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The welding workshop of metal structural parts is highly energy-consuming. To meet the national low-
carbon green demand, this paper focus on the welding workshop scheduling problem in production 
process with considering the carbon footprints such as equipment energy consumption, welding 
material consumption and shielding gas consumption. Firstly, a bi-objective low-carbon welding 
scheduling mathematical model is established with minimizing makespan and carbon emission. Then, 
an improved Grey Wolf Optimizer (IGWO) with three strategies is designed to solve this multi-objective 
problem. The grey wolf multi-wandering strategy (first) is proposed to enhance the population 
diversity. The grey wolf coordinated hunting strategy (second) based on dynamic weights is introduced 
to improve the convergence of IGWO. A local optimization strategy(third) is designed to improve the 
post-optimal search performance by adjusting the machine assignment based on the critical path. 
A welding workshop green scheduling case is designed to verify the model and algorithm proposed 
in this paper. The minimum completion time and carbon emissions obtained by the IGWO algorithm 
are 842.14 and 3.85E + 05, respectively. This result is better than that obtained by NSGA-II and GWO.
The results show that the model effectively reduce the carbon emissions of the workshop, and the 
algorithm can effectively solve the model.

Keywords  Low carbon welding scheduling, Grey Wolf Optimizer, Carbon emissions, Multi-objective 
optimization

In recent years, countries around the world have faced problems such as energy constraints and serious ecological 
degradation. The manufacturing industry consumes more than half of the country’s energy. As 80.7% of energy 
comes from coal and crude oil1, the large amount of thermal power supply will certainly lead to the emission 
of CO2 and other greenhouse gases into the environment2. All these can lead to form an obvious greenhouse 
effect. At present, China’s manufacturing industry is the main driving force for the rapid development of the 
national economy. According to relevant statistics, the manufacturing industry consumes massive amounts of 
energy, and contributes to 36% of global CO2 emissions3. As the main energy-consuming domain in China, the 
carbon emissions produced by the manufacturing industries are extremely huge. Therefore, it is quite significant 
for these industries to reduce the carbon emission. The welding plant is one of the main energy-consuming, so 
it is imperative to implement low-carbon and energy-saving scheduling optimization. Welding is widely used 
in industry such as astronautics, aviation, construction, shipbuilding, architecture, sluice locks and machinery 
manufacturing, etc. The potential on reducing carbon emission is huge. Reasonable arrangement of job sequence 
and the machine quantity can reduce the unnecessary energy consumption. It is of great practical significance 
for environmental protection and resource conservation.

The Welding Scheduling Problem (WSP) is widely studied with a strong engineering background and broad 
applications. The low-carbon WSP (LCWSP) is an extended flow shop scheduling problem (FSSP). At present, 
the researches on FSSP have abundant achievements. May et al.4 investigated the effects of production scheduling 
policies aimed towards improving productive and environmental performances in a job shop system. Yenisey 
and Yagmahan5 summarized and analyzed 86 literatures on multi-objective FSSP which identified opportunity 
areas of future research. The difference between WSP and FSSP is that it breaks the one-to-one correspondence 
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of machine and job. The key feature is that a single job can be processed by multiple welding machines. Karaoglan 
A D6. provided an industrial application for the WSP under variable workstation constraints. Li X et al.7 
investigated the extended FSSP with controllable processing time and established a multi-objective mathematical 
model on minimizing manufacturing cycle time and energy consumption. Wang et al.8 conducted research on 
distributed WSP based on the objectives of manufacturing energy consumption and manufacturing cycle time, 
which included three subproblems: inter-factory job allocation, intra-factory job scheduling and determining 
the machine number of each job. Wang et al.9 formulated a mathematical model of the welding shop inverse 
scheduling problem with the dynamic events and proposed an improved grey wolf optimizer (IGWO) for this 
problem. Lu C et al.10 addressed a human-robot collaborative WSP with minimization objectives of makespan 
and total energy consumption.

Some scholars have focused on low-carbon scheduling problems of industry workshops. Such as, Safarzadeh 
et al.11 developed a green scheduling problem of uniform parallel machine environments with minimizing 
both total cost and makespan. Afsar et al.12 studied the job shop scheduling problem with minimizing energy 
consumption and project makespan. Yin et al.13 conducted low-carbon scheduling research on flexible flow 
shop scheduling problems based on the analysis of carbon emissions in different states of machine tool 
operation. Tao et al.14 built a mathematical model to minimize the makespan, the total workload of machines 
and carbon emissions of machines, which could optimize the process method of each machine characteristic, 
process sequence and machine allocation at the same time. Zhang et al.15 established a mathematical model 
that simultaneously considered total energy consumption and total completion time minimum as the 
optimization objectives. This research studied the low-carbon distributed assembly and disassembly scheduling 
problem. Foumani M et al.16 presented a set of mathematical models, provided analysis and insights to design 
a framework of green FSSP. Yin et al.17 proposed a new low-carbon scheduling mathematical model from the 
perspective of reducing energy consumption and environmental pollution, optimizing productivity, energy 
efficiency and noise reduction. Tang et al.18 took the maximum completion time and total carbon emissions 
as the goal, and studied the green scheduling problem of the assembly flexible operation workshop. Jin et al.19 
studied the problems related to carbon emissions in the auxiliary links of traditional flexible workshops, and 
gave corresponding solutions. Zhu et al.20 considered the scheduling problem of low-carbon mixed assembly 
workshop in conjunction with AGV, and realized multi-objective optimization including carbon emissions. Jia 
et al.21 studied and explored the scheduling problem of green flexible job workshop, and introduced the relevant 
content of energy cost for modeling and solving. Li and Chen et al.22 took the flexible job workshop as the object, 
comprehensively considered the energy consumption and the learning effect of workers, and studied the existing 
green scheduling problems.

In summary, the flexible low-carbon scheduling problem and distributed low-carbon FSSP have been studied, 
but there is not much research on the LCWSPs. Most of the research objectives of the WSPs are machine load, 
manufacturing cycle time, welding energy consumption, but no consideration carbon footprint. The welding 
shop can generate variety carbon emission due to its complex production environment. Considering the carbon 
footprint of the actual welding process plays an important role in the research of LCWSP.

So, this paper studies the LCWSP based on the carbon footprint of the production process. This problem is 
a more complex multi-objective decision problem which should consider carbon emissions in addition to the 
traditional economic indicators. For this multi-objective scheduling problem, the traditional empirical-based 
production rules are difficult to obtain a better solution. The GWO23 is an intelligence algorithm. All grey wolves 
are classified into four kinds according to their fitness values. The best wolf (solution) of GWO is denoted as 
the alpha ( α ). Similarly, the second and third-best wolves are called beta ( β )and delta ( δ ) respectively. The 
remaining wolves are ω . The search process is mainly guided by wolves α , β  and δ , while the ω  wolves 
should obey these three wolves. Eliminate the weak ones and renew the population through ‘survival of the fittest’ 
rule. The advantages of the GWO are clear: low sensitivity of algorithm parameters, strong global optimization 
ability, and simple algorithm design. Additionally, GWO performs very well on solving the practical application 
problems. This algorithm has been widely applied in continuous and combinatorial optimization problems such 
as TSP24, workshop scheduling25, path planning26, and feature selection27. But it has not yet ventured into the 
field of LCWSP.

This paper intends to study the LCWSP based on the carbon footprint of the production process. A low-
carbon mathematical model to minimize the makespan and carbon emission is established. Given the complexity 
of this problem, an improved grey wolf algorithm (IGWO) should be designed to solve it.

Low carbon optimisation problem description and formulation
This section describes the LCWSP and presents a mathematical model which derives from a real-life welding 
shop.

Basic description of the LCWSP
This paper addresses a LCWSP which can be described as follows: n jobs must be processed through m stages in 
the same sequence, each job has only one operation at each stage. Preemption and interruption are not allowed. 
Multiple machines can operate the same job at the same time. Each machine can process at most only one job at 
the same time. Each operation has a determined processing time when only one machine is used to process the 
corresponding job. The processing time of each stage is negatively correlated with the number of machines, while 
the number at each operation is limited. Therefore, the task of the LCWSP is to find the optimal part process 
sequence and the optimal number of machines to handle the job at each stage to minimize processing time and 
carbon emission.

The processing process involves multiple times. Before welding, the job should be transported, which is 
known as the transport time. After it is transported to the designated location, the job needs to be preheated 
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before welding. The processing time will be determined by the number of machines assigned to the stage. A 
Gantt chart illustration of a 3*3 example is as Fig. 1. Figure 1a represents a Gantt chart using single-machine 
welding, and Fig. 1b represents a Gantt chart using multi-machine welding.

Mathematical models of LCWSP
If space permits, as many welding machines as possible should be arranged for each part. But we also know 
that more welding machines can lead to an increase in idle time, which in turn leads to an increase in carbon 
emission. Therefore, this article intends to construct a mathematical model based on the following assumptions 
and variables.

	(1)	� Assumptions:

�All jobs have the same welding process. Once a job is started by a machine, it cannot be interrupted. The 
number of machines for processing cannot be changed. Machine failures and the time required for set-
ting the machine power are not considered. There is no priority among different jobs. The machines start 
working at time zero, and all machines are idle at time zero. Transport time and preheating time should be 
considered at each stage.

	(2)	� Nations:

�Cmax: the makespan of the welding
�π : a feasible sequence
�k: job position of the sequence π
�i, j: index of job and stage respectively
�n, m: the quantity of jobs and stages respectively
�Oij : operation of job i at stage j
�NHij : maximum number of welding equipment for the job i at stage j
�EFe, EFw, EFp: carbon emission factor of electric energy, welding material, and shielding gas respec-
tively
�ptran

ij , ph
ij : power of handling equipment, power of preheating equipment before welding of job i at stage j

�T tran
ij , T h

ij : lifting time, a preheating time before welding of job i at stage j
�pij , ps: actual welding power and standby power of the welding equipment of the job i at stage j
�T w

ij : normal welding time of job i at stage j
�M : welding material consumption per unit time of a single welding machine
�V : consumption of shielding gas per unit time of a single welding machine
�pcf : power of auxiliary production equipment per unit time

	(3)	� Variables:

�T a
ij : actual welding time of job i at stage j

�T c
ij : completion time of job i at stage j

�Sij : welding start time of job i at stage j
�Decision variables:
�nij : the number of machines occupied by job i at the stage j

	
xk,i =

{ 1 , if i is the kth job in sequence π
0 , otherwise

Fig. 1.  Gantt chart comparison between welding single machine and multiple machines.
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	(4)	� Analysis of welding shop carbon footprint.

�The carbon footprint of the welding workshop is considered and analyzed from the perspective of welding 
process, concerning the dividing means of carbon emission accounting boundary and the corresponding 
calculation methods28–31. All these papers are related to low-carbon manufacturing and scheduling prob-
lems. In this paper, the carbon footprint of the welding workshop will consider the energy consumption of 
transportation equipment, welding preheating equipment, welding equipment, welding material consump-
tion, welding protective gas generation, and auxiliary production equipment (in Fig. 2).
�With the above notations and carbon footprint analysis, the mathematical model of the welding carbon 
emission can be formulated as follows:

	 CF tran =
∑ n

i=1
∑ m

j=1ptran
ij *Ttran

ij *EFe � (1)

	 CF h =
∑

n
i=1

∑
m
j=1ph

ij*T h
ij*EF e � (2)

	 CFpf = ppf ∗ f1 ∗ EFe � (3)

	 CF welding = CFw + CF e + CF p � (4)

�Wherein,

	 CFw = M ∗
∑

n
i=1

∑
m
j=1nij ∗ T a

ij ∗ EFw � (5)

	
CFe =

{
ps*

∑
n
i=1

[
ni1* (T c

i1 − T a
i1) +

∑
m
j=2nij*

(
T c

ij − T c
ij′

)]
+ pw*

∑
n
i=1

∑
m
j=1nij*T a

ij

}
∗ EF e � (6)

	 CFp =
∑ n

i=1

∑ m

j=1nij*T a
ij ∗ V ∗ EFP � (7)

�Equation (1) gives the carbon emissions of the transport process. Equation (2) expresses the carbon emissions 
of the preheating process before welding. Equation (3) denotes the carbon emissions generated by the auxiliary 
production equipment. Equation (4) means the carbon emissions from the welding process. Equation (5) defines 
the carbon emissions of the welding consumption. Equation  (6) shows the energy consumption of welding 
equipment, including standby and working energy consumption. Equation (7) is the consumption of shielding 
gas.

	(5)	� The mathematical model of LCWSP can be formulated as follows:

�Objectives:

	 f1 = min (Cmax) � (8)

Fig. 2.  Carbon footprint of welding shop.
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	 f2 = min (CFtran + CFh + CFwelding + CFpf )� (9)

�Constraints:

	 NHij ≥ nij ≥ 1 ∀i ∈ {1, . . . n} , ∀j ∈ {1, . . . m}� (10)

	

n∑
i=1

xk,i = 1 ∀k, i ∈ {1, . . . n}� (11)

	 S(i+1)j ≥ Sij + T tran
ij + T h

ij + T a
ij ∀i ∈ {0, . . . n − 1} , ∀j ∈ {1, . . . m}� (12)

	 Si(j+1) ≥ Sij + T tran
ij + T h

ij + T a
ij ∀i ∈ {1, . . . n} , ∀j ∈ {0, . . . m − 1}� (13)

	 Cmax ≥ Sij + T tran
ij + T h

ij + T a
ij ∀i ∈ {1, . . . n} , ∀j ∈ {1, . . . m}� (14)

�Equations (8) and (9) denote the objective to minimize makespan and carbon emissions. Constraint (10) imposes 
that the number of available machines to process each operation should obey its respective range. Constraint 
(11) ensures that a job can be processed at most one stage at the same time. Constraints (12) and (13) can 
guarantee each job not be started until its preceding operations are completed and the job is available at the next 
stage. Constraint (14) specifies that the makespan is the machining completion time of the last job.

Improved Grey Wolf Optimizer
In this paper, an IGWO is proposed for the LCWSP with double-layer coding. A combination of random 
initialization and NEH method is implied to initialize the population. The wandering and running behaviors of 
grey wolves are redesigned based on the traditional GWO. A local optimization strategy is introduced to adjust 
the vector of assigned machines according to the critical path. Just as follows:

Decimal integer encoding and decoding scheme
The representative discrete combinatorial optimization problem is divided into two sub-problems: job sequence 
and machine quantity allocation. The coding is also composed of job sequence and machine quantity allocation. 
In this paper, the decimal integer encoding method is designed to express the job sequence and the number of 
machines assigned to each stage of the job.

Different coding and decoding methods perform an impact on the efficiency of the algorithm. Considering 
the convergence speed and search space of the algorithm, this paper adopts the coding structure shown in Fig. 3. 
The total length of the encoding is the sum of the job number and the machine allocation vector.

The sequence of the job is the decimal sequence from left to right. As shown in Fig. 3a. The first part of the 
solution vector indicates that job 3, job 1 and job 2 are processed sequentially. The second part of the solution 
vector represents the number of welding machines allocated at each stage of each workpiece. Wherein, n31 = 2
indicates that job 3 is allocated 2 welding machines at stage 1, the same is true for n32 = 1 and so on. In 
addition, Fig. 3b represents the number of machines assigned to each workpiece at different stages.

Fig. 3.  Example of encoding.
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Random and NEH initialization method
To improve the solution quality and evolution speed, the present study employs two methods, namely random 
and NEH initialization, to generate initial population. The entire initialization population represents the solution 
space of the LCWSP, and each solution means a feasible scheduling scheme.

Multi-wandering search strategy for the prey
Grey wolves wander to search for prey, can be understood as searching for the optimal solution in the solution 
space. The wolves keep approaching α wolf during the evolution process, which may be easy to fall into the local 
optimum due to that the α wolf is not necessarily at the global optimum. The original GWO has two coefficients 
to adjust the search direction to avoid getting into local optima. A multi-wandering search strategy is designed 
based on the characteristics of the discrete IGWO and the low-carbon scheduling problem, mainly used to 
expand the search range of Grey Wolf.

The grey wolf searches for prey through wandering behavior, which can be understood as searching for the 
optimal solution. The basic idea is to systematically change the structure and expand the search range during the 
search process to obtain an optimal solution. This search strategy performs better optimization ability.

To address the characteristics of the solution model in this paper, three random search mechanisms are 
designed, which will involve changing the sequence of jobs and the allocation of machines in a feasible scheduling 
plan according to certain rules. Specifically, the mechanisms are as follows.

	(1)	� Exchange the processing sequence of jobs and the allocation of machines in a feasible scheduling plan. Se-
lect two elements from the job sequence randomly and exchange them. The same operation on the machine 
allocation sequence is performed. As shown in Fig. 4a.

	(2)	� Chose a certain scheduling plan, randomly select two nonadjacent elements. Then, reverse the elements 
between the two elements. The same operation is performed on the machine allocation sequence to obtain 
a new wolf. As shown in Fig. 4b.

	(3)	� Move two adjacent jobs in one solution to other positions together. That is, randomly select two adjacent 
positions, select a job from the solution as the insertion node, keep the adjacency after the movement. Per-
form the same operation on the machine allocation sequence, as shown in Fig. 4c.

�After executing the wandering strategy, the objectives are compared with the grey wolf, the inferior grey 
wolves are eliminated, and a new population of grey wolves are formed.

Coordinated hunting strategy
After wandering, the exploring wolf transforms into a fierce wolf, and the head wolf howls to summon the fierce 
wolf, directing them to approach the location of their prey and engage in hunting.

Fig. 4.  Grey wolf search strategy.
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The coordinated hunting behavior is the process of wolves approaching the prey position under the guidance 
of the leading wolves. After the grey wolves wandered, the wolf pack is sorted into layers according to the Pareto 
relationship32 based on the objectives in this article. The leading wolf α , β , δ  are selected as the leaders 
randomly while the other wolves become hunting wolves. In the original GWO, the explorers update their 
positions based on the positions of the head wolf, the impact of three wolves on other wolves is the same, and 
the important influence of the optimal wolf α is not reflected. The random selection of the three wolves will 
affect the convergence speed of the algorithm. To improve the convergence of the algorithm, this article proposes 
a dynamic weight strategy that enhances the role of the best wolf and reduces the roles of the other two wolves 
during the iteration process. The weight expression can be represented as Eq. (15):

	 p1 = fα
fα +fβ +fδ

, p2 = fβ

fα +fβ +fδ
, p3 = fδ

fα +fβ +fδ
� (15)

Where fα , fβ , and fδ  represent the fitness of the three wolves, respectively. As the algorithm iterates, the 
fitness values gradually decrease, and the weight values gradually change. Among the three leading wolves, 
the wolf α  has the highest probability to be chosen, followed by the wolf β , δ . The dynamic weight-hunting 
strategy designed in this article strengthens the role of the best wolf during the continuous search process, which 
can improve the convergence of the algorithm.

The specific process of grey wolf cooperative hunting is as follows: The hunting wolf chooses a lead wolf based 
on the dynamic weight strategy. It cooperates with the selected wolf to hunt the prey by exchanging information 
through multi-point interaction. The process is illustrated in Fig. 5.

Assuming that the second, fourth, seventh, and eighth encoding positions are randomly selected as interaction 
points for information exchange. With the second and fourth positions, the hunting is conducted through 
information exchange. The interaction codes of lead wolf are {3, 2, 1}, which are replaced by the corresponding 
position order of hunt wolf (the job sequence in the hunt wolf). The interaction codes selected from hunt wolf 
are {3, 4, 5}, which should be replaced by the corresponding position order of lead wolf. The seventh and eighth 
codes represent the machine allocation encoding sequence, which will hunt through a crossover method.

Fig. 5.  The hunting behavior of grey wolves.
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Adjust the vector of assigned machines according to the critical path
Based on the actual production of the welding shop, it can be known that the job can be welded by multiple 
machines, which can advance the completion time. However, it may cause an increase of carbon emissions. 
Therefore, finding the appropriate number of welding machines to balance the makespan and carbon emissions 
is crucial. In this paper, the Activity On Edge (AOE) network diagram structure is generated based on the 
sequence of jobs and the sequence of stages. As shown in Fig. 6, V1 represents the source point, Oij  represents 
the completion, and the edge represents the time required to complete the process. Topological sorting is used 
to calculate the earliest and latest start time of the process. Find out the critical path, increase the number of 
machines assigned on it. Correspondingly, reduce the number of machines assigned on the non-critical path.

During the iteration, it is difficult to further reduce the objective value by adjusting the jobs sequence after 
the iteration number reaches a certain point. At this point, the machine assignment sequence can be adjusted by 
referring to the critical path. As the machines number of non-critical path is reduced, the processing time of this 
stage, the makespan, and the carbon footprint are all reduced.

The procedure of IGWO
The procedure of the proposed IGWO is shown in Fig. 7.

Experimental design and results discussion
This section is devoted to measure the performance of the proposed IGWO for the addressed problem. All 
algorithms are coded by the Matlab R2020A software. The experimental environment for this article is a 
computer with Intel(R) Core (TM) i9-13900 K, 3.00 GHz, 128GB RAM, with a Windows 10 64-bit system. To 
verify the performance of the proposed algorithm in this paper, different scale test examples are designed for the 
problem. The IGWO is simulated and compared with GWO and NSGA-II under different scale examples. The 
feasibility and superiority of the proposed algorithm are verified. Finally, the production data of an enterprise is 
used as a practical case to verify the algorithm. Except for special instructions, the stopping criterion with CPU 
time is set as n*m *0.1 seconds.

Fig. 6.  The AOE network diagram structure.
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Performance metrics
To measure the Pareto Front obtained by these multi-objective evolutionary algorithms, three metrics including 
NR, GD, and IGD should be employed below.

	(1)	� Rate of Non-dominated Solutions (NR). This metric reflects the proportion to the reference solution set of 
the algorithm. The larger the NR value, the higher the proportion of the non-dominated solutions obtained 
by the algorithm, which indicates better performance and more scheduling options available.

	(2)	� Generational Distance (GD). The GD evaluates the nearest distance between the approximate optimal solu-
tion obtained by one algorithm and the Pareto Front solutions. The smaller value, the stronger convergence 
of the solutions.

	(3)	� Inverse Generational Distance (IGD). The IGD is a variant of the GD, which can simultaneously evaluate 
both convergence and diversity. This metric can measure the mean Euclidean Distance between reference 
solutions at the Pareto Front and the nearest algorithm solution.

Result comparison and discussion
To verify the effectiveness of the improved algorithm, simulation experiments are conducted by different sizes 
of arithmetic cases. Table  1 shows the distribution of test cases of the simulation experiments. Each case is 
solved 10 times by the GWO, NSGA-II and the IGWO of this paper, respectively. To evaluate and analyze the 
solution performance of each algorithm for LCWSP, the three indicators mentioned above are introduced to 
evaluate the performance of the algorithms. Through several experiments, taking into account the quality of the 
solution and the speed of the solution, the parameters of IGWO are set as follows: pop = 50, Genmax = 100
, Tmax = 100, initialize external storage Out_Memory =∅, NSGA-II (with parameters set according to 
reference33, the traditional GWO (with parameters set the same as the IGWO). Three algorithms respectively 
solve the mathematical model established in this article.

Variables Value or distribution

Job number 10, 20, 30, 40, 50, 60

Stage number 3, 5, 10

Max number of available machines per stage U[1, 4]

Welding time U[8, 20]

Transport time U[2, 5]

Preheat time U[1, 3]

Table 1.  The distribution of test examples.

 

Fig. 7.  Procedure of the proposed IGWO.
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Table 2 shows the comparison of NR, GD, and IGD metric values. The NR index of IGWO proposed in this 
paper is stronger than NSGAII and GWO in most cases. Although there is not much different performance for 
small-scale problems, as the scale of the problem increases, the performance of the IGWO is significantly better 
than other algorithms. All these performances indicate that the solution obtained by IGWO is closer to the true 
Pareto Front.

Comparing the GD values in Table 2, IGWO is smaller than NSGA-II and GWO in most cases, which shows 
that IGWO performs better convergence than the compared algorithms. For the IGD values, the performance 
of the solutions obtained by the IGWO is better than the other two compared algorithms, which proves that the 
multi-wandering search strategy proposed in this paper can expand the search scope. From the Pareto Front 
plots of the three algorithms described in Fig. 8, the front of IGWO is better than that of NSGA-II. The solution 
effect of IGWO is much better than that of GWO due to the design of the search for prey strategy, the dynamic 
weighted cooperative hunting strategy, and the critical path-based machine number adjustment strategy, which 
is consistent with the data in Table 2.

Fig. 8.  Pareto Front of three algorithms.

 

Example

IGWO NSGA-II GWO

NR GD IGD NR GD IGD NR GD IGD

10*3 0.36 1.20E – 02 5.64E – 02 0.36 1.29E – 02 9.84E – 02 0.3 2.15E – 02 1.40E – 01

20*3 0.35 1.05E – 02 4.05E – 02 0.34 1.61E – 02 1.40E – 01 0.32 4.04E – 02 1.98E – 01

30*3 0.37 9.50E – 03 3.98E – 02 0.32 1.40E – 02 1.53E – 01 0.35 3.74E – 02 2.99E – 01

40*3 0.38 9.90E – 03 6.86E – 02 0.34 1.52E – 02 1.90E – 01 0.29 3.57E – 02 2.57E – 01

50*3 0.40 6.20E – 03 4.74E – 02 0.31 9.90E – 03 1.48E – 01 0.31 1.63E – 02 2.43E – 01

60*3 0.39 9.00E – 03 5.53E – 02 0.36 3.56E – 02 3.22E – 01 0.3 4.06E – 02 2.98E – 01

10*5 0.39 1.59E – 02 6.07E – 02 0.38 2.09E – 02 2.00E – 01 0.26 3.89E – 02 2.46E – 01

20*5 0.45 8.60E – 03 5.48E – 02 0.44 1.06E – 02 3.10E – 01 0.16 2.69E – 02 2.26E – 01

30*5 0.38 1.03E – 02 6.73E – 02 0.36 1.26E – 02 2.99E – 01 0.32 2.43E – 02 2.16E – 01

40*5 0.38 1.26E – 02 5.99E – 02 0.37 1.69E – 02 2.68E – 01 0.25 2.96E – 02 2.40E – 01

50*5 0.39 5.70E – 03 6.99E – 02 0.38 2.64E – 02 2.70E – 01 0.24 3.01E – 02 2.80E – 01

60*5 0.45 8.30E – 03 1.11E – 01 0.39 3.20E – 02 3.51E – 01 0.17 4.29E – 02 2.58E – 01

10*10 0.36 3.04E – 02 1.02E – 01 0.34 4.05E – 02 3.63E – 01 0.32 4.12E – 02 2.40E – 01

20*10 0.46 9.90E – 03 7.01E – 02 0.3 1.02E – 02 2.45E – 01 0.29 1.50E – 02 2.11E – 01

30*10 0.43 7.50E – 03 9.22E – 02 0.32 2.71E – 02 3.12E – 01 0.26 2.99E – 02 3.10E – 01

40*10 0.5 2.03E – 02 5.97E – 02 0.35 3.20E – 02 3.11E – 01 0.17 4.32E – 02 2.29E – 01

50*10 0.56 1.06E – 02 8.91E – 02 0.36 1.41E – 02 4.05E – 01 0.16 2.56E – 02 3.62E – 01

60*10 0.57 9.90E – 03 6.45E – 02 0.34 2.24E – 02 2.45E – 01 0.18 3.29E – 02 2.31E – 01

Table 2.  Comparative analysis of algorithm operation results.
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Target analysis and algorithm strategy comparison
To verify the superiority of the model, this paper takes a 10*5 welding example, and compares the carbon 
emissions obtained by considering only the makespan with the dual goals. The results are shown in Table 3.

It can be found that the carbon emissions of a single objective model will be much higher than those of a 
multi-objective model. The dual-objective model established in this paper significantly reduces carbon emissions 
at the small expense of makespan.

To compare the optimization effect of the three strategies, the results obtained when only two of the strategies 
are used are shown in Table 4.

The comparison of the three strategies in Table 4 shows that the three strategies have a certain impact on the 
performance of the algorithm. From the data obtained, it can be seen that when the grey wolf multi-wandering 
strategy(first strategy) is not available, the maximum time to completion and carbon emissions tend to increase 
slightly. When the grey wolf coordinated hunting strategy(second strategy) is not adopted, it does not always 
lead to worse outcomes compared to the other two strategy. On the other hand, when a local optimization 
strategy(third strategy) is not introduced, the algorithm will deteriorate significantly in most cases. A comparison 
of the Pareto fronts of the three strategies is shown in Fig. 9.

Practical case application
To further verify the effectiveness of the IGWO and mathematical model proposed in this paper, the welding 
task of a certain mechanical and shipbuilding company was selected as the research object. The relevant data are 
simplified as Table 5. Each algorithm was randomly run 10 times and the excellent solutions were selected for 
comparison, with the optimal results highlighted in bold in Table 6. To analyze the differences more intuitively 
among the three algorithms, the Pareto Front distribution of the three algorithms was described in Fig. 10.

The comparison of the algorithms in Table 6; Fig. 11 shows that in terms of maximum completion time, the 
results obtained by the IGWO algorithm are reduced by 1.73% and 1.01% compared with the NSGA-II and the 
GWO, respectively. For carbon emissions, the results obtained by the IGWO algorithm are 2.28% and 8.98% 
lower than those obtained by the NSGA-II and the GWO, respectively. Therefore, the IGWO used in this paper 
can achieve better result than the other two algorithms, and can obtain the optimal values of the optimization 
objectives.

The IGWO used in this paper adopts three strategies, which are improved in three aspects: initial population 
diversity, algorithm convergence, and local optimization in the later stage. The improved algorithm can best 
solve the LCWSP.

The numbers on the Gantt chart in Fig. 11 represent the numbers of machines assigned at each stage of the 
job. The maximum number of machines available in the second stage is too small, resulting in the makespan 

Number

No first strategy No second strategy No third strategy

f1 f2 f1 f2 f1 f2

1 860.89 4.98E + 05 991.26 3.99E + 05 984.11 4.01E + 05

2 884.62 4.79E + 05 921.63 4.32E + 05 886.84 4.85E + 05

3 954.39 4.22E + 05 848.24 5.11E + 05 1001.82 3.89E + 05

4 995.63 4.07E + 05 1005.36 3.92E + 05 964.41 4.22E + 05

5 845.39 5.09E + 05 891.71 4.66E + 05 857.58 5.00E + 05

6 926.72 4.56E + 05 856.49 5.09E + 05 846.22 5.09E + 05

7 1023.11 3.86E + 05 886.74 4.72E + 05 927.10 4.52E + 05

8 971.32 4.16E + 05 902.34 4.41E + 05 907.48 4.77E + 05

Table 4.  The significant comparison of the three strategies. Significant values are in bold.

 

Number

Consider the makespan
Consider the carbon 
emissions and the makespan

Makespan Carbon emission Makespan Carbon emission

1 407.79 119507.4733 425.11 118492.3519

2 410.16 119493.3306 425.89 118475.6643

3 412.26 119396.6594 432.84 118346.8221

4 413.42 119366.4742 441.53 118266.9058

5 416.79 119349.7736 448.81 118088.7119

6 418.02 118960.2269 450.68 118022.1879

7 420.32 118862.7169 452.26 117625.1915

8 424.44 118812.8145 461.47 117504.0569

Table 3.  Comparison of carbon emission results.
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cannot be further optimized. The workshop can increase the number of welding machines available in the 
second stage and shorten the makespan.

Conclusions and future work
This paper considers the carbon footprint caused by equipment energy consumption, welding material 
consumption and protective gas consumption during the production process of welding workshops. The LCWSP 
mathematical model is established to minimize the makespan and carbon emission.

Job

Stage

T tran
ij (min)/T h

ij(min)/T w
ij (min)

J1
O11 O12 O13 O14 O15 O16 O17 O18

12/3/60 24/10/280 3/5/37 16/17/76 7/8/25 14/15/67 10/10/41 7/7/18

J2
O21 O22 O23 O24 O25 O26 O27 O28

13/5/65 23/16/200 10/15/16 25/18/90 10/12/29 14/11/60 14/15/67 25/20/61

J3
O31 O32 O33 O34 O35 O36 O37 O38

9/3/55 19/7/207 7/6/27 17/16/70 15/17/48 14/14/71 22/10/56 12/14/28

J4
O41 O42 O43 O44 O45 O46 O47 O48

10/4/57 26/5/259 9/15/57 27/10/68 10/17/41 14/4/47 10/18/30 22/14/44

J5
O51 O52 O53 O54 O55 O56 O57 O58

6/6/65 30/8/212 7/20/48 16/17/96 15/22/52 18/7/60 14/10/27 5/3/9

J6
O61 O62 O63 O64 O65 O66 O67 O68

5/9/78 12/9/180 20/16/51 20/5/53 20/24/34 16/16/74 13/10/70 5/7/13

J7
O71 O72 O73 O74 O75 O76 O77 O78

9/3/46 15/10/260 16/13/24 14/25/55 20/15/45 13/17/42 9/8/34 25/26/63

Table 5.  Scheduling tasks of welding workshop.

 

Fig. 9.  Pareto Front comparison of three strategies.
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The IGWO is designed to solve the research problem in this paper. High-quality initial populations are formed 
through a combination of random generation and NEH strategies. To balance the effect of global and local 
search, three strategies were designed. The first is the multi-wandering search strategy, the second is grey wolf 
cooperative hunting strategy with dynamic weights. The third is to adjust the number of machine allocations on 
the critical path. The resulting excellent specimen is preserved through external memory.

Test cases are generated based on actual welding shop production. By using three different algorithms, it 
shows that the results obtained by IGWO are better than those of other two algorithms. In terms of maximum 
completion time, the results obtained by IGWO algorithm are reduced by 1.73% and 1.01%, respectively, 
compared with NSGA-II and GWO. For carbon emissions, the results obtained by the IGWO algorithm are 
2.28% and 8.98% lower than those of NSGA-II and GWO, respectively. These comparison results show the 
advantages of the proposed algorithm in population initialization and optimization, and an example application 
verifies the effectiveness of the IGWO on solving the multi-objective LCWSP.

In addition, the relevant results in this paper can provide a reference for enterprise dispatchers, help 
enterprises formulate green production scheduling plans, and reduce carbon emissions in the production 
process. The limitation of this paper is that the relevant consideration of the sources of carbon emissions is 
not complete, such as the carbon emissions generated during the aging treatment after welding. In the future, 
the low-carbon scheduling problem of distributed welding workshops will be studied with considering more 
practical constraints, and to further improve the algorithm accordingly.

Fig. 10.  Pareto Front comparison of three algorithms.

 

Number

IGWO NSGA-II GWO

f1 f2 f1 f2 f1 f2

1 842.14 5.15E + 05 878.18 5.08E + 05 1004.02 4.23E + 05

2 851.37 5.09E + 05 1005.74 3.98E + 05 941.70 4.28E + 05

3 920.30 4.00E + 05 880.96 4.56E + 05 901.93 4.49E + 05

4 955.42 3.90E + 05 856.95 5.32E + 05 900.81 4.61E + 05

5 918.21 4.14E + 05 969.82 4.03E + 05 877.77 5.15E + 05

6 1016.39 3.85E + 05 903.07 4.39E + 05 855.32 5.43E + 05

7 1003.49 3.88E + 05 1016.39 3.94E + 05 850.72 5.49E + 05

8 871.79 4.50E + 05 905.12 4.21E + 05 853.49 5.46E + 05

Table 6.  Results comparative analysis of three different algorithms.
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Data availability
The data files used in the manuscript have been uploaded to a supplementary file. Some of the data is the research 
data from the enterprise, and therefore it is not publicly available. However, it may be obtained from the corre-
sponding author upon reasonable request.
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