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The transition to electric vehicles is driving a fundamental shift in the automobile design process.
Changes in constraints afforded by the absence of a combustion engine create new opportunities for
modifying vehicle geometries. Current approaches to optimizing vehicle aerodynamics require a vast
amount of computational studies and physical experiments, which are expensive when performing
parameter sweeps over conceivable geometric configurations, suggesting the need for more efficient
surrogate models to assist analysis. Here we analyze a dataset of industry-quality automobile
geometries with their associated aerodynamic performance obtained from experimentally validated,
high-fidelity large-eddy simulations. We show that a relationship between these geometries and their
respective aerodynamics can be extracted in a low-dimensional manner by leveraging a nonlinear
autoencoder which is simultaneously trained to estimate the drag coefficient from the latent variables.
We perform aerodynamic design optimization of vehicle designs by making use of the learned
aerodynamic relationship in the low-order space obtained by the model. We demonstrate that the
aerodynamic trends for the geometries produced from the optimization process show agreement with
validation simulations. The findings of this work demonstrate the application of data-driven
approaches to the analysis and design of vehicles in a production environment.

The shift from traditional combustion-based transportation to electric
vehicles has brought about notable changes in vehicle design, particularly in
terms of aerodynamics. The absence of a combustion engine has allowed for
a reevaluation of design constraints and priorities, offering automotive
designers greater creative freedom. For example, the elimination of the
requirement for engine cooling has allowed for the transformation of the
front geometry of electric vehicles from both a functional and stylistic
perspective. However, the transition to electric vehicles also brings new
concerns. Even as battery and motor efficiencies improve, the current
performance of many electric vehicles struggles to meet the demands of
consumers, with many electric vehicles operating with limited driving
rangesdespite long charging times1. The importanceof vehicle efficiencyhas
been exacerbated by the transition to sustainable transportation. The
departure from conventional design norms is emblematic of the need for
novelmethods to accelerate the design and product development process of
vehicles.

On a broader scope, the transportation sector plays a pivotal role in the
global energy landscape. Transportation of people and goods constitutes
approximately one-quarter of theworld’s energy consumption by endusers,
contributing to nearly 40% of global emissions2. Oil accounts for 90% of

energy consumption in transportation, with oil for use in road transport
alone responsible for almost 45% of global oil demand2,3. Additionally,
transportation is directly responsible for approximately 14% of total global
greenhouse gas emissions producing around 7 billion tonnes of CO2

4,5.
Unfortunately, the environmental burden associated with the transporta-
tion sector is only expected to increase. Already worldwide, there are more
than 1.4 billion passenger and commercial automobiles—the majority of
which are poweredby internal combustion engines—with this number only
projected to go up6. Due to global growth in population and income, the
demand for passenger and freight travel is projected to increase up to 41%
from 2022 to 2050, which only serves to further agitate the growing climate
crisis7,8. All of the aforementioned facts suggest that it is especially important
for vehicle manufacturers to explore methods to push the boundaries of
vehicle efficiency.

Transportation fundamentally relies on the conversion of chemical
energy from fuel intomechanical motion. Accordingly, vehicles must waste
excess energy to overcome driving resistance. This wasted energymanifests
itself as a decrease in fuel efficiency, resulting in increased emissions and
reduced range. A notable source of resistance comes from aerodynamic
drag, which can account for about 75–80% of the total driving resistance
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when driving at 100 km/h9,10. In the case of automobiles, a 20% reduction of
aerodynamic drag can result in a noticeable 4% decrease in fuel consump-
tion of highway operation11. In the case of electric vehicles, without the
associated losses due to combustion, the increased efficiency of the pow-
ertrain for electric vehicles results in a greater proportion of energy loss due
to aerodynamic drag12,13. This makes aerodynamic performance a major
design priority due to the direct relationship between drag and vehicle
efficiency.

As even small geometric changes may have large effects on the flow
field around a vehicle—thereby influencing its aerodynamic performance—
a careful analysis of the effect of parameter changes on aerodynamics is
critical for vehicular design. Large-scale modifications can alter character-
istics of the pressure distribution in the flow around a vehicle, which could
considerably alter thepressuredrag,which canaccount forup to almost 85%
of the total drag on the vehicle14–16. Additionally, small-scale changes can
modify the boundary layerwhich can alter drag resulting from friction at the
surface. However, predicting the aerodynamic performance is difficult due
to the nonlinear nature of fluid flows, with even small uncertainties in
estimating drag costing the US billions per year17.

Aerodynamic analysis of vehicle performance in relevant operating
conditions often requires a comprehensive campaign of experimental or
computational trials. Experimental studies, including wind-tunnel tests,
require a physical car model as well as expensive testing facilities. High-
fidelity computational fluid dynamic (CFD) studies based on direct
numerical simulation or large-eddy simulations (LES) require substantial
computational resources13. To resolve the smallest turbulent scales of the
flow, the number of grid points scales with the Reynolds numberRe, a value
that measures the ratio between inertial and viscous forces, on the order of
Re9/4. In the case of turbulentflowpast an automobile inwhich the Reynolds
number canwell exceedmillions, this taskquickly becomes very expensive18.

To make matters more difficult, both numerical and experimental
trials need to be performed spanning an extremely large parameter space of
vehicle designs with practically infinitely many possible configurations,
becoming expensive campaigns in terms of both finance and time. Fur-
thermore, the data size associated with vehicle analyses increases as
experimental and computational techniques continuously improve in
fidelity and accuracy. Consequently, such large amounts of high-
dimensional data can make analysis extremely difficult. Along with such
expensive analyses, optimization of vehicle aerodynamic performance also
necessitates an extensive amount of manual modeling. These issues natu-
rally call for data-driven approaches, such as machine learning, to learn the
underlying physical relationships between vehicle geometries and aero-
dynamic performance to direct design analysis toward specific cases that are
expected to improve aerodynamics. While trained aerodynamicists may be
able to manually intuit a relationship between aerodynamic performance
and geometric changes, we anticipate that deep machine-learning methods
can learn suchaerodynamic relationships froma large datasetwhile offering
physical insights into vehicle design, beyond that of human intuition.

The optimization of industrial designs necessitates in-depth, high-
fidelity, analysis of complex phenomena and complex geometries, which
poses a critical bottleneck to the design process. The iterative nature of such
design demands careful consideration of numerous factors and constraints,
and anymodifications to the design require thorough analysis. In this sense,
developing a surrogate model that estimates design parameters of interest
that are associated with expensive, high-fidelity, analyses can greatly
improve the efficiency of the feasibility study cycle19. Performing data-
driven shape optimization can helpmitigate the cost burden associatedwith
manual modeling and analysis for a naïve parameter sweep by producing
modifications that are expected to improve aerodynamic performance,
which can then be further studied. This problem setting is depicted in Fig. 1
for the case of automobile geometries.

We perform a data-driven analysis on industry-quality vehicle geo-
metries for the purpose of drag reduction. Given that many high-
dimensional data can be explained with fewer coordinates in a low-order
manner20–23, we seek to learn a relationship in an appropriate form for this

purpose. Previous studies havedemonstrated that a low-orderdescriptionof
vehicle geometries can be leveraged for vehicle shape optimization24–27.
However, such studies have been limited to relatively lower-fidelity, steady-
state, Reynolds Averaged Navier-Stokes (RANS) simulations typically for
simplified geometries and simulation conditions. In this work, we seek to
utilize adata-drivenstudyof vehicular aerodynamics in an industrial setting.
The present analysis is performedonproductiondesigns, with aerodynamic
performance obtained from high-fidelity Large-Eddy Simulations (LES)
utilizing an experimentally validated computational setup13.

The current data-driven approach as outlined in Fig. 1 is proposed as a
method to direct traditional high-fidelity analysis in a cost-effectivemanner
to accelerate the iterative product design process. By employing a modified
nonlinear autoencoder, we learn a low-order manifold, which simulta-
neously contains a nonlinear relationship between vehicle geometries and
their associated drag coefficients. We find that incorporating the drag
coefficients in the autoencoder training process provides low-order coor-
dinates that are suitable for design optimization. The learned manifold,
which captures a nonlinear relationship between vehicle geometry and
aerodynamic drag, is leveraged to obtain modifications for a given vehicle
geometry to improve aerodynamic performance. The present work
demonstrates that this simple data-driven approach sufficiently captures
trends in aerodynamically relevant features, which we validate through a
CFD analysis of decoded geometries. While the present work primarily
focuses on aerodynamic shape optimization, the framework we employ to
perform this shape optimization is not specific to the choice of input geo-
metry representations and design parameters.

Results
Automobile aerodynamic analysis
Our dataset spans a wide range of industry-quality automobile geometries,
which exhibit vastly different unsteady wake behavior and aerodynamic
performance, as shown by the voxelized geometries in Fig. 2a. The baseline
car designs considered in this study come from different production model
car geometries including SUVs, hatchbacks, sedans, and box cars, with
multiple vehicle models for each car type considered. Additionally, the
features of the baseline designs for each model are parametrically modified
to produce a variety of geometries. The flow is computed with a large-eddy
simulation utilizing a moving mesh that has been validated with industry
wind-tunnel experiments. Further details of the aerodynamic analysis are
given in the Methods section.

The time-averaged flow around automobiles shares several salient
features that are useful in estimating the aerodynamic drag14,28–31. For
even the most simplified automobile geometries, three-dimensional
separated flow regions are generated in the wake behind the vehicle. The
flow past most automobiles exhibits two recirculation regions that are
formed when the flow separates at the top and bottom edges of the back
of the vehicle. The size of the recirculation regions depends on how the
shape of the rear geometry directs the trailing wake flow. A pair of
trailing vortices are formed when the fluid boundary layer rolls around
the sides of the vertical supports at the rear, referred to as the “C-
pillars”14–16. These wake structures create a region of low pressure behind
the vehicle and contribute to the induced drag. Conversely, a region of
high pressure exists at the front of the vehicle where the flow is stopped
by the front geometry. The difference in pressure over the surface of the
vehicle results in the pressure drag, which is the primary source of drag
force for automobiles14. Figure 2b depicts the total pressure fields for the
different car types in the dataset. The zero total pressure isocontour is
shown (Cp,t = 0), which highlights where the flow may separate from the
vehicle. We observe that in addition to the rear wake, we also see flow
separation at other regions, including the wheels, the front roof edge, the
front windshield edges (“A-pillar”), and the front bumper edges. We note
that the use of the moving mesh LES solver captures physical phenomena
not seen in previous analyses. One example is the wake generated from
the outflow from the rotating front wheel, which produces appreciable
differences in the drag estimate but is not captured with a static mesh13.
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With the variation of geometric features, the relative sizes of the afore-
mentioned structures and the resulting aerodynamic performance can
vary drastically from case to case. For example, if the transition between
the front windshield and the top roof panel is abrupt, the flow may
separate from the front of the roof (Box). A different flow pattern can
appear in the rear where, depending on the rear windshield angle, the
flow may separate over the rear spoiler only to reattach lower on the
bottom of the windshield (Sedan). Figure 2c shows a probability density

plot of the normalized drag coefficients CD, which demonstrates that the
different geometries in our dataset span vastly different ranges of drag
coefficients.

Although we can qualitatively analyze how fluid structures and aero-
dynamic performance relate to the vehicle geometry, the wide range of
vehicle parameters and the nonlinear nature of fluid flow make it challen-
ging to formulate aerodynamic prediction models, especially when com-
paring visually similar geometries. For example, the box car exhibits much

Fig. 1 | Overview of data-driven directed design analysis.

Fig. 2 | Depiction of the vehicle dataset consisting of sport utility vehicles (SUV),
hatchbacks, sedans, and box geometries. a Representative voxelized vehicle geo-
metries for different car types. b Example 3D and 2D (center plane) isocontours of

normalized total pressure coefficient, Cp,t, for different car types. Cp,t = 0 isocontour
is shown, indicating separated flow. c Probability density plot, p(CD), of normalized
drag coefficient, CD, with respect to vehicle type.
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larger separated flow regions at the front geometry, as well as a larger low-
pressure wake behind the vehicle compared to the other geometries.
However, we can see that in Fig. 2c some of the box cars in the current
dataset can exhibit a lower drag coefficient than some SUV and hatchback
designs, possibly due to differences in the front geometry. Other complex-
ities arise in other flow interactions, such as ground effects in the wake and
underbody regions, which can be profoundly altered by minor geometric
changes, and require careful aerodynamic analysis. As such, the nonlinear
behavior of the flow confounded with a large number of geometric para-
meters makes a reasonable prediction of the drag performance from geo-
metries difficult to infer. However, we expect that there exists some
nonlinear functional dependency between the vehicle geometry and its drag
coefficient that can be captured through data-driven approaches.We aim to
capture this relation utilizing a small number of latent variables that be used
as both a low-dimensional representationof a vehicle geometry aswell as the
estimated drag coefficient. For this objective, we use an observable-
augmented autoencoder assisted by principle component analysis
(PCA)32–36 that reconstructs the high-dimensional car vehicle information
while estimating the vehicle drag coefficient from the latent space, as illu-
strated in Fig. 3.

Latent manifold discovery
If we directly attempt to learn a relationship between the vehicle geo-
metries and the drag coefficient for a given dataset, we can learn many
possible models that provide similar levels of accuracy. This can make
shape optimization difficult, because such models may prove less reliable
when generalizing to produce new geometries. With this in mind, we
seek low-dimensional coordinates that capture a relationship between
input geometries and the drag coefficient, while reconstructing a geo-
metry from the low-dimensional representation. Training both tasks
simultaneously helps to mitigate overfitting as well as allows us to observe
geometric similarities, which is helpful for identifying relevant features
for design optimization.

The original vehicle geometry is first preprocessed to a voxelized
representation. This represents the dimensionality reduction step in Fig. 1,
aswe effectively reduceourhigh-fidelity input fromamesh representedwith
a set of points connected by smooth, continuous segments to a regular grid
withfinite resolution. The voxelized geometries are thenused for identifying
a low-dimensional latent space. What this amounts to is learning a curvi-
linear coordinate system that parameterizes a manifold representation of
our dataset. We learn such a manifold by using a nonlinear autoencoder, a
type of unsupervised machine-learning model37. A basic autoencoder con-
sists of an encoder, which reduces the dimension of input data into a lower-

dimensional latent space, and a decoder which reconstructs the input from
the encoded representation.

For this work, we leverage an observable-augmented nonlinear
autoencoder32 that is simultaneously trained to estimate the drag coefficient
from the compressed representation of the vehicle geometries, as illustrated
in Fig. 3. Since the drag coefficient needs to be estimated from the latent
variables, the identified latent representation holds a relationship between
vehicle geometries and their aerodynamic performance in a low-order
manner. In other words, the neural network weights are trained such that
features relevant to estimations of the drag coefficient are captured. This can
also reduce the problem of analyzing qualitative similarities of geometric
trends in the original high-dimensional geometries to observing changes in
salient features extracted in our low-dimensional space. Moreover, such an
aerodynamically relevant manifold provides a desired direction to improve
aerodynamic performance in a low-order manner. In other words, we can
identify an optimal modification of the vehicle design with reduced com-
putational cost. Further details of this approach are given in the Methods
section.

Shown in Fig. 4 is the discovered three-dimensional latent space
manifold, (ξ1, ξ2, ξ3), that is learnedby thepresent autoencoder.Wenote that
for our dataset, a three-dimensional latent space is enough to achieve suf-
ficiently reasonable geometry reconstruction as well as accurate drag esti-
mation, as we observed very little gain in accuracy without a substantial
increase in the latent space dimension. Through the drag decoder, we can
obtain an estimated drag coefficient corresponding to the geometry para-
meterized by any point in our three-dimensional latent space in Fig. 4. We
also note that the geometry reconstruction from the decoder is qualitatively
indistinguishable from the original input for a number of cases, depicted in
Figs. 3 and4.The average percent absolute error of estimateddrag values lies
within 2% of the reference value for the training, validation, and test sets. As
seen in Fig. 4, each point in the low-dimensional space corresponds to a
vehicle geometry. We also observe that vehicles cluster in the low-order
space based on both geometric similarity and the estimated drag coefficient
withdistinct point clouds corresponding to thedifferent car types (shownby
the marker shape). Increased estimated drag approximately correlates with
increasing ξ1 and ξ3 in the shown manifold.

The relative distances between latent points can be taken to be repre-
sentative of the similarity between vehicle cases. For example, vehicles with
verydifferent geometries andaerodynamicperformance, such as sedans and
box cars, are placed far apart in the latent space. On the other hand,many of
thehatchbackgeometries have an intermediatedrag value,which is reflected
by their placement in between the low-drag sedans and the high-drag SUV
and box cars.

Fig. 3 | Principal component analysis (PCA) assisted observable-augmented autoencoder. Voxelized vehicle geometries are taken as input and output, and the drag
coefficient is estimated from the encoded latent representation.
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Data-driven shape optimization
With the identified latent spacemanifold, we aim tomodify existing vehicle
geometries to improve aerodynamic performance. Since the present latent
manifold relates car geometries with drag performance, optimization can be
performeddirectly in the low-dimensional latent space rather than the high-
dimensional space of the input data which can accelerate computations of
the gradients. Knowing this, we obtain a direction in the latent space cor-
responding to a decrease in the drag coefficient for a given geometry by
computing the gradient of drag at a given latent space point. By modifying
the latent space coordinate in the direction of reduced drag and observing
changes in the decoded geometry, we can identify regions of the vehicle
geometry tomodify inorder to reduce thedrag coefficient.Theproduced car
geometries from this iterative descent process can then be used to generate
baseline designs for further validation.

However, it is important that any modified geometries produced
during this optimizationprocess shouldnot be “extrapolation” cases. That is
to say, we must ensure that the geometry produced by our optimization
process still resembles a physically realizable car design. If the optimized
design is too dissimilar to any cases in training, this may also put the
reliability of the estimated drag into question. Since the distance in the latent
space can be considered a measure of similarity, the present data-driven
optimization considers a constraint based on the latent space distance
between the optimized design and the training data. We consider a soft
distance constraint which penalizes the optimization from moving too far
from the training data. This distance constraint adds a penalty term to the
cost function, which grows as the distance from the training data increases.
Further details of optimization formulation and the constraints are given in
the Methods section.

We demonstrate our data-driven vehicle shape optimization on the
discovered manifold in Fig. 5. We present an example case of geometry
optimization starting from a high-drag SUV case (initial normalized drag
coefficient, CD ≈ 0.86). The initial geometry and the geometry after per-
forming the shapeoptimizationwith the soft constraint are also visualized in
Fig. 5. The model estimates an 11% reduction of the normalized drag
(CD ≈ 0.77) for the modified geometry. Along the optimization trajectory,
we decode geometries and validate the drag estimatewithLESperformedon
the smoothedvoxeldata.As seen inFig. 5weobserve agreementbetween the
trend of the estimated drag and the value corresponding to the CFD
simulation for a few of the sampled validation cases.

In Fig. 6, we show the pressure fields around the validation geometry.
In the optimized geometry, we observe that the rear geometry is modified.

The slope of the roof leading to the rear spoiler is lowered, and the end is
shifted backward. This provides a boattail-like effect as this reduces the
pressure gradient where the flow separates (at the spoiler), which in turn
reduces the pressure drag. Additionally, there is a smaller observed pressure
gradient around the C-pillar, and we note that the trailing wake vortices are
elongated and tapered, reducing their influence on the induced drag. The
edges of the front geometry are smoothed,which reduces the sizeof the front
face, which the high-pressure zone (red) acts on, in addition to allowing the
flow to smoothly transition around the front geometry. The validation cases
demonstrate that themodel has learned a trend between geometric features
and aerodynamic performance rather than just memorizing the train-
ing data.

Discussion
In the current study, we perform a data-driven analysis of the aerodynamic
performance of production vehicle geometries, which have been obtained
with experimentally validated LES. We utilize a data-driven vehicle shape
optimization approach leveraging an observable-augmented nonlinear
autoencoder which identifies a low-dimensional latent space manifold that
provides a compressed representation of automobile geometries. The use of
the observable augmentation enforces that the learned low-dimensional
space also is relevant to the estimation of the drag coefficient. For the present
dataset consisting of industry vehicle designs, the demonstrated approach
effectively compresses voxelized geometries to just a three-dimensional
latent space manifold while being able to sufficiently reconstruct the geo-
metry and estimate the drag coefficient. This obtained low-dimensional
space allows us to observe the relationship between different vehicle geo-
metries and their respective aerodynamic performance, which we use to
perform optimization of vehicle aerodynamics. We decode various geo-
metries along the optimization trajectory and validate the trend of estimated
drag with LES. Results of validation CFD for the decoded geometries show
agreement with the trend of the estimated drag coefficients during the
optimization process.

For the current autoencoder architecture, we employed a combination
of PCA and a nonlinear multi-layer perceptron to improve the tractability
and convergence of the neural network portion of the model by initially
compressing the input voxel data with PCA.While we acknowledge the use
of voxel geometry introduces cubic scaling of required storagememorywith
data resolution, we argue that the current approach of using voxel data with
a PCA-assisted autoencoder offers a compromise between computational
feasibility and geometric fidelity for use in an industrial setting, with the

Fig. 4 | Nonlinear machine-learning-based compression of vehicle geometries.
The left plot depicts the latent space of sport utility vehicles (SUVs), hatchbacks,
sedans, and box geometries. Right parity plots show the comparison of estimated and
reference normalized drag coefficients CD. Comparisons of example vehicle

geometries and autoencoder reconstructions are shown and the corresponding
points marked in the latent space with a–d. The value underneath each decoded
geometry reports the percent L2 reconstruction error metric, ε ¼k p� p̂k2= k pk2.

https://doi.org/10.1038/s44172-024-00322-0 Article

Communications Engineering |           (2024) 3:174 5

www.nature.com/commseng


presentmodel takingonly around a single hour to train on a standard laptop
(compared to approximately 1.5×104CPUhours for evaluating a singleLES
case). The choice to use voxel data instead of the original mesh geometry is
because models based onmesh data often are limited to the deformation of
existing control points and can produce distorted results for highly concave
shapes or very sharp and thin features, especially when considering mod-
ifications like extrusion—limiting explorable shape modifications24–26,38.
Another difficulty in mesh or point-based models for industrial use is that
they typically require afixednumber of points at a relatively uniformdensity
distribution, in addition to being computationally expensive during the
graph construction process39. It is for these reasons we opt for a voxel-based
representation. While the use of a PCA autoencoder approach makes the
current approach computationally tractable with voxel data, it would be of
interest to explore how alternative methods could be used to exploit local
features to make complex geometric with minimal sacrifices of geometric
information in a tractable manner.

The current study explores thepotential avenue for amachine-learning
analysis to expedite industrial aerodynamicdesign.Wehavedemonstrated a
proof-of-concept study of the applications of data-driven design to
experimentally validate LES data of production vehicles for drag reduction.
This analysis can also be extended to the optimization of different design
parameters, such as other aerodynamic coefficients or relevant metrics like
mass or volume. Machine learning has the capability to streamline the
production of more efficient vehicles, which is especially beneficial to the
transition to electric transportation. The use of data-driven methods as a
tool to direct the iterative design process exhibits promise for accelerating
industrial design optimization.

Methods
Automobile dataset preparation
For this study, we consider a dataset of over 500 geometries, which consists
of a variety of industry car models generated from over 20 baseline car
designs. The baseline car designs consist of SUVs, hatchbacks, sedans, and
box cars of varying sizes and shapes taken from industrial geometries. For
each baseline model, additional cases are generated by modifications of

various parameters such as the car width, height, and length. The flow fields
around each vehicle are numerically simulatedwith a large-eddy simulation
using a Helmholtz flow solver with a Vreman sub-grid model13. The free
stream is specifiedwith velocityU∞ = 140 kmh−1, density ρ∞ = 1.205 kgm−3,
and dynamic viscosity μ∞ = 1.822 × 10−5m2 s−1, resulting in a Reynolds
number of up to around 1.18 × 107 with the car length as the characteristic
length scale. The flow is computed with time step Δt = 8 × 10−5 s and is
allowed to initialize for 0.32 s (4000 steps), with statistics averaged over the
next 0.8 s (10,000 steps). Simulations are performed with the Fidelity
CharLES flow solver40. The domain boundary conditions are chosen to
emulate the experimental wind-tunnel setting. The floor geometry consists
of no-slip walls and slip walls to represent the suction and non-suction
regions of thewind-tunnelfloor, and amovingground condition is specified
for the belt. The vehicle body is set to awall boundary condition, and the tire
and wheel geometries are set to a rotational velocity wall condition. Addi-
tionally, a moving mesh solver is used to compute the flow around the
rotating wheel geometry13. Approximately, 64 million control volumes are
contained in the mesh, with around 0.6 million for the rotating wheel
geometry. The total computational time for a single case is around 14950
CPU hours. This simulation setup has been validated with wind-tunnel
experiments to verify its accuracy in real-world conditions13. The drag
coefficient is defined as CD ¼ 2FD=ðρ1U2

1AÞ where FD is the drag force,
and A is the cross-sectional area. The pressure coefficient is defined as
Cp ¼ 2ðp� p1Þ=ðρ1U2

1Þ where p− p∞ is the local static pressure. The
total pressure coefficient is Cp;t ¼ 2pt=ðρ1U2

1Þ where pt ¼ pþ 1
2 ρU

2 is
the total pressure. All coefficients present in the current work have been
additionally normalized to preserve confidentiality. The vehicle geometry is
converted to auniformvoxel gridwith afixedresolutionof 20mmper voxel.

PCA-assisted autoencoder setup
To identify a low-order manifold that captures the relationship between
vehicle geometries and drag, we use an observable-augmented autoencoder
consisting of a combination of principal component analysis and a multi-
layer perceptron32,35,37,41. As illustrated in Fig. 3, the model consists of an
encoder, a decoder, and a secondary drag decoder. The encoder,

Initial

geometry

Fig. 5 | Data-driven vehicle shape optimization in the discovered latent space
colored by the normalized drag coefficient. The latent optimization path with the
corresponding normalized drag coefficient is shown. Orange points depict drag

values obtained from validation computational fluid dynamics (CFD) simulation.
a The given initial car and b optimized geometry are also depicted. The regions
highlighted in yellow highlight some features that have been substantially modified.

https://doi.org/10.1038/s44172-024-00322-0 Article

Communications Engineering |           (2024) 3:174 6

www.nature.com/commseng


E : RN ! Rn, takes the voxelized geometry as input p 2 RN and pro-
duces a low-order representation of the geometry ξ 2 Rn with dimension
n <N. On the other hand, the decoder,D : Rn ! RN , takes the low-order
state ξ as input and produces a reconstruction of the input geometry,
p̂ 2 RN . In addition, the secondary drag decoder,F : Rn ! R, estimates
the drag coefficient CD 2 R from the low-order representation32.

We first perform principle component analysis (PCA)33 of the vox-
elized body data to reduce the dimension of the geometry. The principle
components give a set of orthogonal basis vectors, or modes, which capture
variations in the shape designs with respect to the mean geometry. For a
given dataset of geometries, fpigMi¼1, the PCA modes are given by the fol-
lowing optimization problem, which minimizes the difference between the
original data and its projection onto a set of orthogonal PCA modes,

fϕkgrk¼1 ¼ argmin
f~ϕkgrk¼1

XM

i¼1

~pi �
Xr

k¼1

ai;k~ϕk

�����

�����

2

2

; ð1Þ

where fϕkgrk¼1 is the set of PCAmodes,ϕk 2 RN , and ~pi ¼ pi � �p is the ith
data input with the mean of the dataset removed. We have that the PCA
coefficient, ai;k ¼ ϕT

k ~pi 2 R, is the inner product of the ith data vector and
the kth PCAmode. The solutions to this optimization problem correspond
to the eigenvectors of the covariance matrix. Given the PCA coefficients
associated with an input, pi, we can obtain the reconstructed output with

p̂i ¼ �pþ
Xr

k¼1

ai;kϕk ¼ �pþΦai; ð2Þ

whereΦ is amatrix consisting of the PCAmodes fϕkgrk¼1 as columns and ai
is a column vector of the PCA coefficients.

The neural network portion of the autoencoder is a multi-layer per-
ceptron (MLP)41 which inputs the PCA coefficients of a vehicle geometry
and outputs a reconstruction of the PCA coefficients and an estimate of the
drag. TheMLP finds a low-dimensional embedding of the PCA coefficients,
ξ, which it uses to produce a reconstruction of thePCAcoefficients aswell as
the drag estimate. The output PCA coefficients are then used to obtain a
reconstruction of the original input data using Eq. (2). In this sense, it can be
seen as a nonlinear correction to the linear decomposition of PCA35. The
nonlinear activation functions that we use for theMLP layers are hyperbolic
tangent, tanhðsÞ ¼ ðes � e�sÞ=ðes þ e�sÞ. The network weights, w, are
obtained by minimizing a weighted sum of the mean squared error of the

PCA coefficient reconstruction and the drag coefficient estimation:

w� ¼ argmin
w

"
1
M

XM

i¼1

 
jjain;i �DðEðain;i;wEÞ;wDÞjj22

þ βjjCD;ref ;i � F ðEðain;i;wEÞ;wF Þjj22
!#

;

ð3Þ

where β is a weighting parameter that adjusts the relative importance of the
error terms associated with the CD estimation and the PCA coefficient
estimation. This parameter was chosen based on an L-curve analysis42 and
was taken to be β = 1 × 105 for our currentmodel. The presentMLP encoder
takes in 400 PCA coefficients as input and consists of 8 layers with node
counts of 400-512-256-128-64-32-16-3 with the MLP decoder symme-
trically constructed. The drag decoder consists of 7 layers with the node
counts of 3-16-32-64-32-16-1.We split our dataset into training, validation,
and test sets with a random 80:10:10 split.We use the Adam optimizer43 for
1000 epochs with an early stopping criterion to avoid overfitting44. During
training, we save the model parameters when the loss for the validation set
improves.

Shape optimization procedure
With the trained autoencoder model, we can perform geometry optimiza-
tion to reduce the drag of a given design in an iterative manner. Consider a
geometry at iteration jwhich we denote p(j). We prepare the corresponding
PCA coefficients, a(j) = ΦTp(j), and encode them to find the corresponding
latent point ξðjÞ ¼ EðaðjÞÞ, as well as the corresponding drag estimate
CðjÞ
D ¼ F ðξðjÞÞ. Bybackpropagating through thedragdecoder,we canobtain

the sensitivity of the drag estimate with respect to the latent space point
to obtain the direction of decreasing drag in the latent space,
dðjÞ ¼ �∇ξCD∣ξ¼ξðjÞ

45. With a user-specified step size, h(j), the modification
in the latent space with respect to decreasing drag is Δξ(j) = h(j)d(j).

To achieve a reliable geometry reconstruction and drag coefficient
estimation,we also consider a penalty such thatwedonotmove too far away
from the training data. In the present work, we choose a threshold distance
dthresh, to be the average value of the maximum distances between the
training points. At every iteration, the distance between the latent space
point, ξ(j), and the nearest training data point in the latent space ξtrain is
measured. We modify the latent space perturbation to be the following:

Δ~ξ
ðjÞ ¼ hðjÞ dðjÞ � α

ðξðjÞ � ξtrainÞ
d2thresh

1� exp � k ξðjÞ � ξtraink22=d2thresh
� �� �" #

:

ð4Þ

Fig. 6 | Validation large-eddy simulation (LES) flow fields for smoothed voxel
geometry for the initial high-drag SUV case and themodified geometry obtained
from the optimization procedure. (Left) Zero total pressure (Cp,t = 0) isocontour

colored by the pressure coefficient, Cp. (Right) Midplane slice of pressure coefficient
field, Cp. The pressure difference around the rear spoiler region is reduced.
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The first term corresponds to the direction of decreasing drag in the latent
space, while the second term penalizes moving away from the training data.
The term α controls the influence of the soft penalty term.

Once we obtain a perturbation in the latent space, we derive a new

latent point, ξðjþ1Þ ¼ ξðjÞ þ Δ~ξ
ðjÞ
. Using the decoder, the corresponding

geometry pðjþ1Þ ¼ Dðξðjþ1ÞÞ and drag estimate Cðjþ1Þ
D ¼ F ðξðjþ1ÞÞ can be

computed. For the proof of concept shown in this work, we perform this
iteration starting from a high-drag SUV geometry until the percent change
of the estimated CD drops under 10−3 (which resulted in 40 iterations) with
h = 0.02 and α = 0.125.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The codes that support the findings of this study are available from the
corresponding author upon reasonable request.

Received: 6 May 2024; Accepted: 6 November 2024;

References
1. Sanguesa, J. A., Torres-Sanz, V., Garrido, P., Martinez, F. J. &

Marquez-Barja, J. M. A review on electric vehicles: technologies and
challenges. Smart Cities 4, 372–404 (2021).

2. International Energy Agency.World Energy Outlook 2022
(International Energy Agency, 2022).

3. International Energy Agency.World Energy Outlook 2023
(International Energy Agency, 2023).

4. Edenhofer, O. et al. Climate Change 2014: Mitigation of Climate
Change. Contribution of Working Group III to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change
(Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 2014). https://www.ipcc.ch/report/ar5/wg3/.

5. Kalghatgi, G. Is it really the end of internal combustion engines and
petroleum in transport? Appl. Energy 225, 965–974 (2018).

6. Zahoor, A., Mehr, F., Mao, G., Yu, Y. & Sápi, A. The carbon neutrality
feasibility of worldwide and in China’s transportation sector by e-car
and renewable energy sources before 2060. J. Energy Storage 61,
106696 (2023).

7. Dargay, J. & Gately, D. Income’s effect on car and vehicle ownership,
worldwide: 1960–2015. Transp. Res. Part A Policy Pract. 33, 101–138
(1999).

8. US Energy Information Administration. International Energy Outlook
2023. (US Energy Information Administration, 2023).

9. Nakamura, D., Onishi, Y. & Takehara, Y. Flow field analysis in the
development of the 2013 model year accord hybrid. Tech. Rep.
(Society of Automotive Engineers Technical Paper, 2015).

10. Machida, K., Kaneko, M. & Ogawa, A. Aerodynamic development of
the newHonda Fit/Jazz. Tech. Rep. (Society of Automotive Engineers
Technical Paper, 2015).

11. Zacharof, N.-G. et al. Review of in Use Factors Affecting the Fuel
Consumption and Co2 Emissions of Passenger Cars (Publications
Office of the European Union Luxembourg, 2016).

12. Sweeting, W. J., Hutchinson, A. R. & Savage, S. D. Factors affecting
electric vehicle energy consumption. Int. J. Sustain. Eng. 4, 192–201
(2011).

13. Nagaoka, H. et al. Prediction of aerodynamic drag in suvs with
different specifications by using large-eddy simulations. Tech. Rep.,
Society of Automotive Engineers Technical Paper (2024).

14. Ahmed, S. R., Ramm,G. & Faltin, G. Some salient features of the time-
averaged ground vehicle wake. Soc. Autom. Eng. Trans. 93, 473–503
(1984).

15. Lienhart, H. & Becker, S. Flow and turbulence structure in the wake of
a simplified car model. Soc. Autom. Eng. Trans. 112, 785–796 (2003).

16. Hinterberger, C., Garcia-Villalba, M. & Rodi, W. In The Aerodynamics
of Heavy Vehicles: Trucks, Buses, and Trains. 77–87 (Springer, 2004).

17. Chung, D., Hutchins, N., Schultz, M. P. & Flack, K. A. Predicting the
drag of rough surfaces. Annu. Rev. Fluid Mech. 53, 439–471 (2021).

18. Kajishima, T. & Taira, K. Computational Fluid Dynamics:
Incompressible Turbulent Flows (Springer, 2016).

19. Chen, F. & Akasaka, K. 3D flow field estimation around a vehicle using
convolutional neural networks. In: Proceedings of The 32nd British
Machine Vision Conference. 936 (British Machine Vision Association,
2021).

20. Foias,C.,Manley,O. & Temam,R.Modellingof the interactionof small
and large eddies in two dimensional turbulent flows. Eur. Ser. Appl.
Ind. Math. Math. Model. Numer. Anal. 22, 93–118 (1988).

21. Temam, R. Do inertial manifolds apply to turbulence? Phys. D
Nonlinear Phenom. 37, 146–152 (1989).

22. Gorban, A. N. & Tyukin, I. Y. Blessing of dimensionality: mathematical
foundations of the statistical physics of data. Philos. Trans. R. Soc. A
Math. Phys. Eng. Sci. 376, 20170237 (2018).

23. De Jesús, C. E. P. & Graham, M. D. Data-driven low-dimensional
dynamic model of Kolmogorov flow. Phys. Rev. Fluids 8, 044402
(2023).

24. Rios, T., Sendhoff, B., Menzel, S., Bäck, T. & Van Stein, B. On the
efficiency of a point cloud autoencoder as a geometric representation
for shape optimization. In: 2019 Institute of Electrical and Electronics
EngineersSymposiumSeries onComputational Intelligence. 791–798
(IEEE, 2019).

25. Rios, T. et al. Exploiting local geometric features in vehicle design
optimization with 3d point cloud autoencoders. In 2021 Institute of
Electrical and Electronics Engineers Congress on Evolutionary
Computation, 514–521 (IEEE, 2021).

26. Druc, S., Balu, A., Wooldridge, P., Krishnamurthy, A. & Sarkar, S.
Concept activation vectors for generating user-defined 3d shapes. In
Proceedings of the Institute of Electrical and Electronics Engineers
Conference onComputer Vision andPattern Recognition. 2993–3000
(IEEE, 2022).

27. Song, B., Yuan,C., Permenter, F., Arechiga, N. & Ahmed, F. Surrogate
modeling of car drag coefficient with depth and normal renderings. In
International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, vol. 87301,
V03AT03A029 (American Society of Mechanical Engineers, 2023).

28. Jacob, S. J., Mrosek, M., Othmer, C. & Köstler, H. Deep learning for
real-timeaerodynamicevaluationsof arbitrary vehicle shapes. https://
arxiv.org/abs/2108.05798 (2021).

29. Garcia-Fernandez, R., Portal-Porras, K., Irigaray, O., Ansa, Z. &
Fernandez-Gamiz, U. CNN-based flow field prediction for bus
aerodynamics analysis. Sci. Rep. 13, 21213 (2023).

30. Warey, A., Raul, V., Kaushik, S., Han, T. & Chakravarty, R. Generative
inverse design of aerodynamic shapes using conditional invertible
neural networks. J. Comput. Inf. Sci. Eng. 23, 031006 (2023).

31. Yu, Z. &Bingfu, Z.Recent advances inwakedynamicsandactivedrag
reduction of simple automotive bodies. Appl. Mech. Rev. 73, 060801
(2021).

32. Fukami, K. & Taira, K. Grasping extreme aerodynamics on a low-
dimensional manifold. Nat. Commun. 14, 6480 (2023).

33. Lumley, J. L. The structure of inhomogeneous turbulent flows. In
Yaglom, A. M. & Tatarski, V. I. (eds.) Atmospheric Turbulence and
Radio Wave Propagation (Nauka, 1967).

34. Berkooz, G., Holmes, P. & Lumley, J. L. The proper orthogonal
decomposition in the analysis of turbulent flows. Annu. Rev. Fluid
Mech. 25, 539–575 (1993).

35. Ahmed, S. E., San, O., Rasheed, A. & Iliescu, T. Nonlinear proper
orthogonal decomposition for convection-dominated flows. Phys.
Fluids 33, 121702 (2021).

https://doi.org/10.1038/s44172-024-00322-0 Article

Communications Engineering |           (2024) 3:174 8

https://www.ipcc.ch/report/ar5/wg3/
https://www.ipcc.ch/report/ar5/wg3/
https://arxiv.org/abs/2108.05798
https://arxiv.org/abs/2108.05798
https://arxiv.org/abs/2108.05798
www.nature.com/commseng


36. Abdi, H. & Williams, L. J. Principal component analysis.Wiley
Interdiscip. Rev. Comput. Stat. 2, 433–459 (2010).

37. Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of
data with neural networks. Science 313, 504–507 (2006).

38. Umetani, N. & Bickel, B. Learning three-dimensional flow for
interactive aerodynamic design.Assoc.Comput.Mach. Trans.Graph.
37, 1–10 (2018).

39. Elrefaie, M., Dai, A. & Ahmed, F. Drivaernet: A parametric car dataset
for data-driven aerodynamic design and graph-based drag
prediction. https://arxiv.org/abs/2403.08055 (2024).

40. Bres, G. A., Ham, F. E., Nichols, J. W. & Lele, S. K. Unstructured
large-eddy simulations of supersonic jets. AIAA J. 55, 1164–1184
(2017).

41. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning
representations by back-propagation errors. Nature 322, 533–536
(1986).

42. Hansen, P. C. & O’Leary, D. P. The use of the L-curve in the
regularization of discrete ill-posed problems. SIAM J. Sci. Comput.
14, 1487–1503 (1993).

43. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization.
https://arxiv.org/pdf/1412.6980 (2014).

44. Prechelt, L. Automatic early stopping using cross validation:
quantifying the criteria. Neural Netw. 11, 761–767 (1998).

45. Morimoto, M., Fukami, K., Zhang, K. & Fukagata, K. Generalization
techniques of neural networks for fluid flow estimation. Neural
Comput. Appl. 34, 3647–3669 (2022).

Acknowledgements
J.T., K.F., andK.T. thankHondaMotorCo., Ltd. for supporting this research.

Author contributions
J.T., K.F., and K.I. developed the software and visualized the results. J.T.,
K.F., and K.T. conceptualized the approach and wrote the manuscript. K.I.,
D.U., and Y.O. performed numerical simulations for dataset preparation and
validation. K.T. and K.O. secured funding support and supervised the
project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s44172-024-00322-0.

Correspondence and requests for materials should be addressed to
Kunihiko Taira.

Peer review information Communications Engineering thanks the
anonymous reviewers for their contribution to the peer review of this work.
Primary handling editors: Quan Zhou and Anastasiia Vasylchenkova. Peer
reviewer reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s44172-024-00322-0 Article

Communications Engineering |           (2024) 3:174 9

https://arxiv.org/abs/2403.08055
https://arxiv.org/abs/2403.08055
https://arxiv.org/pdf/1412.6980
https://arxiv.org/pdf/1412.6980
https://doi.org/10.1038/s44172-024-00322-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commseng

	Aerodynamics-guided machine learning for design optimization of electric vehicles
	Results
	Automobile aerodynamic analysis
	Latent manifold discovery
	Data-driven shape optimization

	Discussion
	Methods
	Automobile dataset preparation
	PCA-assisted autoencoder setup
	Shape optimization procedure

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




