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Characterizing the interactions between
influenza and respiratory syncytial viruses
and their implications for epidemic control

Sarah C. Kramer 1 , Sarah Pirikahu1, Jean-Sébastien Casalegno2,3,4 &
Matthieu Domenech de Cellès 1

Pathogen-pathogen interactions represent a critical but little-understood
feature of infectious disease dynamics. In particular, experimental evidence
suggests that influenza virus and respiratory syncytial virus (RSV) compete
with each other, such that infection with one confers temporary protection
against the other. However, such interactions are challenging to study using
common epidemiologic methods. Here, we use a mathematical modeling
approach, in conjunction with detailed surveillance data from Hong Kong and
Canada, to infer the strength anddurationof the interactionbetween influenza
and RSV. Based on our estimates, we further utilize our model to evaluate the
potential conflicting effects of live attenuated influenza vaccines (LAIV) onRSV
burden. We find evidence of a moderate to strong, negative, bidirectional
interaction, such that infection with either virus yields 40-100% protection
against infection with the other for one to five months. Assuming that LAIV
reduces RSV susceptibility in a similar manner, we predict that the impact of
such a vaccine at the population level would likely depend greatly on under-
lying viral circulation patterns. More broadly, we highlight the utility of
mathematical models as a tool to characterize pathogen-pathogen
interactions.

Although pathogens are often studied in isolation, mounting evidence
suggests that interactions, in which one pathogen impacts the risk of
infection or disease due to another pathogen, are a common and
important feature governing their epidemiological dynamics1–3. These
interactions can be characterized according to their major compo-
nents: theymay bepositive (i.e., infectionwith onepathogen facilitates
or exacerbates infection with another) or negative (i.e., infection with
one pathogen inhibits ormitigates infection with another); may have a
strong or a weak effect; may be short-lived or long-lasting; may be
symmetric (i.e., both pathogens impact each other in the sameway) or
asymmetric; and may operate according to a range of biological

mechanisms, including changes to the immune response or to host-
cell gene expression4.

The mechanisms underlying these interactions often occur at
the individual level, but the existence of an interaction can lead to
significant, and sometimes unexpected, consequences at the
population level5,6. For example, if infection with one pathogen
increases susceptibility to another, as demonstrated for influenza
viruses and the Streptococcus pneumoniae bacterium7,8, public
health measures designed to reduce infection with the first patho-
gen may also succeed in combating the cocirculating pathogen.
Conversely, if infection with one pathogen reduces susceptibility to
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another, then measures to control this pathogen may lead to unin-
tentional increases in the burden of the other. For example, seasonal
influenza vaccination has been associated with an increased risk of
both pandemic influenza H1N1 2009 (H1N1pdm09)9 and non-
influenza respiratory virus infection10, a finding that could be due
to the existence of negative interactions. For this reason, it is critical
that interactions between pathogens be understood and taken into
account when developing public health policy.

One such interaction of public health relevance may exist
between influenza and respiratory syncytial viruses (RSV), both of
which represent significant public health threats, particularly in
young children and the elderly11. Experimental studies have found
that ferrets and mice infected with influenza were less likely to be
infected with RSV upon challenge12,13, and that infection with either
of the two viruses can reduce morbidity upon subsequent infection
with the other12,14,15. In human populations, this interaction is tenta-
tively supported by epidemiologic observations revealing delays in
RSV epidemics occurring during and immediately after the 2009
influenza pandemic16,17. Evidence to date is far from conclusive;
studies on the severity of influenza-RSV coinfections, in particular,
often come to conflicting results, with some studies suggesting that
the interaction instead leads to increased disease severity18,19. A
better understanding of this interaction may play a key role in
informing public health practice. In the presence of a negative
interaction, preventing influenza cases through widespread vacci-
nation may lead to an unintentional increase in RSV burden. How-
ever, if vaccination with a live attenuated influenza vaccine (LAIV)
induces an immune response similar to natural infection, wide-
spread use of this vaccine, in particular, could help prevent RSV
transmission. Understanding which of these conflicting effects is
likely to dominate will help medical and public health practitioners
alike better prepare for the RSV season.

Epidemiologic evidence alone is insufficient to confirm the
existence of this interaction. Observable metrics such as phase dif-
ferences (i.e., the difference in timing between two outbreaks) and
the prevalence of coinfections are prone to mischaracterizing both
the strength and direction of interactions6,20. The applicability of
studies in animal models to human populations is also unclear.
Mathematical modeling approaches offer a promising alternative to
standard epidemiologic study designs because they are able to
capture the complex and nonlinear dynamics inherent to infectious
disease transmission21, and to explicitly account for the mechanisms
underlying an interaction5,20,22. By confronting these models with
data, it is possible to understand the role these properties may play
in generating the outbreak patterns we observe in reality. Mathe-
matical models are also well-suited to exploring the impacts of
prospective public health control measures, as they can be used to
generate counterfactual scenarios5. Despite this potential, to our
knowledge, only one modeling study has attempted to infer the
characteristics of the interaction between influenza and RSV, and
found that data were equally consistent with either a moderate
negative interaction or no interaction23.

Here, we fit a mathematical model of influenza and RSV cocir-
culation to multiple seasons of data from two locations, Hong Kong
and Canada, in order to infer the strength and duration of the
interaction between RSV and different (sub)types of influenza at the
individual level. Additionally, we use our model to assess the
potential impact of widespread LAIV use on the burden of RSV. We
find evidence that infection with influenza or RSV moderately or
strongly reduces susceptibility to the other virus, and that this
reduction may persist for up to several months. Furthermore, we
demonstrate that this interaction may, in some cases, play a sub-
stantial role at the population level. Finally, we show that the impact
of LAIV on RSV burden is likely to be highly dependent on the cir-
culation patterns of both viruses.

Results
Influenza and RSV epidemic patterns are consistent from year
to year
We analyzedweekly data on (1) the number and rate of samples testing
positive for influenza and RSV and (2) the proportion of influenza-like
illness (ILI) per all-cause consultation in Hong Kong and Canada over
several years. Because testing was primarily performed on samples
taken from hospitalized and emergency department patients, these
data are likely biased toward themost severe cases. To achieve amore
representative picture of influenza and RSV circulation among the
population as a whole, we incorporated ILI data as well. Despite Hong
Kong’s subtropical climate, epidemics of influenza A(H1N1) and B
typically followed a clear seasonal pattern, with a single peak occurring
during the winter or spring of each year (Fig. 1a and Supplementary
Fig. 2). Thus, we summed cases of influenzaA(H1N1) andB for ourmain
analyses in Hong Kong. Due to the presence of multi-peak epidemics,
which are challenging to describe using simple models, we did not
consider interactions with influenza A(H3N2) (Supplementary Fig. 2),
although supplementary analyses attempt to account for its circula-
tion (see Supplementary Text). In Canada, where outbreaks of all
influenza subtypes display a clear seasonal pattern, we summed all
influenza cases for our analyses (Fig. 1b).

In Hong Kong, epidemics of RSV displayed weaker seasonality
than those of influenza, with less definite peaks and more persistent
circulation throughout the year. This was not the case in Canada,
where outbreaks of both viruses exhibited similar durations and noi-
siness. There was considerable overlap of influenza and RSV activity
during most outbreaks across all locations, although peak activity for
influenza almost always preceded peak activity for RSV (median dif-
ference = 20 weeks in Hong Kong, 8.5 weeks in Canada). We observed
no clear correlation between time series of influenza andRSVpositivity
rates (p =0.08, Kendall’s τ = −0.067, 95% confidence interval
−0.14–0.008) in Hong Kong, and a moderate positive correlation
in Canada (p < 1e-10, Kendall’s τ =0.62, 95% confidence
interval = 0.57–0.66). However, as discussed in the Introduction, such
correlations alone are uninformative about the underlying interaction
between the two viruses. The total percentage of samples testing
positive for each virus was higher in Canada than inHongKong. Across
both locations, season-to-season attack rates were more variable for
influenza than for RSV (Supplementary Table 1).

Peak ILI activity often coincided with influenza and RSV activity,
although the ILI data were typically noisier (Fig. 1c). This is likely due to
ILI being a nonspecific, symptomatic measure that can be caused by a
wide array of pathogens.

There exists a negative, bidirectional interaction between
influenza and RSV, with a duration of up to several months
In order to characterize the strength and duration of the interaction
between influenza and RSV, we fit a deterministic, compartmental
model of influenza and RSV cocirculation (Fig. 2) to the data
described above. We modeled the interaction effect as a decrease in
the susceptibility to infection with one virus that occurs during
infection with the other virus and that persists for some time after
recovery. We fit the model to all available seasons for a given loca-
tion simultaneously, such that parameters describing the interac-
tion effect were constrained to take the same value in all seasons,
whereas several season-specific parameters were allowed to vary.
Confidence intervals were obtained using a parametric bootstrap24.
A description of all model parameters can be found in Table 1, and
full model equations can be found in Supplementary Equation (1). All
model fitting was conducted using a maximum likelihood approach.
More details on how models were fit can be found in the Methods
and in the Supplementary Text.

Among those currently or recently infected with influenza, we
found evidence of a reduction in susceptibility to RSV by almost
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100% in Hong Kong (θλ1 = 0, 95% confidence interval = 0–0.0003),
and by 39% in Canada (θλ1 = 0.61, 95% confidence
interval = 0.51–0.62). The inferred duration of this reduction was
roughly 100 days (95% confidence interval = 96–112 days) in Hong
Kong and roughly 75 days (95% confidence interval = 32–144 days) in
Canada (Table 1). We find comparable estimates for the strength of
the effect of RSV on susceptibility to influenza (θλ2 = 0, 95% con-
fidence interval = 0–0.13 in Hong Kong; θλ2 = 0, 95% confidence
interval = 0–0.013 in Canada). However, the duration of this effect
was considerably shorter than that of the effect of influenza on RSV
(36 days, 95% confidence interval = 36–44 days in Hong Kong;
20 days, 95% confidence interval = 19–22 days in Canada).

To assess the role that these interactions play at the population
level, we simulated epidemics at the maximum likelihood estimate
(MLE) in the absence of an interaction effect. We predicted that RSV
epidemics would be, on average, 27% larger (range across seasons: 7 to
40%) in Hong Kong and 5% larger (range: 0 to 11%) in Canada if influ-
enza had no effect on RSV susceptibility. Meanwhile, attack rates of
influenza would be, on average, 26% larger (range: 9 to 38%) in Hong
Kong and 31% larger (range: 21 to 45%) in Canada if RSV had no impact
on influenza susceptibility (Supplementary Fig. 12). Overall, our results
suggest that the negative interaction between influenza and RSV can
act to noticeably limit the yearly attack rates of both viruses, although
this is dependent on the circulation patterns of both viruses.

Fig. 2 | Model of influenza and RSV cocirculation. a Model schematic. Boxes
represent themodel states, where the first subscript indicates infection status with
regard to influenza and the second subscript indicates infection status with regard
to RSV (i.e., XIR refers to those infected with influenza and recovered from RSV).
Compartments containing individuals infected with influenza are shown in red,
compartments with individuals infected with RSV are shown in blue, and the
compartment containing coinfected individuals is shown in purple. Arrows repre-
sent possible transitions between compartments; the gray dotted arrows, in

particular, indicate transitions that are influenced by the interaction effect.
b, c Impact of interaction parameters on outbreak trajectories. Plots show simu-
latedRSVoutbreaks from themodel in (a) when varying values for the strength (θλ1,
b) andduration (δ1, c) of the interaction effect of influenzaonRSV aremodeled. The
strongest (b) and longest-lasting (c) interaction effects are plotted in purple, while
yellow lines show RSV outbreaks in the absence of an interaction. The corre-
sponding influenza outbreak is plotted as a dotted line.

Virus: Influenza A(H1N1) + B
RSV

0

10

20

30

2014 2015 2016 2017 2018 2019

Year

%
 P

os
iti

ve

a
Virus: Influenza

RSV

0

10

20

30

2011 2012 2013 2014

Year

%
 P

os
iti

ve

b

5

10

2014 2015 2016 2017 2018 2019

Year

IL
I c

as
es

 p
er

 1
,0

00
co

ns
ul

ta
tio

ns

c

0

20

40

60

2011 2012 2013 2014

Year

IL
I c

as
es

 p
er

 1
,0

00
co

ns
ul

ta
tio

ns

d

Fig. 1 | Respiratory virus positivity and ILI cases over the study period in
Hong Kong (a, c) and Canada (b, d). a, b Weekly percentage of tests positive for
influenza (A(H1N1) andB inHongKong, all subtypes inCanada) andRSV; c,dweekly
number of cases of influenza-like illness reported by public out-patient clinics

(Hong Kong) or primary care providers (Canada), per 1000 consultations. Detailed
information on where to obtain these data can be found in the data and code
availability statements.
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Both temperature and absolute humidity modulate the
dynamics of influenza and RSV
Optimal model fit data from Hong Kong was achieved when both
temperature and absolute humidity were included in the model
(Supplementary Table 5, tested for significanceusing a likelihood-ratio
test), suggesting that temperature and absolute humidity both mod-
ulate the transmission of influenza and RSV. Specifically, our results
suggest that transmission rates of both influenza and RSV are nega-
tively influenced by temperature when controlling for absolute
humidity, and positively influenced by absolute humidity when con-
trolling for temperature (Table 1). The impact of temperature appears
to be stronger for influenza than for RSV, while the impact of absolute
humidity is similar for both viruses. The overall extent of seasonal
forcing over time for both viruses is shown in Supplementary Fig. 8.
Because of the large geographic range over which data from Canada
were collected, we did not explicitly incorporate climate forcing in the
model when fitting to data from Canada.

Inferred reproductive numbers and immune fractions are simi-
lar across locations but highly variable between seasons
In addition to the parameters discussed above, we also fit several
season-specific parameters, including the effective reproductive
numbers (Ri1 for influenza and Ri2 for RSV, where i indicates the sea-
son) and the proportion of the population immune to influenza
(R10 + R120) andRSV (R20 +R120) at the beginning of each season (where
R10 indicates the proportion of the population immune to influenza
alone, R20 to RSV alone, and R120 to both viruses) (Table 1 and Sup-
plementary Fig. 3). The season-specific MLEs of the effective repro-
ductive numbers for influenza ranged from1.3 to 1.7 inHongKong, and
from 1.3 to 1.6 in Canada. Estimates for RSV ranged from 1.2 to 2.0 in
Hong Kong, and from 1.8 to 1.9 in Canada.

We find that immunity to influenza and RSV is highly dependent
on the season. Specifically, the season-specific percentage of the

population immune to influenza at the beginning of a season ranged
from 43 to 91% in Hong Kong, and from 39 to 83% in Canada. Values
inferred for RSV were similarly variable but tended to be lower in
magnitude, ranging from 15 to 56% of the model population in Hong
Kong, and from 21 to 44% in Canada.

The best-fitting models achieve high-quality fit to data on
interacting pathogens
The predicted case counts simulated from the fittedmodel at the MLE
arehighly correlatedwith the observeddata (Fig. 3 and Supplementary
Fig. 9), indicating that the fit model is capable of accurately reprodu-
cing observed epidemic patterns. The quality of the model fit is com-
parable across viruses and locations, with the exception of RSV in
HongKong, wheremodelfit quality is substantially lower (Fig. 3b). This
could be due to the weaker seasonality of these data (Fig. 1a and
Supplementary Table 1), which canbemore difficult for simplemodels
like the one used here to capture.When comparingmodel fit to that of
a sinewave fit to all data from a given location, our transmissionmodel
still fits substantially better except in the case of RSV in Canada, where
our model fits similarly to the sine wave (Supplementary Table 3).
Furthermore, we find that simulations at the MLE are generally able to
accurately reproduce the peak timing, peak case counts, and overall
attack rates observed each season (Supplementary Table 4). Collec-
tively, these results support the utility ofmathematicalmodels as tools
for describing the characteristics of pathogen–pathogen interactions.

Sensitivity analyses demonstrate the robustness of the results
As described in the Methods below, we conducted multiple rounds of
model fitting in order to improve our chances of achieving con-
vergence to the MLE. To further ensure convergence, we calculated
profile likelihoods25 for θλ1 for both locations. The profile likelihoods
peaked at or near the MLEs (Supplementary Fig. 10), demonstrating
that ourmodel-fitting approachwas indeed able to reach the trueMLE.

Table 1 | Descriptions and maximum likelihood estimates of all model parameters. Results are provided as a Source Data file

Parameter Description Fit Value (95% CI) Season-specific?

Hong Kong Canada

θλ1 Strength of the interaction effect of influenza on RSV 1.2 × 10−9 (0, 3.2 × 10−4) 0.61 (0.51, 0.62) No

θλ2 Strength of the interaction effect of RSV on influenza 6.2 × 10−6 (0, 0.13) 0 (0, 0.013) No

δ1 Rate of loss of cross-protection against RSV after influenza infection 0.065 (0.063, 0.073) 0.092 (0.049, 0.22) No

d2 Rate of loss of cross-protection against influenza after RSV infection, relative to δ1 3.0 (2.3, 3.0) 3.9 (1.3, 5.5) No

ρ1 Composite reporting rate/scaling parameter for influenza 0.20 (0.18, 0.20) 2.7 (2.7, 3.2) No

ρ2 Composite reporting rate/scaling parameter for RSV 0.034 (0.032, 0.035) 0.84 (0.79, 0.92) No

ηtemp1 Impact of temperature on influenza −0.15 (−0.15, −0.13) NA No

ηAH1 Impact of absolute humidity on influenza 0.23 (0.21, 0.23) NA No

ηtemp2 Impact of temperature on RSV −0.089 (−0.12, −0.083) NA No

ηAH2 Impact of absolute humidity on RSV 0.19 (0.18, 0.22) NA No

b1 Amplitude of seasonal forcing for influenza NA 0.19 (0.18, 0.19) No

b2 Amplitude of seasonal forcing for RSV NA 0.15 (0.14, 0.16) No

φ1 Week of maximum seasonal forcing for influenza NA 26.2 (25.7, 26.5) No

φ2 Week of maximum seasonal forcing for RSV NA 30.2 (29.0, 30.5) No

α Amplitude of seasonality in reporting and background consultation rates 0.61 (0.57, 0.64) 0.90 (0.90, 0.91) No

φ Week of maximum ρ1/ρ2 43.8 (43.3, 44.3) 48.0 (47.9, 48.2) No

Ri1 Initial effective reproductive number for influenza See Supplementary Fig. 4 Yes

Ri2 Initial effective reproductive number for RSV See Supplementary Fig. 4 Yes

I10 Initial proportion of the population infected with influenza See Supplementary Fig. 4 Yes

I20 Initial proportion of the population infected with RSV See Supplementary Fig. 4 Yes

R10 Initial proportion of the population immune to influenza only See Supplementary Fig. 4 Yes

R20 Initial proportion of the population immune to RSV only See Supplementary Fig. 4 Yes

R120 Initial proportion of the population immune to both influenza and RSV See Supplementary Fig. 4 Yes
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Because transmission patterns of both influenza and RSV are
dependent on age26–28, it is possible that an age-structured model
would improve the estimation of interaction characteristics. We
therefore conducted a sensitivity analysis in order to evaluate whether
our model, which assumes homogeneous mixing, was capable of
accurately inferring interaction parameters from data derived from an
age-structured population. Briefly, we generated synthetic data for all
seasons at theMLE for Hong Kong using an age-structuredmodel, and
fit our homogeneous mixing model to these data (see Supplementary
Text). Fitted values of all shared parameters agreed closely with the
values used to generate the data, suggesting that our model is capable
of achieving the goals outlined in this work.

Influenza vaccinationmay increase the burden of RSV, although
this effect is highly dependent on underlying patterns of influ-
enza and RSV circulation
There is a wealth of evidence suggesting that some vaccines, especially
live vaccines, can lead to temporary, nonspecific protection against non-
target pathogens, likely through upregulation of the innate immune
system29,30. Although the potential for LAIV to offer such cross-
protection has not been widely assessed, one study demonstrated that
LAIV was able to reduce RSV replication in mice31, and several studies
have shownupregulation of the innate immune system after vaccination

with LAIV30. If LAIV can indeed offer protection against RSV, we might
expect widespread use of LAIV to reduce the population-level burden of
RSV. On the other hand, given the negative interaction between influ-
enzaandRSV, a reducedburdenof influenzadue towidespreadLAIVuse
could lead to inadvertent increases in the burden of RSV.

In order to assess which of these competing effects is expected to
dominate during realistic epidemics, we simulated the effect of LAIV
administration, assuming imperfect or “leaky” immunity32, at several
time points and coverage levels on RSV attack rates. Model equations
including LAIV vaccination can be found in Supplementary Equation (2),
and the model schematic in Supplementary Fig. 13. We modeled two
scenarios: a “subtropical” scenario, where parameter values were set to
their MLEs as estimated from the Hong Kong data, and a “temperate”
scenario, where parameter values were set to their MLEs as estimated
from the Canada data. The strength and duration of the interaction
effect were set to the values obtained from Hong Kong for both sce-
narios. This was done to remove these parameters as potential con-
founders of the relationship between theunderlying circulationpatterns
of both viruses and the impact of the vaccine on RSV burden, although
we also conducted a sensitivity analysis using the interactionparameters
obtained from Canada. We ran our analysis for two vaccines: one with a
strong effect on RSV susceptibility (as found in Hong Kong), and one
with amoremoderate effect on RSV susceptibility (as found in Canada).

Fig. 3 | Quality ofmodelfit assessed at themaximum likelihood estimates of all
parameters.Cases simulated fromthedeterministicmodel at theMLEvs. observed
case counts inHongKong (a,b) andCanada (c,d).More specifically, simulated case
counts were taken to be the mean value of the observation model at each time
point. Error bars represent the 95% prediction intervals, obtained for each point
from a binomial distribution with a number of trials equal to the observed number
of tests performed for influenza or RSV at that time point, and the probability of
success equal to the model-defined probability of a positive test (Eq. 3). Colors

indicate the season from which each point was taken. The gray line is the identity
line, and represents perfect agreement between simulations and observations.
Results are shown separately for influenza (a, c) and RSV (b, d). The Nash-Sutcliffe
coefficient of efficiency (R2)95 values over all seasons combined, as well as the range
of values by season, are shown. Note that both axes use a square root transfor-
mation. Detailed information on where to obtain the data shown here an be found
in the Data and Code Availability Statements.
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In both the temperate and subtropical scenarios, we found that
early vaccination with LAIV typically led to increases in RSV attack
rates, although this effect was, on average, weaker in the temperate
scenario (Fig. 4 and Supplementary Fig. 14). The increase in RSV bur-
den was most pronounced at vaccine coverage levels of 25-30% in the
temperate scenario (Fig. 4a, c) and at coverage levels of 70% and above
in the subtropical scenario (Fig. 4b, d). Reductions in RSV attack rates
were only consistently observed if LAIV was delayed for several weeks,
and if coverage levels were relatively high. In the case of a vaccine with
amore moderate impact on RSV susceptibility (Fig. 4c, d), increases in
RSV burdenwere typically larger and reductions smaller, although this
pattern did not always hold in the subtropical scenario. Similar results
were observed when the interaction parameters were instead set to
those fit in Canada (Supplementary Fig. 15), and results were broadly
consistent across a range of sensitivity analyses in which the strength
and duration of the vaccine effect were varied (Supplementary Fig. 16).
However, we note that the impact of LAIV on RSV burden was highly
dependent on the timing and intensity of the underlying influenza and
RSV outbreaks. In particular, when RSV outbreaks peaked before
influenza outbreaks, and when RSV outbreaks were large relative to
influenza outbreaks, LAIV more consistently led to decreases in RSV
burden (Supplementary Fig. 14).

Discussion
In this work, we develop a general mathematical model of the cocir-
culation of two viruses, and fit it to observed virologic and syndromic
data to characterize the interaction between influenza viruses andRSV.
We find evidence that infection with influenza provides moderate to
strongprotection against infectionwithRSV for up to 1–5months post-
recovery, and that RSV may have a strong but shorter-lived effect on

susceptibility to influenza. Furthermore, we find that these individual-
level effects can have substantial implications for population-level
epidemic dynamics and for control by vaccination. Altogether, we
provide one of the first estimates of the substantial individual- and
population-level effects of the interaction between influenza and RSV,
and highlight the utility of a mathematical modeling approach in
characterizing virus-virus interactions.

Our estimates of the strength and direction of the impact of
influenza infection on susceptibility to RSV are consistent with past
experimental work12,13. Furthermore, our simulations in the absence of
an interaction effect confirm that this interaction can have a sub-
stantial impact on RSV circulation at the population level, as possibly
observed during the 2009 influenza pandemic16,17. Our estimate of the
duration of this effect, however, was longer than expected. An
experimental study in ferrets demonstrated that susceptibility to RSV
returned to baseline levels soon after the clearance of influenza12.
Similarly, a past experiment inmice suggested that the upregulation of
proteins involved in the interferon response, which is typically short-
lived, played an important role in driving the interaction effect13. In
contrast, we found evidence of an interaction effect that persisted for
several months post-infection. These findings may be consistent with
the process of “trained immunity,” in which infection or vaccination
yields epigenetic changes to the innate immune system. These chan-
ges, in turn, manifest as long-lived, nonspecific innate immune mem-
ory, and can lead to faster andmore effective responses to subsequent
infections. An experimental study in mice confirmed that infection
with influenza was able to induce trained immunity, leading to pro-
tection against S. pneumoniae one month later33. In humans, trained
immunity can persist for 3 months to over a year34 Whether influenza
specifically induces trained immunity in humans remains to be seen,
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Fig. 4 | Impact of vaccinationwith LAIV onRSVattack rates.Heatmaps show the
rate ratio of RSV attack rates in the presence of vaccination relative to the attack
rates in the absence of vaccination (Eq. (5)) at a range of values for vaccine timing
(x-axes) and coverage levels (y-axes). Values below 1.0 (indicating a decrease in
attack rates) are shown in blue, and values above 1.0 (indicating an increase in
attack rates) are shown in red. Lines indicate the simulated incidence of influenza
(green) and RSV (orange) over the season in both the absence (solid lines) and
presence (dotted lines) of vaccination. Points are used to indicate the timing and
coverage level of vaccination for each simulation; specifically, circles indicate the
combination of vaccine timing and efficacy that yielded the greatest reduction in

RSV attack rates, while triangles indicate the combination yielding the greatest
increase. A maximum vaccine coverage of 70% is shown, as coverage levels above
this are unlikely to be realistic. Results are shown for both temperate (a, c) and
subtropical (b, d) scenarios. Results assuming a strong impact of vaccination on
RSV susceptibility, as found in Hong Kong, are shown in (a, b); results assuming a
moderate impact of vaccination on RSV susceptibility, as found in Canada, are
shown in (c,d). For eachscenario, a representative seasonwas selected (2010–11 for
the temperate scenario and 2018–19 for the subtropical scenario); results for all
other seasons can be found in Supplementary Fig. 14. Source data are provided as a
Source Data file.
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but the duration of the interaction effect found in this work suggests
that this is an interesting question for future studies to explore.

In addition to the expected interaction effect of influenza on RSV,
our results suggest that infection with RSV may lead to a similar
reduction in susceptibility to influenza, albeit with a shorter duration.
This was not expected based on existing research: while ferrets and
mice infectedwithRSVexperienced less severe illnessdue to influenza,
they were not less likely to acquire influenza infection12,15. Additionally,
a modeling study in humans suggested a trend toward an increased
risk of influenza infection in theweek after RSV infection, although this
studymade several strong assumptions concerning the duration of the
interaction and the extent of susceptibility to influenza and RSV, and
the result was not statistically significant35. These discrepanciesmay be
partially explained by the observed circulation patterns of both viru-
ses: since RSV outbreaks peaked after influenza outbreaks in almost all
seasons in both Hong Kong and Canada, it is possible that the strength
and duration of the effect of RSV on influenza is difficult to infer from
these data. However, it is also worth noting that much of the work on
this interaction to date has focused on the effect that infection with
influenza has on RSV, and not on the effect of RSV infection on influ-
enza. Our results indicate a need for more consideration of this
direction as well.

Despite our expectation that the strength and duration of the
individual-level interaction between two pathogens should be con-
sistent over timeand space,wefinddifferences in the inferred strength
of interaction between locations, particularly for the effect of influenza
onRSV. It is possible that this discrepancy is due to differences in some
unmodeled characteristics between locations, such as age structure,
behavior of infected individuals, or circulation of other interacting
pathogens. It is also worth noting that Canada is a large geographic
region, which could have obfuscated the population-level signal of the
interaction. Finally, it may be that, due to the complexity of interac-
tions and their sometimes subtle impact at the population level, con-
sistent estimates of an interaction’s strength and duration are difficult
to obtain when fitting to individual locations. For this reason, methods
capable of pooling information frommultiple locations are likely to be
critical in future work. Such methods may include mixed-effects
models, which allow for the estimation of parameters at several levels
(e.g., location-specific vs. season-specific), and are attractive for their
ability to greatly reduce the number of parameters estimated through
the use of random effects36. While tools to apply these methods to
fitting exercises using transmission models are currently in develop-
ment (see, for example, panelPomp36), these tools are at the frontier of
thefield, and their application to complexmodeling problems remains
a challenge.

We are aware of only one other study attempting to characterize
the interaction between influenza and RSV by explicitly modeling the
transmission of both pathogens. Waterlow et al.23 fit a model to influ-
enza and RSV hospitalization data from Vietnam, and found that the
data were equally consistent with primary infection leading to a 41%
reduction in susceptibility to the other virus persisting for 10 days
post-infection, and with no effect on susceptibility. The former finding
is consistent with our estimate of interaction strength but not duration
in Canada, and is only qualitatively consistent with our results in Hong
Kong. These differences may be explained in part by the different
assumptions and components of these two models. For example, in
Waterlow’s model, it was assumed that all individuals were either fully
or partially susceptible to RSV at the beginning of every season, con-
sistent with studies reporting a duration of RSV immunity of less than
one year37,38. In contrast, we chose to estimate the proportion immune
to RSV at the beginning of every season, finding strong statistical evi-
dence against the hypothesis of full susceptibility in our data (Sup-
plementary Table 5 and Supplementary Fig. 4). Although immunity
conferred by RSV infection is imperfect, our estimates are consistent
with those of a previous modeling study, which estimated a slow rate

of waning immunity after RSV infection (5–15% per year in individuals
aged ≥5 years)39. Unlike Waterlow et al., we also accounted for sea-
sonality in the transmissionof both influenza and RSV, through the use
of environmental variables (temperature and humidity) in Hong Kong
and sinusoidal forcing in Canada. As seasonality is a potentially
important confounder, not accounting for it may lead to biased esti-
mates of the interaction effect. Other key model differences include
Waterlow et al.’s use of an age-structuredmodel and the assumptionof
a symmetric interaction. The apparent difficulty in estimating a single
value for the strength of the interaction effect in Vietnam may also be
due to thedata used for inference: for Vietnam inparticular, therewere
very few observed cases of influenza and RSV during the study period,
and influenza outbreaks lacked clear seasonality. However, the
inconsistencies in results may simply emphasize the need formethods
capable of accounting for data from several locations, as estimates
from distinct individual locations may differ.

We also report evidence that both temperature and absolute
humidity play an important role in driving the transmission of influ-
enza and RSV. Past findings indicate that influenza transmission
increases monotonically with decreasing temperature40–42, and that
there is a U-shaped relationship between transmission and absolute
humidity, such that transmission increases when absolute humidity is
either low or very high40,41. Meanwhile, RSV transmission appears to
increase with lower absolute humidity and higher precipitation43.
Given that temperature and absolute humidity are highly correlated, it
makes sense thatwefind a reduction in the transmissibility of influenza
and RSV as temperatures increase, and an increase in the transmissi-
bility of both viruses with increasing absolute humidity when con-
trolling for temperature. The high values of absolute humidity
observed year-round in Hong Kong may also explain the positive
inferred effect of humidity. Overall, our findings suggest that weather
conditions aremore favorable to influenza andRSV transmission in the
summer than in the winter, although themagnitude of forcing is small
(Supplementary Fig. 8). This is consistent with existing work on influ-
enza in Hong Kong44. Additionally, our results contribute to the
existing evidence that climatic factors modulating transmission of
RSV, which have not been extensively studied, are similar to those for
influenza43.

Broadly, our estimates of the season-specific reproduction num-
bers of both influenza and RSV are consistent with values reported in
the literature45,46. Empirical estimates of the proportion immune at the
beginning of each season are less common.However, our estimates for
influenza are mostly in line with findings from past modeling studies,
although for some seasons, we find relatively high levels of
protection47,48. While in conflict with several studies suggesting that
immunity to RSV is short-lived (i.e., less than a year)37,38, our finding of
moderate to high population-level immunity to RSV is consistent with
studies estimating a longer duration of RSV immunity39 and with high
seroprevalence amongmost age groups49,50, andmay in part reflect the
existence of partial immunity among those with previous exposure to
RSV51,52. We note that our estimates of the proportion immune varied
extensively between seasons. This may be because, unlike the shared
parameters, these parameters can only drawon a single season’s worth
of information. Ideally, information on the rate of waning immunity
and the previous season’s attack rate would be accounted for in esti-
mating these parameters. However, given that surveillance data
represent only a small sample of actual infections, true attack rates are
impossible to calculate. Furthermore, estimates of the duration of
influenza and RSV immunity vary widely37–39,53,54, and, for influenza, are
highly dependent on variable rates of antigenic evolution55,56. Fit values
of the proportion immune at the beginning of each season implicitly
account for factors such as the degree of immunity remaining from
previous seasons and the introduction of antigenically distinct viral
strains. Encouragingly, we find that fit values of the proportion
immune to influenza tend to be higher after larger influenza outbreaks,
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suggesting that thefit parameters are indeed accounting for remaining
immunity from the previous seasons (Supplementary Fig. 4).

In the presence of a negative interaction between influenza and
RSV, vaccination with LAIV, which may induce similar protective
effects as natural influenza infection31, may lead to conflicting effects
on RSV burden. We find that substantial increases in RSV attack rates
may be possible, particularly in Hong Kong, perhaps due to the lower
underlying RSV burden relative to influenza. However, we emphasize
that the overall impact of LAIV on RSV attack rates is highly dependent
on the relative timing and intensity of influenza and RSV outbreaks in a
given population and season. While RSV outbreaks are more likely to
precede influenza outbreaks in temperate locations57, outbreak pat-
terns vary widely by season in both temperate and subtropical loca-
tions. For this reason, it is unlikely that the effect of LAIV use on RSV
burden will be consistent over time in any given location. Rather,
public health practitioners should continuously reevaluate whether
widespread LAIV use is likely to increase the RSV burden as each sea-
son progresses, and prepare accordingly.

We emphasize that, although LAIV has been shown to have a
protective effect against RSV in mice31, no studies to date have asses-
sed the strength and duration of its impact on RSV susceptibility in
humans. Given this level of uncertainty, the exact numerical impact of
LAIV on RSV burden in different scenarios, as well as the exact vaccine
coverage levels and timings expected to yield the lowest RSV attack
rates, should be viewed with caution. Instead, the overall patterns
between underlying outbreak dynamics and LAIV impact we have
highlighted above should be viewed as the key results of this analysis.
Future work determining the actual impact of LAIV on RSV risk at the
individual level will be needed to produce more specific predictions.

The findings of our simulation study are consistent with previous
work on influenza vaccines: during the 2009 influenza pandemic,
observational studies in Canada reported an increase in the odds of
infection with H1N1pdm09 among those vaccinated against seasonal
influenza9, while a randomized controlled trial of influenza vaccine in
Hong Kong found higher rates of non-influenza infections among
vaccinated children10. Both observations were suggested to have been
driven by a lack of temporary, nonspecific immunity among thosewho
were vaccinated, resulting from lower levels of natural infection with
seasonal influenza. More generally, our results pave the way for future
work on the indirect effects of vaccines, a topic that has received
increasing attention throughout the COVID-19 pandemic58,59.

Broadly, the results of this simulation study also highlight the
importance of accounting for interactions between pathogens when
conducting research on infectious diseases. In addition to influenza
and RSV, interactions of public health relevance likely exist between
influenza viruses and S. pneumoniae7,8, influenza and rhinovirus3,60, and
influenza and SARS-CoV-261, among many others. As we have demon-
strated, failure to account for these interaction effects could lead to
considerable over- or underestimates of the effects of proposed public
health strategies. In more extreme scenarios, the implementation of
ineffective or even harmful interventions could be detrimental not
only to public health, but also to public perception of infectious dis-
ease epidemiology and of modeling, fields which already suffer from a
lack of trust from the public62–65. Where polymicrobial systems made
up of interacting pathogens exist, studying individual pathogens in
isolation will not be sufficient to guide informed public health
planning.

Of course, in order to effectively account for interactions in public
health practice, researchers and practitioners alike will require a better
understanding of these interactions.Ourworkdemonstrates the utility
of mathematical models in achieving this understanding: although
estimates of interaction strength differed by location, we provide
evidence that influenza does indeed inhibit infection with RSV, and
vice versa. We were also able to substantially narrow down the plau-
sible ranges of values for both the strength and duration of this

interaction. Since the influence of interactions can be difficult or even
impossible to discern using standard observational epidemiologic
methods6,20, it is particularly encouraging to find that transmission
models can be successful where other methods fail. Critically, trans-
mission models explicitly and mechanistically account for all compo-
nents of an interaction, something that purely statistical methods are
not capable of achieving. Of course, these methods will not always be
effective, and identifiability issues may persist depending on the data
used. As we have noted, interactionsmay be difficult to accurately and
precisely characterize using data from only a single location. In parti-
cular, challenges may arise in locations where overlap between circu-
lating pathogens is low, or where one pathogen consistently peaks
before the other. In addition to modeling approaches, synthetic data
generated from our empirically validated model can be used to assess
new statistical methods for inferring interaction characteristics, an
approach similar to that used in ref. 6.

Despite our promising findings, several limitations of this study
are worth noting. First, our model does not include age structure, and
instead assumes homogeneous mixing throughout the population.
While influenza transmission is primarily driven by school-aged
children66, RSV attack rates are highest among infants and young
children28. Dependingon the extent of contact rates between these age
groups, a homogeneously mixed model may be expected to either
over- or underestimate the extent to which those infected with influ-
enza come into contact with those infected with RSV, and vice versa.
To assess whether the assumption of homogeneous mixing is likely to
be an issue, we generated synthetic epidemic data from an age-
structured model (Supplementary Fig. 17), and fit our model to these
data. We found that the homogeneous mixing model was able to
correctly infer the values of the interaction parameters (Supplemen-
tary Table 6), perhaps because the synthetic epidemics were syn-
chronous across age groups (Supplementary Fig. 18). This suggests
that, at least for the population and pathogens considered here,
homogeneous models are sufficient to capture the broad character-
istics of this interaction, even when the underlying transmission
dynamics vary by age group (see Supplementary Text). This is
encouraging, as the large number of unknown parameters (including
initial conditions) in age-structured models makes their estimation
challenging.

A second limitation is that we do not consider the potential
impact of the interaction effect on disease severity, choosing to focus
solely on the effect on susceptibility. Past research has yielded mixed
results concerning the severity of coinfections with influenza and RSV:
some studies have found coinfections to be more severe than infec-
tions with either virus alone18,19, while others have found evidence of
reduced severity12,15. In the modeling study of influenza and RSV
cocirculation in Vietnam discussed above, the fitted model was most
consistent with a 2–20 times increase in reporting among coinfected
individuals23. We attempted to fit our model allowing for a change in
infection severity among coinfected individuals, but found that this
effectwas not identifiable. This suggests thatwehave reached the limit
of what our particular combination of data andmodel are able to infer
about the interaction between influenza and RSV, but it is important
that future work continue to explore this effect. Encouragingly,
including an effect on severity in our model did not alter the MLEs of
the other shared model parameters, suggesting that our results
regarding the interaction effect on susceptibility were not compro-
mised by not including an effect on severity.

As a final limitation, this work was highly computationally inten-
sive. For this reason, we opted for a relatively simplemodel best suited
to reproducing unimodal epidemics, which precluded the inclusion of
influenza A(H3N2) data fromHong Kong in this study. While we would
expect the effect of A(H3N2) on RSV to be similar to that of other
influenza (sub)types, futureworkwill assess thisdirectly bydeveloping
a more complicated model of multi-peak seasonal epidemics. To
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assess whether ignoring H3N2 circulation was likely to influence
inferred values of the interaction parameters in Hong Kong, we con-
ducted a sensitivity analysis in which we fit the model to only the final
two seasons of data, in which H3N2 circulation was minimal. Inferred
values of the interaction parameters were similar to those obtained in
the main analysis (Supplementary Fig. 20). More generally, a model
able to account for multi-peak epidemics would also allow for the
study of interactions with additional pathogens typically associated
with multiple peaks or year-round transmission. For example, rhino-
virus tends to peak in both spring and autumn67, and may reduce
replication and onward transmission of influenza60,68.While results of a
sensitivity analysis in which rhinovirus incidence was allowed to
modulate the transmission of influenza are consistent with this
hypothesis (see Supplementary Text), explicitly modeling rhinovirus
transmission, as we have done here with RSV, would provide much
more informative results concerning the strength and duration of this
effect. Given the extent of overlap between influenza and rhinovirus
(Supplementary Fig. 19), failure to account for rhinovirus circulation
couldhave alsobiasedour results, althoughwenote that the sensitivity
analysis described above did not yield substantial differences in the
estimated values of the shared model parameters (Supplementary
Fig. 20). For these reasons, extending the model presented here to
consider alternative pairs, or a greater number, of respiratory viruses is
an exciting area for future research.

In this work, we produce one of the first estimates of the strength
anddurationof the interaction between influenza viruses andRSV, and
of the relevance of this interaction in modulating disease burden.
Specifically, our results suggest that infection with either influenza
virus or RSV causes a moderate to strong reduction (39 to 100%) in
susceptibility to the other virus for 1 to 5 months, and that this
individual-level effect can lead to substantial reductions in the attack
rates of both viruses at the population level. We further explore the
implications of this finding for widespread LAIV use, and find that the
effect of vaccination with LAIV at the population level is highly
dependent on the underlying transmission dynamics of both viruses in
a given location and season. Overall, our results demonstrate that
accounting for pathogen–pathogen interactions is critical, both when
conducting epidemiologic research and when formulating practical
strategies to reduce the burden of infectious diseases. Furthermore,
we show that mathematical models are a powerful tool for improving
our understanding of how these interactions operate at the individual-
and population-levels.

Methods
Respiratory infection data
Hong Kong. Weekly data on influenza and RSV circulation in Hong
Kong from 2014 through 2019 were obtained from the Centre for
Health Protection of the Government of the Hong Kong Special
Administrative Region69. These data consisted of the number of sam-
ples testing positive for influenza and for RSV, as well as the total
number of samples tested (Fig. 1a and Supplementary Fig. 1a). Influ-
enza virus detections were broken down by type (A or B) and by sub-
type (for influenza A viruses). Samples were obtained primarily from
public hospitals, although some were also taken from out-patient
clinics70,71. Typically, sampleswere taken from those patients forwhom
a specific diagnosis would be useful in informing treatment. All sam-
ples were tested for both influenza and RSV, and all testing from
February 10, 2014, was done using molecular testing rather than viral
culture41.

We also obtained data on the weekly proportion of all consulta-
tions that were due to influenza-like illness (ILI), defined as fever with
cough or sore throat70, within a sentinel surveillance network of public
out-patient clinics from the same source72 (Fig. 1c, d).

We then separated the data into seasons, such that seasons began
in week 46 (mid-November) and continued through week 45 of the

following year. This cutoff was chosen as earlier cutoffs often occurred
mid-RSV epidemic, while later cutoffs were prone to occurring during
influenza epidemics. We were, therefore, left with six seasons of data
(2013–14 through 2018–19) for both viruses in Hong Kong. Although
datawere not available for 2013, and therefore for thefirst sevenweeks
of the 2013–14 season, we retained this season in our dataset to max-
imize the number of seasons available for analysis. Rather than mod-
eling each influenza (sub)type separately, we summed weekly cases of
influenzas A(H1N1) and B. Because epidemics of influenza A(H3N2) in
Hong Kong often display multiple peaks per year, we did not consider
influenza A(H3N2) here. This allowed us to avoid explicitly modeling
loss of immunity to influenza over time, which would needlessly
complicate the model and potentially compromise the fitting process.

Canada. Weekly data on the number of cases of and tests for influenza
and RSV in Canada from 2010 through 2014 were obtained from Flu-
Watch, the national influenza surveillance system run by the Public
Health Agency of Canada (PHAC)73 (Fig. 1b and Supplementary Fig. 1b).
As in Hong Kong, influenza viruses were categorized by type and
subtype, and the majority of tests were conducted on samples taken
from emergency departments and hospital inpatients, with some
taken from higher-risk outpatients73. Again, samples were typically
taken when a diagnosis could potentially inform treatment. Unlike in
Hong Kong, not all samples were tested for both viruses. Additionally,
we obtained data on the weekly population-weighted proportion of
consultations with primary care providers that weredue to ILI (Fig. 1d),
defined as fever and cough plus sore throat, muscle or joint pain, or
fatigue73, also from FluWatch.

In Canada, we chose a seasonal cutoff at week 35 (early Septem-
ber), consistent with the cutoff used by FluWatch. This left us with four
seasons of data (2010–11 through2013–14) inCanada.Again, insteadof
modeling each influenza (sub)type separately, we summed across all
influenza A and B viruses to obtain the total weekly number of influ-
enza cases detected.

Transmission model
We represent the transmission of influenza and RSV throughout the
model population using a deterministic, compartmental SITRxSITR
model, in which compartments indicate the infection status of indivi-
duals according to both viruses (e.g., XSI represents the number of
people susceptible to influenza and infectedwithRSV). This results in a
total of sixteen compartments (Fig. 2). The interaction effect is mod-
eled by reducing the force of infection of one virus among those
currently (I) or recently (T) infected with the other virus (i.e., the
interaction operates by reducing susceptibility to infection). Both the
strength (i.e., the extent of this reduction) and duration (i.e., the
amount of time spent in compartment T) of the interaction are allowed
to vary according to whether an individual is initially infected with
influenza orwith RSV (i.e., the interaction is allowed tobe asymmetric).
This model is comparable to the one initially developed by ref. 20.

Becausewemodel each yearly epidemic separately, we assume no
within-season waning immunity. This assumption is in line with esti-
mates of the duration of immunity for both influenza and RSV.
Immunity to influenza is consistently estimated to last for multiple
years74,75. While estimates for RSV are less certain, past modeling work
has suggested that immunity persists for at least one year39,53. Fur-
thermore, our assumption is consistentwith otherRSVmodelingwork,
which also does not account for the within-season waning of
immunity23,76.

Average infectious periods were fixed at 5 days for influenza77 and
10 days for RSV37,78. The size of themodel population is taken to be the
population size of Hong Kong or Canada during each epidemic, based
on data from the Census and Statistics Department of the Government
of the Hong Kong Special Administrative Region79 and Statistics
Canada80.
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Climate forcing. Evidence suggests that climatic conditions act as
important modulators of influenza and RSV transmission. Specifically,
a U-shaped effect of absolute humidity on influenza transmission has
been suggested, with higher transmission occurring when humidity is
either low or very high40,41. The effect of temperature, meanwhile, is
monotonic, such that increased transmission occurs at lower
temperatures40–42. Although RSV has received less attention, existing
work suggests that temperature and humidity modulate RSV trans-
mission in a similar manner43,81.

InHongKong,we allow the forceof infection for eachvirus to vary
according to an exponential function of weekly average mean tem-
perature and absolute humidity, such that:

βi tð Þ= β̂ie
ηAHi

AH tð Þ+ηtempi
TðtÞ ð1Þ

where ηtemp1 and ηAH1 represent the extent to which temperature and
absolute humidity, respectively, impact the transmissibility of influ-
enza, and ηtemp2 and ηAH2 represent the extent to which temperature
and absolute humidity, respectively, impact the transmissibility of
RSV; and β̂1 and β̂2 represent the force of infection of influenza and
RSV in the absence of climate forcing. Although we do not expect the
effect of absolute humidity to bemonotonic based on past studies40,41,
we choose to model the relationship with a monotonic, exponential
function for simplicity. We believe this simplification makes sense
because (1) absolute humidity in Hong Kong is high year-round
(Supplementary Fig. 3b), likely rendering the effect of low absolute
humidity less important, and (2) temperate and absolute humidity are
highly correlated (Supplementary Fig. 3c), such that we may expect
transmissibility to increase monotonically with absolute humidity
once the temperature is controlled for.

Dailymean temperature and relative humidity datawereobtained
from the US National Centers for Environmental Information’s Global
Surface Summary of the Day (GSOD) data using the R package
GSODR82,83, and absolute humidity was calculated using the
Clausius–Clapeyron relation84. Weekly values were taken to be the
mean values of temperature and absolute humidity each week. Finally,
data were standardized to have a mean of zero and a variance of one.
This was done both to convert the climate data into a dimensionless
form, and to facilitate interpretation of the climate forcing parameters.

Because temperature and absolute humidity are highly correlated
(Pearson’s r =0.944 over the course of the study period; see Supple-
mentary Fig. 3), we performed a sensitivity analysis to check whether
including both variables improved model fit over including tempera-
ture alone. We also compared our model to one fit using a sinusoidal
forcing term, rather than climate data (see below and Supplementary
Table 5).

Sinusoidal forcing. Because Canada covers a large geographic area
over which climatic conditions vary considerably, it is unlikely that
climatic conditions averaged over the country would meaningfully
modulate the force of infection of influenza and RSV. For this reason,
when fitting our model to data from Canada, we instead allowed the
force of infection for each virus to vary according to a sinusoidal wave,
such that:

βiðtÞ=βið1 +bi cos
2π

52:25
t � φi

� �� �
ð2Þ

where bi represents the extent to which the strength of forcing varies
over the year, φi represents the week during which the force of
infection is maximal, and β̂i represents the average force of infection;
these parameter values are allowed to differ for influenza (i = 1) and
RSV (i = 2). The division by 52.25 inside the cosine function both
accounts for the fact that our data are weekly, and specifies the period
(in weeks) of the sinusoidal wave.

Observationmodel. Due to the prevalence of mild and asymptomatic
infections, many cases of influenza and RSV are never reported, and
therefore do not show up in empirical datasets. To model the process
by which individuals seek healthcare and are tested for specific viral
infections, we draw from a binomial distribution at each time point,
where the number of trials is equal to the total observed number of
tests for respiratory viruses conducted thatweek, and the probabilities
of a positive test for influenza (P1(t)) or RSV (P2(t)) at time t are:

PiðtÞ= min 1:0, ρ̂iðtÞ
HiðtÞ
ILIðtÞ

� �
ð3Þ

where:

ρiðtÞ= ρi 1:0+α cos
2π

52:25
t � φð Þ

� �� �
ð4Þ

Here, Hi(t) represents the modeled incidence of virus i at time t,
while ILI(t) represents the observed proportion of ILI per consultation
at time t. Notably, while themodel outputHi(t) is in terms of incidence
per total population, the data, ILI(t) are instead in terms of incidence
per all-cause consultation. Thus, these terms are not directly com-
parable. The parameter ρ̂i is a composite parameter accounting for
both the rate at which individuals infected with virus i report their
illness and are diagnosed with ILI, and for the scaling by Bayes’ Rule
necessary todirectly compareHi(t) and ILI(t)47 (see Supplementary Text
for more details)47,48,85. We account for possible seasonality in report-
ing and in background consultation rates using a cosine function, such
that the exact value of the composite reporting and scaling parameter
varies over time, with its value at time t represented by ρiðtÞ. Thus, 1 + α
represents the maximum value of ρiðtÞ, while φ represents the week
during which ρiðtÞ is maximal. We divide the argument of the cosine
function by 52.25 to account for the fact that our data are weekly, and
to impose a period of one yearon reporting seasonality. To ensure that
the probability of a positive test does not exceed one, we take the
minimum of one and of ρiðtÞ HiðtÞ

ILIðtÞ at each time point.

Model fitting
For model fitting, parameters are designated as either shared or
season-specific (Table 1). Shared parameters (e.g., those describing
interaction characteristics or climate forcing) are assumed not to vary
by season, and are therefore constrained to take the same value in all
seasons; season-specific parameters (e.g., the initial reproductive
number or the proportion immune at the start of the season) are
allowed to differ by season. By fitting the proportion of infected and
immune at the beginning of each individual season, we avoid the need
to explicitly account for processes such as the loss of immunity over
time or complicated strain dynamics, which can in particular compli-
cate the model fitting process for influenza. Meanwhile, constraining
the shared parameters to take the same value in all seasonsmaximizes
the amount of information available for the estimation of these para-
meters, which include our key parameters of interest. Models were fit
to data from each location separately.

All model fitting was accomplished using a maximum likelihood
approach to conduct trajectory matching. More specifically, model
fitting was performed using a two-step process. In the first step, we
obtained reasonable initial estimates for the season-specific para-
meters by fitting each season of data separately, assuming no inter-
action, climate forcing, or reporting seasonality. In the second step, we
fit themodel to all seasons of data for a given location simultaneously,
with initial values of the season-specific parameters drawn from the
ranges fit in the previous step. By constraining this second step to
begin in a relatively good region of the parameter space, we allow for
more efficient convergence to the MLE. To ensure convergence to the
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MLE, multiple rounds of fitting to all seasons simultaneously were
performed.

We obtained 95% confidence intervals for all parameter values
using parametric bootstrapping24. This method is computationally
efficient, and has been shown to perform well for similar work in the
past8,61,86. Specifically, we generated 500 sets of synthetic epidemics at
the MLE for each location using the stochastic observation model,
where each set contained a simulated epidemic for all available sea-
sons, and fit the model to each set of synthetic epidemics. Confidence
intervals were obtained by computing the highest posterior density87

of the best-fit estimates over all 500 synthetic epidemics.More specific
details on the process used for model fitting and construction of the
confidence intervals can be found in the Supplementary Text.

We assessed the quality of model fits by comparing the observed
data to data simulated from the model at the MLE. We further con-
firmed convergence to the MLE by calculating the profile likelihood of
θλ1

25 (Supplementary Fig. 10).

Simulation study of vaccine impact
In order to assess the potential for vaccination with a live attenuated
influenza vaccine (LAIV) to reduce the burden of RSV, we conducted a
simulation study. We adapted our SITRxSITR model, described above,
to allow for vaccination of individuals who were fully susceptible to
influenza, RSV, or both (specifically, those in compartments XSS, XSI,
XST, XSR, or XRS) with LAIV (Supplementary Equation (2) and Supple-
mentary Fig. 13). To account for the different outbreak dynamics
observed in different regions, we ran our simulation study for two
scenarios: a “subtropical” scenario, where all model parameters were
set to their MLEs obtained when fitting the model to data from Hong
Kong, and a “temperate” scenario, where parameters were set to their
MLEs based on the data from Canada (Table 1). For consistency, we set
the interaction parameters to the values obtained from Hong Kong in
both scenarios; results from a sensitivity analysis instead using the
values obtained from Canada can be found as Supplementary Fig. 15.
Vaccination was assumed to confer either strong (θλvacc = θλ1 as infer-
red based on the Hong Kong data) or moderate (θλvacc = θλ1 as inferred
based on the Canada data) protection against RSV; in both cases,
protection against RSV due to LAIV was assumed to wane at the same
rate as protection due to natural infection, again using the value
obtained in Hong Kong. Additionally, vaccination conferred imperfect
(“leaky”) immunity to influenza32 with a vaccine efficacy of 80%88. For
simplicity, we assume that all vaccinated individuals receive the vac-
cine at a single instantaneous time point.

For each scenario, we simulated the total number of influenza and
RSV cases over the course of each season at a range of vaccine cov-
erage levels and timings using our deterministic model. We calculated
the influence of LAIV on RSV burden for each simulation as a rate ratio:

RR=
AR1

RSV

AR0
RSV

ð5Þ

where AR1
RSV represents the RSV attack rate throughout the season in a

partially vaccinated population, and AR0
RSV represents the RSV attack

rate in a population where no vaccination occurred. Thus, values less
than one indicate that LAIV reduced the overall attack rate of RSV for
the season, while values greater than one indicate that LAIV led to an
increase in the attack rate of RSV. Several sensitivity analyses, where
vaccine efficacy and duration were varied, were also conducted (see
Supplementary Fig. 16).

Implementation
All analyses were conducted in R version 4.2.389. Themodel was coded
and run using the package pomp90 (version 5.4), and fit using the sbplx
algorithm via the package nloptr91,92 (version 2.0.3). All code can be

found on GitHub93, as well as on Edmond, the Open Research Data
Repository of the Max Planck Society94.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data used in this study are freely available online; access and
use are not subject to any permissions or conditions. Specifically, the
data from Hong Kong can be found at: https://www.chp.gov.hk/en/
statistics/data/10/641/642/2274.html and https://www.chp.gov.hk/
en/static/24015.html The data from Canada can be found at:
https://search.open.canada.ca/opendata/?od-search-portal=Open%
20Data&search_text=fluwatch. All code necessary to clean and pro-
cess these data are published online, and can also be accessed and
used without permission (see Code availability statement). Climate
data from the US National Centers for Environmental Information
can be downloaded using the R package GSODR (see Code avail-
ability statement). Synthetic data used in the simulation study of
LAIV impact, as well as synthetic age-structured data, are available as
Source Data. Source data are provided with this paper.

Code availability
All R code used in this study can be found at: https://github.com/
sarahckramer/resp_virus_interactions.
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