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Genetic effects on changes in human traits over time are understudied and
may have important pathophysiological impact.We propose a framework that
enables data quality control, implements mixed models to evaluate trajec-
tories of change in traits, and estimates phenotypes to identify age-varying
genetic effects in GWAS. Using childhood BMI as an example trait, we included
71,336 participants from six cohorts and estimated the slope and area under
the BMI curve within four time periods (infancy, early childhood, late child-
hood and adolescence) for each participant, in addition to the age and BMI at
the adiposity peak and the adiposity rebound. GWAS of the 12 estimated
phenotypes identified 28 genome-wide significant variants at 13 loci, one of
which (in DAOA) has not been previously associated with childhood or adult
BMI. Genetic studies of changes in human traits over time could uncover
unique biological mechanisms influencing quantitative traits.

Genome-wide association studies (GWAS) have been informative over
the past two decades in extending our knowledge of the genetic
architectureof commoncomplex traits anddiseases. The vastmajority
of GWAS have concentrated on cross-sectional phenotypes (i.e. one
measure per person per study). However, many human traits change
over time, and there may be a genetic component underlying this
dynamic process of change in the trait (see for example1–7,). Therefore,
studying trait trajectories is increasingly important to uncover loci
beyond those found from GWAS of cross-sectional traits.

Linear mixed models (LMMs) are often used to assess age- (or
time) varying exposure-outcome associations8. This statistical model
summarises repeated measures data into an average trajectory across
the sample (i.e. the fixed effects), as well as the individual variations
around this average for each participant within the sample (i.e. the
random effects). LMMs can be used to explore age- (time) varying

effects of genetic variants on outcomes. Indeed, there are examples of
using LMMs to estimate the association between selected SNPs and
trajectories of change in phenotypes (see for example9–13,). However,
scaling this approach up to conduct GWAS on the longitudinal change
in a trait can be extremely computationally intensive; for example,
analysing ~2.5 million SNPs and longitudinal BMI data in 7916 indivi-
duals from the Avon Longitudinal Study of Parents and Children
(ALSPAC) took approximately 1440hours to complete2, in comparison
to a few hours using standard software with a single measure per
individual.

There are current statistical methods available to utilise repeated
measures of a phenotype within an individual and facilitate the
detection of genetic variants that have age- (time) varying effectswhen
the phenotype changes linearly over time. This includes methods that
use a two-stage approach, in which (i) a LMM is fit to the repeated
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measures data and (ii) the best linear unbiased predictors of each
individual’s trajectory are extracted and used as the outcome in the
GWAS14–16. These two-stage approaches reduce the computational
challengeoffitting the LMM,often allowing theGWAS tobe conducted
using standard software. As an alternative, Sikorska and colleagues17

developed a method whereby the variances of the random intercept
and slope, along with the variance of the residual, are estimated in a
LMM without a genetic variant. This relies on the assumption that the
variances do not change when the genetic variant is included in the
model. These estimated variances are then used in a large system of
linear equations, which is solved to estimate the genetic effects at each
SNP. These two-stage methods estimate the association between a
genetic variant and a change in a phenotype over time. In contrast, Ko
and colleagues (2022) developed a method that estimates the genetic
effect onwithin-subject variability that can be applied to biobank-scale
repeated-measures data18. All these methods described for long-
itudinal GWAS analyses are applicable for phenotypes that follow lin-
ear trajectories over time16–18. However, this is not realistic for many
traits, particularly when investigating change in a phenotype over a
long period of time.

An example of a trait with a non-linear trajectory is body mass
index (BMI) across childhood. The BMI trajectory across childhood
starts with a rapid increase soon after birth until the “adiposity peak”
(AP) at approximately 9 months of age, followed by a gradual decline
until the “adiposity rebound” (AR) around 4–6 years of age, followed
by an increase again until the end of puberty and beyond19. There is
some evidence for age-varying genetic effects on BMI2,9,20,21; however,
due to the lack of statistical methods for analysing non-linear trajec-
tories on a GWAS scale, relatively little is known about the genetic
determinants of the rate of change in BMI across early life.

The aim of this study is to develop a framework to conduct GWAS
to detect age- (time) varying genetic effects of non-linear trajectories
using standard GWAS software. Due to restrictions in sharing indivi-
dual participant data, this framework will be applied to individual
participant data within each cohort and then GWAS summary statistics
will bemeta-analysed. The framework comprised of the following four
procedures: (1) apply an algorithm to quality control the longitudinal
data to ensure that only themost likely outliers are excluded based on
within- and between-individual comparisons; (2) specify an appro-
priate model for a nonlinear growth trajectory using longitudinal data
in a rangeofdifferent cohorts; (3) ensure the chosenmodel is correctly
parameterized; (4) estimate phenotypes that summarise the trajectory
for subsequent GWAS analysis. The resulting GWAS summary statistics
can be used in downstream analyses, such as genetic correlation and
causal modelling. We describe an example standardised protocol via
an easy-to-followRpackage, called Early GrowthGenetics Longitudinal
Analysis (EGGLA), to perform each of these steps for BMI across
childhood and provide a harmonised, reproducible set of GWAS
summary statistics for further downstream analysis.

Results
Our analysis included participants from six population-based cohorts
(Table 1, SupplementaryData 1 and SupplementaryNote 2): 1) theAvon
Longitudinal Study of Parents and Children (ALSPAC)22,23, 2) the Eur-
opean subset of Children’s Hospital of Philadelphia (CHOP)24 3) the
African American subset of CHOP24, 4) the Northern Finland Birth
Cohort 1966 (NFBC1966)25, 5) the Northern Finland Birth Cohort 1986
(NFBC1986)26, and 6) OBésité de l’Enfant (OBE)27,28. We included mea-
sures of BMI atmultiple times across early life, ranging from twoweeks
after birth to late adolescence (18 years for all cohorts except OBE,
which had data until 16 years).

Using a published algorithm to clean longitudinal data
We employed a unified approach to data cleaning across cohorts by
using the growthcleanr29 R package, which flags duplicates and

implausible values for exclusion. After data cleaning, we excluded
between 4.2% and 16% of BMI measures within each cohort, most of
which were excluded due to missing height or weight information or
duplicatedmeasures (SupplementaryData 2). The final analysis for the
growth modelling comprised 34,818 females (ranging from 308 to
10,814 per cohort) and 36,518 males (ranging from 252 to 12,002 per
cohort).

Developing an R package to model nonlinear growth
We developed an analysis framework to fit nonlinear growth models
for GWAS and an associated R package30,31 (https://m.canouil.dev/
eggla/articles/eggla.html) named the EGGLA framework. The EGGLA
R package provides four unified protocols to facilitate the analysis
framework, including model diagnostics, model selection, running
the chosen LMM, and estimating specific phenotypes. The R
package was developed to standardise the analysis framework,
allowing all six participating cohorts to provide a harmonised,
reproducible set of GWAS summary statistics for further downstream
analysis. The EGGLA protocols specific to longitudinal modelling of
BMI are outlined in Supplementary Fig. 1 and Supplementary Note 3.
The EGGLA model diagnostics protocol cycles through each of the
three selected LMMs (including a linear spline, cubic spline, or
cubic slope functions for age) with various complexities of random
effects and correlation structure (no structure and continuous
autoregressive correlation structure of order 1 (CAR(1)); seemethods
for full description of the LMMs. Several reports are output at
this stage to inform selection of the most appropriate model to
characterise change in the phenotype (BMI in our illustrative
application; see Supplementary Data 3 and Supplementary Note 3).
To select our preferred model, we compared the model fit of
sex-specific analyses in each cohort based on any convergence
issues, performance metrics, and visual inspection of the predicted
curves.

Several models either failed to converge or presented warning
messages within each cohort (more issues were seen in cohorts with
higher sample size and a larger number of repeated measures per
individual; Table 2 and Supplementary Data 3). In each cohort, at least
eight of the sixteen models converged without any issues (Supple-
mentary Data 3). Specifying a CAR(1) correlation structure seemed to
cause themost problems withmodel convergence across the cohorts/
sexes, particularly for the models with a cubic slope or linear spline
function for age in the fixed effects.

We used Akaike’s Information Criterion (AIC) and Bayesian
Information Criterion (BIC) performance metrics to define the best-
fitting model as they appropriately penalize model complexity. In
ALSPAC, CHOP African Americans, females in NFBC1966, and
NFBC1986 the best model included a cubic spline function for age in
both the fixed and random effects and a CAR(1) correlation structure
(Table 2 and Supplementary Data 3). For the males in NFBC1966 and
OBE, the best-fitting model included a cubic spline function for age in
the fixed effects, a quadratic spline function in the random effects and
a CAR(1) correlation structure. Finally, the best fitting model in the
male, European American subset of CHOP had a cubic spline function
for age in the fixed effects, a cubic slope function in the random
effects, and no correlation structure and in the females the best fitting
model included a cubic spline function in thefixed effects, linear spline
function in the random effects and a CAR(1) correlation structure.
Although the cubic spline in both fixed and random effects produced
the most favourable performance metrics for most cohorts (Table 2
and SupplementaryData 3), themodelfit withwarningmessages in the
CHOP European Americans and males in NFBC1966 suggesting that
the next best performing models (that converge without issues for all
cohorts and sexes) should be considered. Therefore, our preferred
model included a cubic spline function for age in the fixed effects,
cubic slope in the random effects and no specified correlation
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structure. This model, for individual i at age (time) t, is described
using Eq. 1:

loge BMIit
� �

=β0 +
X3
j = 1

βjAge
j
it +

X3
k = 1

βk + 3ðAgeit � κkÞ3+ +b0i

+
X3
j = 1

bjiAge
j
it + εit

ð1Þ

Where the fixed parameters are represented by β0, β1, β2,… and κk is
the kth knot where:

t � κk

� �
+ =

0 if t ≤ κk

t � κk if t > κk

�
ð2Þ

The parameter estimates for the random effects are represented
by b0i, b1i, b2i,…, and εit are the error terms (see methods for further
description on the model specification).

Parameterising the chosen model by refining knot placement
Because our preferred model included a cubic spline function for age,
we sought to further optimize the knot placement (i.e. ages at which
there is a change in slope) to ensure our model reflected the under-
lying BMI trajectory appropriately. We started with knot points at two,
eight and 12 years based on previous research2, which modelled BMI
data from one to 17 years of age. However, our modelling of slightly
younger ages could require different knot points. To this end, we ran
models incrementing the first-knot point by half-year increments and
second-knot point by yearly increments; we decided to not move the
third-knot point as there is less change in the BMI trajectory after the
adiposity rebound (i.e. by 12 years of age) and both our study and
Warrington et al.2 included data across this time period (i.e. 12-17
years). In addition to the previous metrics used for selecting a pre-
ferredmodel,weestimated the age andBMI at theAP andAR tohelpus
distinguish between models (see methods for description on how the
AP and AR were estimated).

Previous studies exploring the age of AP in European populations
report an average age at approximately nine months32. In all the
cohorts in this study, later placement of the first knot (at age one, one
and a half, or two years) resulted in an increase in the estimated
average age at AP (Supplementary Fig. 2). The average age at AP when
applying the first knot at one year of age across all included cohorts
was 0.75 years (standard deviation (SD) 0.05; Table 1 and Supple-
mentaryData 1), whereas it wasover one yearof agewhen thefirst knot
was at two years of age. In addition, the performance metrics were
improved in all the cohorts when applying the first knot at one year of
age compared to at two years of age (Supplementary Fig. 2). We
therefore chose to apply the first knot at one year of age for our final
preferred model.

When comparing the model fit while moving the second knot (i.e.
testing a knot at age six, seven, or eight years) we found there was very
little variation in the performance metrics or in the estimated average
age at AP andAR across the cohorts (Supplementary Fig. 2). Therefore,
we chose to keep knot two at our a priori age of eight years.

Figure 1 shows the average BMI trajectories predicted from the
fixed effects of our chosenmodel (with knot points at one, eight and 12
years) for each of the six cohorts. The OBE cohort had a substantially
higher average BMI and steeper trajectory throughout early life,
reflecting the obese children recruited into the cohort (the BMI tra-
jectory in OBE is from two weeks to 16 years of age as there were very
fewobservations beyond age 16 years). The AfricanAmerican subset of
the CHOP cohort had an earlier AR and steeper BMI trajectory
throughout childhood than the other cohorts. The model fit the BMI
data well in all cohorts tested (Supplementary Fig. 3).Ta
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Estimating phenotypes that summarise the BMI trajectory
To estimate phenotypes from the BMI trajectory for GWAS analysis, we
defined intervals of approximately linear change in BMI. We defined
four-timewindows: infancy (twoweeks to sixmonths), early childhood
(1.5–3.5 years), late childhood (6.5–10 years) and adolescence (12–17
years). We calculated a BMI trajectory for each individual within each
cohort by combining the estimated fixed effects, which are shared by
all subjects within each sexwithin a cohort, with the predicted random
effects, which are specific to each individual. We subsequently esti-
mated phenotypes within each time window from the individual-
specific BMI trajectories, including slopes and area under the BMI

curve (AUC), in addition to age and BMI at the AP and AR. We did not
estimate the adolescent phenotypes (slope and AUC) in OBE as they
only had data to age 16 years.

A summary of each of the estimated phenotypes is presented in
Table 1 and Supplementary Data 1. The estimated phenotypes illu-
strated the expected differences between the cohorts, indicating that
our methods are generalizable to a range of cohorts. For example,
individuals in the NFBC1966 and OBE cohorts had a steeper infancy
slope (0.56 log BMI units per year for males in NFBC1966 and 0.54 log
BMI units per year in OBE), in contrast to individuals in NFBC1986
(0.36 log BMI units per year in males). This is equivalent to a 75%
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ALSPAC CHOP−European CHOP−African NFBC1966 NFBC1986 OBE

Fig. 1 | Average BMI trajectories predicted by our final chosen model (cubic
spline function in the fixed effects with cubic slope function in the random
effects) for eachof the six cohorts.Males are presented inpanel (a) and females in
panel (b). BMI trajectories were predicted from 2 weeks to 17 years, which corre-
sponds to the age range that the slopes and AUCs were predicted from, in all

cohorts except OBEwhere they were predicted from 2weeks to 16 years due to the
lack of data after age 16. The year(s) of recruitment for each cohort are as follows:
ALSPAC: 1991–1993, CHOP: 1988-present, NFBC1966: 1966, NFBC1986: 1985–1986,
OBE: 1981–2001. Source data are provided as a Source Data file.
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change in BMI over the first year formales inNFBC1966, which equates
to approximately 10 kg/m2 over the first year if BMI is 14 kg/m2 at two
weeks of age (approximate BMI at twoweeks of age across the cohorts
based on the height and weight data in Supplementary Data 1).
Whereas in NFBC1986 males, it is equivalent to a 43% change in BMI,
equating to approximately 6 kg/m2 over the first year if BMI is 14 kg/m2

at two weeks of age. This was also reflected in NFBC1966 and OBE
having a higher BMI at the AP (for example, 18.22 kg/m2 in males from
NFBC1966 and 18.39 kg/m2 from OBE) while NFBC1986 had a lower
BMI at AP (17.75 kg/m2 inmales). As seen in Fig. 1 and Table 1, the age at
AR was earlier for OBE (for example, 2.40 years for males) than the
other cohorts (average age of 3.83-5.67 years). The mean rate of
growth was similar across the cohorts during late childhood and
adolescence, with the mean growth rate ranging between 0.02-
0.06 log BMI units per year (Table 1 and Supplementary Data 1), which
is equivalent to a 2–6% change in BMI per year.

We investigated the correlation between each of the estimated
phenotypes (Supplementary Data 4) and found a high correlation
(r > 0.70) between several phenotypes consistently across the cohorts.
For example, the infant and early childhood slopes showed a positive
correlation (r≥0.78) in bothmales and females in all cohorts. Both the
infant (r ≥0.86) and early childhood (r ≥0.73) slopes were positively
correlated with the age at AP. The late childhood slope was negatively
correlated with the age at AR (r≤ −0.84), which indicates that indivi-
duals with an earlier AR have a steeper slope from 6.5 to ten years.
These correlations differed in the OBE cohort that included only chil-
dren with obesity; the correlation between late childhood slope and
age at AR were small for males (r = −0.09) and females (r = −0.10). The
AUC’s generally showed strong positive correlations with the BMI at
the AP and AR (infant AUC with BMI at AP, child AUC with BMI at both
AP and AR and late child and adolescent AUC with BMI at AR). None of
the estimated phenotypes were strongly correlated with the adoles-
cent slope in any cohort (all r < 0.7).

We performed sensitivity analyses in the ALSPAC and NFBC1986
cohorts where we changed the random effects and the correlation
structure in the LMMandused these updatedmodels to re-estimate the
phenotypes within each time window. The estimated phenotypes were
relatively robust to these changes in the underlying LMM (Supple-
mentary Fig. 4 and Supplementary Fig. 5) and the correlations between
the estimated phenotypes were similar (Supplementary Data 5).

Finally, all of the estimated phenotypes were associated with BMI
at age 18 years (16 years in OBE, as BMI at 18 years was not available),
and the strength of the association increased over age (Supplementary
Fig. 6). For example, the adolescent AUC explained themajority of the
variance in BMI at 18 years (between 74–91% across the cohorts), in
contrast to a small amount of variance explained by the infancy AUC
(between 0 and 10%)

Meta-analysing the GWAS summary statistics
We conducted GWAS for each of the estimated phenotypes within
each cohort, then combined the results from theGWAS in cohortswith
individuals of European ancestry using fixed effects inverse-variance
meta-analysis (combined sample size N = 19,308; OBE was excluded
from the meta-analysis of the adolescent phenotypes as they did not
have data beyond age 16 years). There was no evidence of hetero-
geneity across the genome in our fixed-effects meta-analysis for the
majority of our estimated phenotypes (Supplementary Fig. 7). There
was some inflation observed for the early childhood slope and the late
childhood AUC, but this was driven by the inclusion of the OBE cohort
(see Supplementary Fig. 8 for Q-Q plots excluding OBE). Using the
summary statistics from the meta-analysis, we estimated the SNP-
based heritability of each of the estimated phenotypes and the genetic
correlation between phenotypes using linkage disequilibrium score
regression (LDSC). The SNP-based heritability of the estimated phe-
notypes ranged from 6–28% (Fig. 2), which is comparable to the SNP-

based heritability of BMI across childhood (15–45%33) and adulthood
(22%34). Estimates of SNP-based heritability for the infancy slope,
adolescent slope and age at AP were less than 10%, with large standard
errors, indicating that the genetic correlation estimates with these
phenotypesmay not be reliable; however, we have presented them for
completeness. AUC in infancy was genetically correlated with AUC in
early childhood (rg = 0.91) and the BMI at both AP (rg = 1) and AR (rg =
0.66) but showed relatively low genetic correlations with all the other
estimated phenotypes (rg < 0.43), indicating a unique genetic profile
for BMI during infancy. The genetic correlation between AUCs in
subsequent time periods were high; for example, the genetic correla-
tion between AUC in infancy and early childhood was rg = 0.91, AUC in
early childhood and late childhood rg = 0.79, and AUC in late child-
hood and adolescence rg = 0.96. This indicates that there could be a
common set of genes related to BMI across time.

Using LDSC and publicly available summary statistics, we esti-
mated the genetic correlation between our estimated phenotypes
based on longitudinal data and childhood BMI at different ages33 and
adult BMI using cross-sectional data34. We found a high genetic cor-
relation between our estimated AUCs and childhood BMI measured
cross-sectionally at the beginning and end of each age window (Sup-
plementary Data 6). For example, the genetic correlation between
early childhood AUC and BMI at age 1.5 years (the beginning of our
early childhood time window) was 0.80 (SE =0.08), which was similar
to the genetic correlation of 0.82 (SE = 0.09) with BMI at age 3 years
(near the end of our early childhood time window). In contrast, we
estimated a moderate genetic correlation between our estimated
slopes and childhood BMI (Supplementary Data 6), where the genetic
correlation between early childhood slope and BMI at age 1.5 and 3
years of age was 0.13 (SE = 0.09) and 0.39 (SE =0.10) respectively.

We identified 28 genome-wide significant (P < 5 × 10−8) variants at
13 loci associated with at least one of the 12 estimated phenotypes
(Figs. 3–5, Supplementary Data 7). The number of estimated pheno-
types the loci were associated with ranged from one phenotype (LEPR
associated with only age at AR and DAOA associated with only early
childhood AUC) to seven phenotypes (SEC16Bwas associated with age
and BMI atAR, age atAP, late childhood and adolescent AUC, and early
and late childhood slope). Of these 13 loci, 12 have previously been
identified in GWAS of adulthood BMI or obesity-related traits and nine
have been associated with childhood BMI-related traits. We identified
one locus in the DAOA region on chromosome 13 that was most
strongly associated with AUC in early childhood (1.5–3.5 years). Here,
the A allele at rs79577162 (DAOA) reduces the AUC within this time-
period (effect size = −0.02 log BMI years, P = 4 × 10−8). Across the other
estimated phenotypes, the A allele at rs79577162 also decreases BMI at
the AP (effect size = −0.13 kg/m2, P = 2 × 10−6) and AR (effect size =
−0.14 kg/m2, P = 5 × 10−6), and decreases the AUC across all time peri-
ods (effect size for infancy AUC= −0.003 log BMI years, P = 3 × 10−5;
effect size for late childhood AUC= −0.04 log BMI years, P = 1 × 10−4;
effect size for adolescent AUC = −0.06 log BMI years, P = 3 × 10−3);
therewasno evidence that the SNP impacts the slope across childhood
(all P > 0.24) or the age at the AP (P = 0.26) or AR (P =0.25). There was
some evidence of heterogeneity (P < 0.05) at variants in the SEC16B,
ADCY3, OLFM4 and FTO loci (Supplementary Data 8). Results were
similar when OBE was excluded from the meta-analysis (Supplemen-
tary Fig. 9). Twelve of the 28 the genome-wide significant variants
identified in the Europeanmeta-analysis showed the same direction of
effect in the CHOP African American subset (N = 6332) and reached
nominal significance (P <0.05) for at least one estimated phenotype
(Supplementary Data 8), and a further 12 loci showed the same
direction of effect (P >0.05).

The adolescent slope was not strongly associated with any region
of the genome (Fig. 4). Themost significant locuswasnear FAM120AOS
(rs11790060, P = 7 × 10−8) on chromosome 9, a region previously
associated with change in BMI over early life2 (Supplementary Fig. 10).

Article https://doi.org/10.1038/s41467-024-53687-3

Nature Communications |        (2024) 15:10067 6

www.nature.com/naturecommunications


Variants near SEC16B, which have previously been shown to
associate with adult BMI35, were associated with the majority of our
estimated phenotypes. For example, the T allele at rs509325 is asso-
ciated with decreased age at the AP (effect size = −0.003 years,
P = 1 × 10−8), and it is alsoassociatedwith increased age at theAR (effect
size=0.12 years, P = 5 × 10−16) and decreased BMI at the AR (effect
size = −0.08 kg/m2, P = 5 × 10−8). The T allele is also associated with
decreased early childhood slope between 1.5 and 3.5 years (-0.0011 log
BMI units per year, P = 2 × 10−11) and late childhood slope between 6.5
and 10 years (-0.0013 log BMI units per year, P = 1 × 10−17), resulting in a
lower AUC in the subsequent time periods (i.e. -0.0315 log BMI years,
P = 3 × 10−13 for late childhood AUC and -0.0670 log BMI years,
P = 4 × 10−17 for adolescent AUC). Variants near FTO and ADCY3 are
similarly associated with a number of the estimated phenotypes.

We also investigated the association between 112 unique SNPs
previously identified for childhood BMI or obesity-associated traits
and our estimated phenotypes (Supplementary Data 9). The majority
of the 112 SNPs showed directionally concordant effects between the
published BMI traits and our estimated phenotypes (76/112 SNPs
increased infancy slope, 86/112 increased early childhood slope, 84/112
increased late childhood slope, 83/112 increased infancy AUC, 97/112
increased early childhood AUC, 96/112 increased late childhood AUC,
96/112 increased adolescent AUC, 80/112 increased age at AP, 89/112
increased BMI at AP, 100/112 increased BMI at AR), with the exception
of the adolescent slope (24/112). Given that an earlier age at AR is
associated with higher BMI in later life, 82/112 SNPs associated with

higher BMI traits were associated with earlier age at AR. At least half of
the SNPs reached nominal significance (P < 0.05) for the childhood to
adolescent traits, except for the adolescent slope, forwhich only 18/112
SNPs reached nominal significance.

Discussion
We have developed a framework to perform non-linear growth mod-
elling and conduct GWAS to detect age- (time) varying genetic effects
of non-linear trajectories. To perform the analysis for BMI across
childhood in multiple cohorts using our framework, we created an
easy-to-use R package, called EGGLA. We consider childhood BMI an
important and valuable example for testing our framework due to the
established complex changes in adiposity that occur during the
childhood, such as the AR and pubertal effects on BMI.We have shown
that a LMMwith a cubic spline function in the fixed effects and a cubic
slope in the random effects fit well in all the cohorts tested, which is
similar to a model used previously2. We subsequently estimated phe-
notypes from this LMM and used them to conduct GWAS analyses
(N = 19,308 individuals of European descent in the meta-analysis and
N= 6332 individuals of African American descent). We identified 28
SNPs from 13 loci that associate with one or more of the estimated
childhood BMI phenotypes, one of which has not been previously
associated with childhood or adult BMI. These include six loci that
were associated with the estimated AUCs, six loci that were associated
with both change in BMI over time (estimated slopes) and the esti-
mated AUCs and one that was associated with the age at AR but none
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Fig. 2 | SNP-based heritability (h2) and genome-wide genetic correlation (rg)
between the twelve estimated phenotypes summarising growth across
early life. SNP-based heritabilities, presentedon the diagonals with standard errors
in brackets (SEh

2), and genetic correlations, presented on the off diagonals, were
derived using linkage disequilibrium score regression. SNP-based heritabilities for
the age at the adiposity peak (AP age), infancy and adolescent slope are low, with

high standard errors (resulting in a z-score <4), and therefore the genetic correla-
tions with these traits are unreliable but are shown for completeness. *estimates of
genetic correlation were >1; given this is not possible we have set these to one.
AP=adiposity peak, AR=adiposity rebound, AUC=area under the curve. Source data
for the genetic correlations are provided as a Source Data file. Source data for the
heritability estimates are available in Supplementary Data 6.
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Fig. 3 | Manhattan plots and quantile-quantile (QQ) plots of the meta-analyses
for the area under the curve estimated phenotypes across infancy (0–0.5
years), early childhood (1.5–3.5 years), late childhood (6.5–10 years) and ado-
lescence (12–17 years). The two-sided association P value on the –log10 scale
obtained from the inverse-variance-weightedfixed-effectsmeta-analysis for eachof
the SNPs (y-axis) was plotted against the genomic position (NCBI Build 37; x-axis).

Loci are labelled with their nearest gene annotated by LocusZoom. The red dotted
line in the Manhattan plots corresponds to the genome-wide significance level of
P < 5×10−8, which accounts formultiple testing. The red dots in the QQ plots are the
two-sided association P-values, the blue shading represents the 95% confidence
bands of the expected values. λgc is the genomic inflation factor.
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Fig. 4 | Manhattan plots and quantile-quantile (QQ) plots of the meta-analyses
for the slope estimated phenotypes across infancy (0–0.5 years), early child-
hood (1.5–3.5 years), late childhood (6.5–10 years) and adolescence (12–17
years). The two-sided association P value on the –log10 scale obtained from the
inverse-variance-weighted fixed-effects meta-analysis for each of the SNPs (y-axis)
was plotted against the genomic position (NCBI Build 37; x-axis). Loci are labelled

with their nearest gene annotated by LocusZoom. The red dotted line in the
Manhattan plots corresponds to the genome-wide significance level of P < 5 × 10-8,
which accounts formultiple testing. The red dots in the QQplots are the two-sided
association P values, the blue shading represents the 95% confidence bands of the
expected values. λgc is the genomic inflation factor.
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Fig. 5 | Manhattan plots and quantile-quantile (QQ) plots of the meta-analyses
for the age and BMI at adiposity peak and adiposity rebound estimated phe-
notypes. The two-sided association P-value on the –log10 scale obtained from the
inverse-variance-weighted fixed-effects meta-analysis for each of the SNPs (y-axis)
was plotted against the genomic position (NCBI Build 37; x-axis). Loci are labelled

with their nearest gene annotated by LocusZoom. The red dotted line in the
Manhattan plots corresponds to the genome-wide significance level of P < 5×10-8,
which accounts formultiple testing. The red dots in the QQplots are the two-sided
association P-values, the blue shading represents the 95% confidence bands of the
expected values. λgc is the genomic inflation factor.
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of the AUCs or slopes. Although the majority of the identified loci had
previously been identified in GWAS of BMImeasured cross-sectionally
in childhood and/or adulthood, our framework allows exploration of
how the genetic effect changes over age (time), which is difficult to
elucidate from cross-sectional GWAS analyses. With a larger sample
size, this framework is likely to be useful to explore GWAS of time-
varying phenotypes to identify genetic associations that are relatively
stable across large age periods (i.e. through the association with esti-
mated AUCs) and those that vary with age (through the association
with estimated slopes).

Given we have demonstrated that our framework works well with
the complex changes in BMI across childhood, we believe it is gen-
eralizable to longitudinal analysis of other traits. For example, the
same procedure could be applied to height trajectories across child-
hood or changes in lean and fat mass. It could also be applied to other
non-anthropometric traits, such as blood pressure or cholesterol tra-
jectories across adulthood. The challenging aspect that will require
further development for each trait of interest is defining an appro-
priate model to fit the repeated measures data that accurately
describes the trajectory. However, once an appropriate model has
been identified for the particular trait, then phenotypes can be esti-
mated for subsequent GWAS analyses. We have provided the R pack-
age appropriate for modelling BMI trajectories across early life and
details of the framework here so that it can be explored for use with
other traits.

Our model fit the BMI data across a range of cohorts, including
different ethnicities and different time points for data collection. For
example, the final model had a similar fit in the two subsets of the
CHOP cohort (the European American and African American), and the
average BMI trajectories predicted from the model followed the
expected growth patterns from previous research36, with the African
American cohort having a higher BMI and faster rate of growth than
the European American cohort. In the OBE cohort, there was very
sparse data between the ages of 16 and 18 years; when we removed
data after 16 years from the modelling, the model fit in OBE was
comparable to the other cohorts. It is unknown how these models will
perform in cohorts with data across a shorter age range; it may be
necessary to incorporate alternative methods when cohorts are
included with data across different age ranges.

We acknowledge that we experienced several convergence issues
in the range ofmodelsweapplied across the cohorts. Although it is not
ideal to selectmodels based onwhether they converge, it is a practical
solution when attempting to apply the same model to a range of
datasets with different data structures. Somepractical advice to others
experiencing convergence issues when attempting to implement our
framework include centring the age variable (particularly when zero is
not within the age range as the model can struggle to extrapolate to
zero), ensuring that each cohort has enough repeatedmeasures of the
phenotype (more repeated measurements per individual will allow a
more complex random effects structure to be fit), testing different
optimization algorithms and, finally, if one of several cohorts is parti-
cularly problematic in terms of convergence then investigate the data
structure of that cohort and assess whether it is important to include
them in the analyses.

Wepropose using theAUCas oneof the summarymeasures of the
trait trajectories. The AUC for childhood BMI has been described as
“the child’s cumulative ‘exposure’ to excessive body weight”37, and has
beenused in epidemiological studies. UsingAUChas potential benefits
over analysing BMI in a cross-sectionalmanner as it is a combination of
both baseline BMI and the incremental change in BMI over the time-
period, whereas cross-sectional BMI would only capture the BMI at a
given time point. Additionally, using the AUC rather than BMI at a
single time point potentially increases statistical power to detect a
genetic effect as the multiple BMI measurements used to estimate the
AUC would average out any errors in the measurements and therefore

reduce the variance attributable to measurement error. The AUC was
more highly phenotypically and genetically correlated with BMI at the
AP and AR, as well as at age 18, whereas the slopes were more highly
correlated with the timing of the AP and AR. Consistent with the cor-
relations, the SNP effects for the AUC were more directionally con-
cordant with previously identified BMI and obesity loci than the SNP
effects for the slope. This indicates, at least for BMI in early life, that
genetic studies of the estimated slope parameters could uncover
biological mechanisms driving BMI in childhood that the current stu-
dies of childhood BMI have failed to identify. In contrast, genetic stu-
dies of the estimated AUC parameters would be likely to provide
similar findings to the current genetic studies of childhood BMI;
however, because the AUC parameters are estimated from the trajec-
tory,measurement of BMI at the exact same timepoints across cohorts
is not necessary, so using AUC allows incorporation ofmore cohorts to
enhance sample sizes and statistical power for genetic studies.

Our analyses of BMI showed consistent results with previous lit-
erature, further validating our approach. First, the phenotypic corre-
lations between the age and BMI at the AP and AR are similar to the
correlations from a paediatric cohort with data collected between
1980–200837. For example, Wen et al.37 estimated the correlation
between BMI at the AP and AR to be 0.76, and ours ranged between
0.69–0.91 across the cohorts. Similarly, their correlation between age
and BMI at the AR was -0.48, and ours ranged between -0.39 to -0.67.
This indicates that the dependencies between the estimated pheno-
types are consistent regardless of the underlying LMM fit to the
repeated measures data, which is consistent with our comparison of
estimated phenotypes using different structures to model within-
individual variation. Second, the genetic correlations between the
infancy AUC/early childhood AUC/BMI at AP and the other estimated
phenotypes were relatively low, indicating that genetic loci associated
with BMI in the first 3–4 years of life are likely to be different from
those associated with BMI in later life. This observation is consistent
with both a twin study that has shown that the genetic correlations
differ between early and middle childhood38 and the MoBa study that
show that the genetic correlation between childhood and adult BMI
dramatically increases after the age of 5 years33. Third, the SNP-based
heritability of the estimated phenotypes ranged from 6–28% and is
similar to the SNP-based heritability of cross-sectional BMI in child-
hood (15–45%33,) and adulthood (22%34,). The low SNP-based herit-
ability observed for the infancy slope (0.07 (SD =0.03)) and age at AP
(0.09 (SD =0.03)) was also seenbyCoutoAlves and colleagues39 (-0.03
(SD =0.08) for ageAP). This lowSNP-basedheritability could be due to
a higher environmental component operating at this age, a genetic
component that is not tagged by the SNPs on the GWAS array or a
maternal genetic component that is independent of the child’s genetic
component. Alternatively, given the SNP-based heritability from cross-
sectional BMI GWAS between 6 weeks of age and 1 year in the MoBa
study ranged from 0.2–0.4533, it could indicate that our estimated
phenotypes are not proxying the underlying BMI trajectory well
through this age range. Therefore, further investigation into this low
SNP-based heritability is warranted.

The effect estimates at identified SNPs in our GWAS are consistent
with previously reported effects on childhood growth. For example,
Warrington et al.2 identified rs1558902 at the FTO locus to be asso-
ciated with change in BMI over childhood, which is in high LD with
rs55872725 (D’ = 1, r2 = 1)2. We found that the T allele at rs55872725 is
associated with increased rate of BMI change from infancy to late
childhood (P < 7 × 10−7), but not associated with adolescent slope
(P = 0.129), which is consistent with the pattern of association identi-
fied by Warrington et al.2 Additionally, the T allele is associated with
lower AUC in infancy (P = 0.002), not associated with AUC in early
childhood (P = 0.502) and then associated with higher AUC in late
childhood and adolescence (P < 4 × 10−14), which again is consistent
with Warrington et al2. where the genetic effect is associated with
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decreased BMI from 1–2 years of age, is not associatedwith BMI from 3
to 5 years of age, then is associated with increased BMI from 6 years of
age onwards2. Therefore, although we have used different methods to
identify and describe the genetic effects on growth, we are able to
recapitulate what has previously been described, validating our pro-
posed framework.

We have used our model to estimate the BMI and age at both the
AP and AR. However, we acknowledge that the biological significance
of these two markers remains unclear. It was initially thought that the
relationshipbetween age atARand later risk of obesitywasdue toboth
the number and size of adipocytes increasing19. Later studies propose
that it could be related to an increase in the rate of lean mass rather
than fat mass development40,41. Cole42 suggests that it is a statistical
phenomenon driven by both high centile and upward centile crossing,
which are separately associated with an early rebound. Our findings
here, and further application of our framework to change in fat and
lean mass across childhood, could provide insights related to these
different hypotheses.

There are several limitations to our approach. Firstly, the trajec-
tories for each individual (i.e. the best linear unbiased predictors) are
biased towards the average trajectory of the cohort (a property of
LMMsknown as ‘shrinkage’), particularlywhen the individual has fewer
repeated measures or when their trajectory is vastly different from
others in the cohort43. This could result in a biased estimate of the SNP
effect on the trajectory in GWAS. Future work could incorporate
approaches to adjust for the bias introduced by shrinkage14–16 into our
framework. Secondly, we have not accounted for the high phenotypic
and genetic correlation between the estimated phenotypes (see Fig. 2
and Supplementary Data 4) in the GWAS meta-analysis. Performing a
multivariate meta-analysis accounting for the high correlation
between the estimated phenotypes may reduce the overlap between
the genetic signals seen. It may also increase the power to detect a
genetic locus by leveraging information from the other correlated
phenotypes, as seen in analyses using the MTAG software44. Further
researchon themost appropriatemultivariatemeta-analysismethod is
required. Third, we have only tested our framework on relatively small
cohorts with large numbers of repeated measurements and it is
unclear how this will scale to biobank-size studies with over one hun-
dred thousand individuals. For instance, in ALSPAC where there are
6,818 samples and 60,169 observations within females, the compute
time for each model ranged from 0.04minutes for the model with a
cubic slope in thefixed effects and linear slope in the randomeffects to
20.2 hours for the model with a cubic spline in the fixed effects and in
the random effects. In contrast, the models took 0.03minutes and
5.05 hours, respectively in the NFBC1966 females where there were
3,280 individuals with 52,162 observations. Therefore, the computa-
tional burden may be too large once the sample size gets into the
hundreds of thousands. Additionally, large biobank studies, such as
theUKBiobank, only have a few repeatedmeasurements and therefore
it would be difficult to model non-linear trajectories. The methods
developed for phenotypes that change linearly over timemay bemore
appropriate14–18, or a simple rate of trait change could be derived45.
However, we recommend these methods be tested within the age
groups available in the biobank studies as almost all phenotypes follow
non-linear patterns during the life-course46. Fourth, we have analysed
BMIon the natural log scale for its statistical properties, but thismakes
the interpretation of effects on BMI more difficult due to the multi-
plicative errors. Fifth, one of the advantages of using repeated mea-
surements per individual is to increase the statistical power to detect
genetic associations when the SNP is included in the fixed effects part
of the LMM due to the smaller residual error variance. However, given
we are reducing the dimension of our dataset back to a singlemeasure
per person (for each GWAS analysis), it is unclear what impact this has
on the statistical power. Sixth, we have removed related individuals
from the majority of the cohorts (all except CHOP where relatively

little cryptic relatedness was present). However, a random effect for
family membership could be included in the LMM if there is a sub-
stantial number of relative pairs and family information is available.
Finally, BMI as a measure of adiposity during infancy is not commonly
used clinically, with ponderal index (weight divided by height3) being
preferred. However, to model the trajectory from two weeks to 18
years of age we needed to use one measure consistently. Further
research into the effect of different powers of height, as investigated
by Stergiakouli and colleagues47, would be of interest.

In conclusion, we have described a framework for conducting
GWASmeta-analyses on longitudinal (repeatedmeasures) phenotypes
that have a non-linear trajectory over time. We provide an R package,
EGGLA, to conduct these analyses for childhood BMI consistently
across different cohorts. We have shown that the estimated pheno-
types summarise the BMI growth trajectory across a range of cohorts
and are able to detect genetic associations with known BMI-associated
regions of the genome and to detect new genetic associations. Per-
forming similar analyses across a wider range of cohorts with BMI
measures across childhood may identify additional loci for change in
BMI across early life. Identification of such loci will enable downstream
analyses, such as genetic correlation and causal modelling, to investi-
gate relationships between, for example, early life growth and devel-
opmentalmilestones, cognitionand later life cardio-metabolic disease.

Methods
Ethics
Ethical approval for the Avon Longitudinal Study of Parents and Chil-
dren (ALSPAC) study was obtained by the ALSPAC Ethics and Law
Committee and local research ethics committees. Ethical approval for
NFBC1966 and NFBC1986 was granted by the Northern Ostrobothnia
Hospital District Ethical Committee 94/2011 (12.12.2011) and 108/2017
(15.1.2018) respectively in accordance with the declaration of Helsinki.
The Research Ethics Board of CHOP approved the study. The study
protocols for OBE were approved by local ethics committees. Partici-
pants of all studies provided written informed consent.

Overview
The Early Growth Genetics (EGG) Longitudinal Analysis (EGGLA) fra-
mework comprises four main components: application of a LMM to
longitudinal data (in this case, BMI measurements between 2 weeks
and 18 years of age), model diagnostics, model refinement, and finally
GWAS, all provided through a series of functions defined within the
EGGLA R package30,31. The EGGLA R package was developed to provide
a unified approach to harmonise analyses within six distinct cohorts.
Although the package and accompanying documentation is specific to
this longitudinal analysis with childhood BMI, it (and the described
methods) serves as an exemplar for other consortium efforts tomodel
other non-linear traits. The EGGLA R package is therefore publicly
available onGitHub; it is also available as part of aDocker image, which
provides all necessary tools for conducting LMM and GWAS analyses
allowing the analyses to be run non-interactively through either Shell
Command Language, Bourne-Again SHell, or interactively through R
v4.2.0 (or greater). Further details of the application of the EGGLA R
package to cohorts within the EGG consortium are described below.

Cohorts and study participants
We chose six cohorts to test our proposed methods, which include
prospective general population-based birth cohorts from different
generations and geographical locations (ALSPAC22,23, NFBC196625 and
NFBC198626), a retrospective cohort of childrenwith obesity (OBE27,28),
and different ethnicities (individuals of African American and Eur-
opean American descent in CHOP24).

For the growth modelling, we included all individuals with
anthropometric data between the ages of two weeks and 18 years,
except for OBE. There was very sparse data between 16 and 18 years in
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the OBE cohort, so after careful testing we excluded any measures
after 16 years. Measures of height and weight from birth to two weeks
were excluded to mitigate the effects of the weight drop arising after
birth48. We excluded individuals who were part of a multiple birth (i.e.
twins, triplets). All individuals with available anthropometric data were
included in the growth modelling, regardless of whether they had
genetic data, to ensure a precise estimate of the average BMI trajectory
within each cohort. Cohort-specific covariates were included in the
growthmodelling; for example, ALSPAC included a binary indicator of
measurement source (questionnaire vs. clinic or health visitor mea-
surement) to allow for differential measurement error.

Data quality control
We applied an automated algorithm developed by Daymont and
colleagues29, which is available as the R package, growthcleanr (https://
cran.r-project.org/web/packages/growthcleanr/index.html). This pack-
age compares each measurement with a weighted moving average of
the individual’s othermeasurements to identify biologically implausible
values in height and weight. The cleaning function flags potential data
errors, including unit-switch errors (e.g. pounds recorded as kgs or
height recorded as weight), very extreme values (i.e. z-score > 25),
carried forwards (i.e. values identical over time for the same individual),
duplicates (i.e. values recorded on the same day), large height absolute
differences (i.e. a decrease in height by more than 3 cm in sequential
measurements), singlemeasurements and pairs (i.e. individual SD score
for height was compared to their SD score for weight and vice-versa),
error load (i.e. exclude individuals who have a substantial proportion of
values flagged to be excluded), and finally moderate outliers (i.e. found
by calculating the exponentially weighted moving averages for mod-
erate and extreme outliers). We excluded any height or weight values
that were flagged as potential data errors (between 4.2% and 16% of
measures within each cohort; Supplementary Data 2). We have incor-
porated the growthcleaner quality control into our EGGLA R package.

After applying the cleaning protocol, measurements of height (m)
and weight (kg) were used to derive BMI as weight(kg) / height(m)2. As
BMI is skewed and heteroskedastic, a natural log transformation was
applied before analysis.

Linear mixed modelling
LMM is one commonly used approach for overcoming some of the
challenges in modelling longitudinal data. By selecting an appropriate
function for age, the average trajectories of an outcome (i.e. average
relationship between age and BMI) can be estimated as fixed effects in
the LMM, while variation around this average on the individual level
can be estimated as random effects49,50. Further details on LMM are
given in the Supplementary Note 4.

Application of LMMs to BMI. We applied LMMs to model the trajec-
tory of BMI, on a natural-log scale, over time from two weeks to 18
years of age (except OBE, which had data until 16 years). We fit three
different functions for age to capture the non-linear slope of the
loge(BMI) trajectory: 1) a cubic slope for age, 2) linear smoothing
splines with knot points at key inflection points on the curve, and 3)
cubic smoothing splines with knot points between inflection points in
the curve.While we acknowledge that these three functions for age are
not the only functions that could have been used to model the non-
linearity in the trajectory, we chose these as they range from a sim-
plistic function to model the non-linear trajectory (linear smoothing
splines) to more complex function (cubic smoothing splines), but
other functions may be more appropriate for comparison when
investigating other traits. The linear smoothing splines were included
as they have the benefit of being able to be used as the estimated slope
phenotypes, rather than requiring estimated slopes to be derived
separately. The threemodels are described by the equations (Eqs. 3–5)
below for individual i at time point t:

LMM with cubic slope for age:

loge BMIit
� �

=β0 +
X3
j = 1

βjAge
j
it + b0i +

X3
j = 1

bjiAge
j
it + εit ð3Þ

LMM with linear smoothing splines:

loge BMIit
� �

= β0 +β1Ageit +
XK
k = 1

βk + 1 Ageit � κk

� �
+ +b0i +b1Ageit

+
XK
k = 1
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ð4Þ

LMM with cubic smoothing splines:

loge BMIit
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X3
j = 1

βjAge
j
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+
X3
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bjiAge
j
it +
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Where the fixed parameters are represented by β0, β1, β2,… and κk is
the kth knot where:

t � κk

� �
+ =

0 if t ≤ κk

t � κk if t > κk

�
ð6Þ

The parameter estimates for the random effects are represented
by b0i, b1i, b2i,.., and are assumed to be multivariate normally dis-
tributed. εit are the error termsassumed tobenormallydistributed and
independent of the parameter estimates for the random effects. For
the LMM with linear smoothing splines, the placement of knot points
was based on the underlying biology of the BMI trajectory, with pie-
cewise slopes for the time period of infancy to the AR (first-knot point
at 5.5 years), a slope from the AR to the pubertal period (second-knot
point at 11 years), and finally from the pubertal period through ado-
lescence. We attempted fitting a third-knot point at 9 months, but the
model failed to converge. For the LMM with cubic smoothing splines,
we a priori fit knot points at 2, 8 and 12 years based on previous
studies51. For the LMMs with the cubic slope and cubic smoothing
splines, we also compared the model fit when reducing the degree of
thepolynomial in the randomeffects to decrease the complexity of the
model and attempt to assist in model convergence. For example, for
the cubic slope LMM, we fit random effects that had a quadratic
function of age and a linear function of age, in addition to the cubic
function of age. A list of these models is given in the Supplemen-
tary Data 3.

The three LMMs were conducted on the loge(BMI) data within
each cohort stratified for sex, and we conducted models with and
without specifying a continuous autocorrelation structure of order 1
(CAR(1)) correlation structure.

Selection of the best model. Assessment of model fit was appraised
using the following indices of model quality and goodness of fit; R2

(conditional and marginal), intraclass correlation coefficient (ICC),
Akaike’s Information Criterion (AIC), Bayesian Information Criterion
(BIC), root mean squared error (RMSE), and residual SD. The selection
of the overall best model was based on the most favourable model
performance metrics across all cohorts, focusing on AIC and BIC as
they penalize model complexity, as well as model convergence and
warning and error messages. It is important to note that the ‘best
fittingmodel’ for each individual cohort was not necessarily chosen, as
each cohort was slightly different for which model fit the data best.

The best model was taken forwards for knot placement refine-
ment. We used a systematic approach to refine the best fitting model
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further using an incremental series of knot points where knot 1 was
placed at 1, 1.5, and 2 years; knot 2 was placed at 6, 7, and 8 years and
knot 3 was placed at 12 years for all models. As for the model diag-
nostics above, indices of model quality and goodness of fit were used
to determine our final BMI trajectory model.

Estimating phenotypes for GWAS from the BMI trajectories
From the BMI trajectories generated by our model, we sought to
extract interpretable characteristics that we could subsequently
interrogate for genetic associations. We estimated the age and BMI at
the AP and AR, two features of the BMI trajectory that respectively
mark the transitions from the rise in BMI across infancy to the decline
in BMI in early childhood, then the subsequent rise in BMI from early
childhood. In addition, we hypothesised that theremay be shared and/
or distinct genetic contributions to BMI preceding and succeeding
these features39. To this end we defined time periods of approximately
linear change in BMI prior to the AP, between the AP and AR, from the
AR to the approximate onset of puberty and through adolescence. In
addition to the rate of change (slopes) over these time intervals, we
also analysed the area under the BMI curve (AUC), an estimate of the
child’s cumulative exposure to excessive bodyweight.We refer to each
of these estimated parameters from the BMI trajectories as the esti-
mated phenotypes.

Deriving the adiposity peak and rebound
We determined both the age (in years) and BMI (kg/m2) at the AP and
AR from the BMI trajectory model. For each participant, loge(BMI) was
predicted using the fixed and random coefficients from the models at
intervals of 0.01 year. Then, the AP was defined as the first maximal
loge(BMI) occurring between the ages of 0.25 and 10 years of age, and
theARwasdetermined as thefirst nadirwithin that time interval. These
cut-off points were chosen based on previous evidence of the mean
ages of AP andAR in Europeanpopulations9. The age andBMI for these
two points was estimated by taking the exponential of predicted
loge(BMI). We ensured that the age at AP is less than the age at AR;
when this didnot occur, the individual’s age andBMI at bothAP andAR
were set to missing.

Choosing the time intervals for deriving slopes and AUCs
A series of time periods of approximately linear change in BMI were
defined, avoiding the inflection points at the AP and AR. The
time intervals to derive these slopes (and AUCs) were determined
visually from the population average BMI trajectories in each cohort and
by minimising the proportion of individuals with AP and/or AR falling
within the defined time periods (Supplementary Data 1). We chose the
following time intervals for derivation of the slopes and AUCs:

• 0 to 6 months (referred to as infancy)
• 1 ½ years to 3 ½ years (early childhood)
• 6 ½ years to 10 years (late childhood)
• 12 years to 17 years (adolescence)

Although these time intervals avoided the average age of the AP
and AR, there was a small proportion of individuals with AP and/or AR
falling within these time intervals.

Deriving the slopes
Slopes for each individual for each time interval were estimated using
(Eq. 7):

Slopeb�a =
yb � ya
xb � xa

ð7Þ

Where yb is the predicted value of loge(BMI) from the LMM at the
ending point for the time interval (e.g. 6months for the infancy slope),
ya is the predicted value of loge(BMI) from the LMM at the starting

point (e.g. 2 weeks for the infancy slope), and xa and xb are the ages at
the earlier and later time points, respectively.

Deriving the area under the curve (AUC)
TheAUCs for each time intervalwere estimated by integrating the best
fitting model with respect to age. For example, the AUC for the model
with cubic smoothing splines from Eq. (5) above would be estimated
using Eq. 8:

Z b

a
β0 +

X3
j = 1

βjAge
j
it +

XK
k = 1

βk + 3ðAgeit � κkÞ3+ +b0i

 

+
X3
j = 1

bjiAge
j
it +

XK
k = 1

bðk + 3ÞiðAgeit � κkÞ3+ + εit

!
dðAgeÞ

ð8Þ

Where a is the earlier time point (e.g. 0 years for the infancy AUC) in
each time interval and b is the later time point (e.g. 6 months for the
infancy AUC).

Final model checks
Individuals were flagged as being an outlier for any of the estimated
phenotypes (slopes, AUCs, age and BMI at AP/AR) based on the
interquartile range (IQR)52, with values outside twice the IQR flagged as
outliers (i.e. two times the IQR above the third quartile and below the
first quartile). If an individual was flagged as an outlier for any one of
the estimatedphenotypes, theywere excluded fromanalyses involving
any of the estimated phenotypes. We took this conservative approach
to excluding outliers, because if an individual was flagged as an outlier
for an estimated phenotype, it likely indicates an issuewith their whole
predicted curve. Per cohort, this excluded the followingproportionsof
individuals from further analysis: 5% inNFBC1986, 6% inNFBC1966, 9%
in ALSPAC, 10% CHOP African American, 12% OBE and 16% in CHOP
European American sample.

Correlation matrices between the estimated phenotypes were
generated to aid in downstream interpretation of GWAS results. We
also conducted association analyses between each of the estimated
phenotypes and BMI at the end of the trajectory for each cohort (i.e.
BMI at age 16 years in OBE and 18 years for all other cohorts). We
converted each of the estimated phenotypes and BMI at the end of
the trajectory to z-scores by subtracting the mean and dividing by the
standard deviationwithin each cohort so that we could compare across
phenotypes. To account for mean differences between males and
females, analyses were adjusted for sex, and adjusted R2 were reported.

To check whether our estimated phenotypes were robust to dif-
ferent underlying LMMs, we estimated the phenotypes from two
additional LMMs, one fitting the CAR(1) correlation structure (keeping
the fixed and randomeffects the same as our preferredmodel) and the
second fitting a cubic spline in the random effects in addition to the
CAR(1) correlation structure (i.e. the best fitting model according to
AIC and BIC in a number of the cohorts – see Supplementary Data 3).
We performed these two sensitivity analyses in ALSPAC and
NFBC1986, where there were no convergence issues in these updated
LMMs. After fitting each LMM, we estimated the slopes and AUCs
within each time window, in addition to the age and BMI at the AP and
AR and compared them to the estimated phenotypes from the pre-
ferred model. We also calculated the correlation matrices and com-
pared them to those from the preferred model.

GWAS of the estimated phenotypes
Genotyping in each of the contributing cohorts was performed using
high-density Illumina BeadChip arrays, and data cleaning and quality
control (QC) were performed locally for each cohort (see Supple-
mentary Data 1 for details). Imputation for all European cohorts was
performed using the reference data from the Haplotype Reference
Consortium (HRC) release 1.153. SNP positions were based on National
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Center for Biotechnology Information (NCBI) build 37 (hg19), and
alleles were labelled on the positive strand of the reference genome.
For the CHOP African American subset, imputation was performed
using the TOPMED reference data54 and SNP positions were based on
NCBI build 38.

We performed sex-combined GWAS on the 12 estimated pheno-
types derived from the BMI trajectory models: the four estimated
slopes, the four AUCs, and age and BMI at AP and AR (OBE performed
GWAS on 10 estimated phenotypes as they did not estimate the ado-
lescent slope and AUC due to lack of data after 16 years). Ancestry
principal componentswere included in themodels as covariates, along
with sex (to adjust for mean differences in the estimated phenotypes
between males and females) and cohort-specific covariates where
appropriate. GWAS was performed using the imputed allelic dosage
data under an additive genetic model. For ALSPAC, NFBC1966,
NFBC1986, and OBE, a linear model was applied using PLINK 2.055. For
CHOP, analyses using a linear mixed model in REGENIE (version 3.2.6)
was used to account for the extended family structure56. The sample
size for GWAS analysis within each cohort was 6907 for ALSPAC, 5445
for the CHOP European subset, 6332 for the CHOP African American
subset, 3579 for NFBC1966, 2887 for NFBC1986 and 490 for OBE
(further details in Supplementary Data 1).

Meta-analysis of the estimated phenotypes
Prior to meta-analysis, variants were first filtered at the cohort level for
monomorphic or multiallelic SNPs, indels, low sample size ( < 20), low
minor allele count (≤ 3), large effect estimates (absolute value of beta or
SE≥ 10 units per allele [log BMI units per year for the estimated slopes,
log BMI years for the estimated AUCs, years for the estimated age at AP
and AR and kg/m2 for the estimated BMI at AP and AR]), and poor
imputation quality (INFO<0.4 or R2<0.3). Filtering as well as harmo-
nisation of variants across the cohorts and comparisons of allele fre-
quencies was performed using the EasyQC2 (v. 1.1.1.b5) software
package57 We conducted an inverse-variance weighted fixed-effects
meta-analysis, combining each of the five European cohorts, for each of
the estimated phenotypes using GWAMA v.2.158 and performed a test of
heterogeneity in the effect sizes. OBE was excluded from the meta-
analysis of the adolescent phenotypes as it did not have data after 16
years of age. Additionally, as OBE is an obesity cohort, we conducted a
sensitivity meta-analysis excluding OBE from the other meta-analyses to
ensure that it was not driving any observed association. After meta-
analysis, we excluded variants thatwere not present in ≥50% cohorts (i.e.
3 for the European cohorts; 2 for the European cohorts in the sensitivity
analyses excluding OBE) as well as variants with minor allele frequency
(MAF) <0.005. Resultswere clumped and annotated using LocusZoom59

(version 0.14.0). In the African American subset of CHOP, we selected
any genome-wide significant variants identified in the European meta-
analysis and performed lift-over to build 37 using UCSC Lift Genome
Annotations browser tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver).

Using the genome-wide summary statistics from the meta-analy-
sis, we calculated the SNP-based heritability of each of the estimated
phenotypes and the genetic correlations between phenotypes using
LD score regression60,61 (version 1.0.1). We also estimated genetic
correlations between the estimated phenotypes and cross-sectional
BMI at birth, six months, 1.5 years, 3 years, 7 years, 8 years and
adulthood using publicly available summary statistics. The specific
ages for childhood BMI were selected so that they would be as close as
possible to the cutoff points of our time windows of infancy, early and
late childhood. The childhood BMI summary statistics from the Nor-
wegian Mother, Father and Child Cohort Study (MoBA) were reported
by33. Summary statistics for adult BMI were obtained from the largest
meta-analysis to-date of GWAS on cross-sectional adult BMI in indivi-
duals of European ancestry34. The summary statistics were formatted
using a modified version of the supplied munge.sumstats python
script. Variants withminor allele frequency less than 1% were removed;

no filtering on imputation quality was performed as this was not
available in the meta-analysis. SNP-based heritabilities and genetic
correlations were calculated using the European LD scores available
from the developers of LD score regression via the genomicSEM
website (https://github.com/GenomicSEM/GenomicSEM/wiki).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
To access phenotype and genotype data from individual cohorts par-
ticipating in the EGG consortium, the cohorts should be contacted
directly as each cohort has different data access policies. Full details of
each participating cohort can be found in the Supplementary Note 2.
Briefly,

ALSPAC: Full instructions for applying for data access can be
found here: http://www.bristol.ac.uk/alspac/researchers/access/.

CHOP: CHOP-related data are available upon request from Hakon
Hakonarson (hakonarson@chop.edu; response timeframe: one
month). Please note that one limitation of the request process is the
transfer of data under a material transfer agreement.

NFBC1966: Please, contact the NFBC project center (NFBCpro-
jectcenter(at)oulu.fi) and visit the cohort website (www.oulu.fi/nfbc).

NFBC1986: Please, contact the NFBC project center (NFBCpro-
jectcenter(at)oulu.fi) and visit the cohort website (www.oulu.fi/nfbc).

OBE: OBE-related data are available upon request from Philippe
Froguel (p.froguel@imperial.ac.uk; response timeframe: one month).
Please note that one limitation of the request process is the transfer of
data under a material transfer agreement.

GWAS summary statistics from this study are available via the EGG
website (http://egg-consortium.org/longitudinal_growth.html). Source
data are provided with this paper.

Code availability
The analysis pipeline including R code to perform analyses is publicly
available from vignettes hosted on https://m.canouil.dev/eggla/
articles/eggla.html. The EGGLA R package is available on GitHub:
https://github.com/mcanouil/eggla/tree/v1.0.0. See the EGGLA R
package record at https://zenodo.org/records/10594717.
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