bring like-minded experts together for formal and informal exchange. Ide-
ally such fora will be driven by defined outcomes and goals, and codified, for
example, in a three-year roadmap resulting in design of a viable FL frame-
work. In addition to capitalizing on momentum building through AI tech-
nologies, other developments in data sharing and access may contribute to
this grand challenge. For example, NIH guidelines for grantees now require
an acceptable data monitoring and sharing plan (DMSP)80. Given that NIH
invests over $30B annually in biomedical grant awards, such efforts could
contribute substantively to our shared knowledge base in PD and related
neurodegenerative and cognitive diseases through engagement in an FL
network. Indeed, the potential to exploit commonalities with research data
captured across neurodegenerative diseases could be prioritized. Federated
learning models applied to digital, imaging and clinical data in Alzheimer’s
Disease offer obvious potential, and the global prevalence ( > 50 million
dementia cases and expected to double every twenty years) underscores the
magnitude of the opportunity. In the case of PD there is also the opportunity
tomore fully understand the idiosyncrasies of related conditionswith shared
pathological mechanisms and symptom presentation, such as PSP, which is
often misdiagnosed as PD in early stages. Through a more comprehensive
approach to data analysis thismight also allow enhanced applicability of any
therapeutic developments to benefit broader patient populations. Also
prescient is the realization that in order to achieve near-term progress in
clinical development we may need to develop novel endpoints which allow
faster readout, as has been demonstrated in the oncology field81. Given the
nature of PD and typically narrow window of eligibility for many disease-
modifying therapy (DMT) clinical trials, such an approach may further
enrich our corpus of clinical data for subsequent deployment of FLmethods,
and also help further addressing potential bias in clinical studies.

Conclusion and recommendations
The age-old anecdote that ‘it takes a village to raise a child’ embodieswell the
challenge and community collaboration needed in order to successfully
introduce therapies for PD. The confluence of new technologies, clinical
insight and patient engagement seems poised to benefit from the wave of
momentumsurroundingAImethods indrugdevelopment.Thehope is that
through a combination of best practices in data sharing andFL strategies the
clinical development of disease-modifying therapies for PD can accelerate.
We approach this opportunity at a pivotal time where the biological defi-
nition of PD is refining our approach to disease staging, new sensor tech-
nologies becomepowerful allies for the diagnosis andassessmentofpatients,
and computational firepower offers unparalleled opportunities for data
analysis and collective learning. The potential for precompetitive colla-
boration models is substantial and may offer new dimensions beyond PD
and neuroscience82. This said, to be successful we must learn from prior
experiences regarding data sharing, and accept this challenge with focus,
commitment and resolve83. In terms of concrete next steps, this author
group intends to embark upon identification of harmonized standards
(commonminima)ofwhat tomeasure andhowtomeasure for thepurposes
of supporting and enabling FL principles even further. We would like to

encourage all involved in PD research and development to carefully con-
sider data sharing and FL approaches based on their evident potential to
advance science, disease understanding, and help develop breakthrough
treatments for PD. It is indeed our duty and responsibility to ensure this
opportunity is capitalized upon, for the benefit of the millions of patients
and their families afflicted by this disease.
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