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Disorganized chromatin hierarchy and stem
cell aging in a male patient of atypical
laminopathy-based progeriamandibuloacral
dysplasia type A

Wei Jin1,2,3,11, Shaoshuai Jiang4,11, Xinyi Liu4,11, Yi He 3,11, Tuo Li 5, JingchunMa3,
Zhihong Chen3,6, Xiaomei Lu7, Xinguang Liu8, Weinian Shou 9, Guoxiang Jin1,
Junjun Ding 4 & Zhongjun Zhou 1,3,10

Studies of laminopathy-based progeria offer insights into aging-associated
diseases and highlight the role of LMNA in chromatin organization. Mandibu-
loacral dysplasia type A (MAD) is a largely unexplored form of atypical progeria
that lacks lamin A post-translational processing defects. Using iPSCs derived
from a male MAD patient carrying homozygous LMNA p.R527C, premature
aging phenotypes are recapitulated in multiple mesenchymal lineages, includ-
ing mesenchymal stem cells (MSCs). Comparison with 26 human aging MSC
expression datasets reveals that MAD-MSCs exhibit the highest similarity to
senescent primary humanMSCs. Lamina-chromatin interaction analysis reveals
reorganization of lamina-associating domains (LADs) and repositioning of non-
LAD binding peaks may contribute to the observed accelerated senescence.
Additionally, 3D genome organization further supports hierarchical chromatin
disorganization inMAD stemcells, alongside dysregulation of genes involved in
epigenetic modification, stem cell fate maintenance, senescence, and ger-
oprotection. Together, these findings suggest LMNA missense mutation is
linked to chromatin alterations in an atypical progeroid syndrome.

Nuclear lamins are ubiquitously expressed type V intermediate fila-
ment proteins that are polymerized and assembled, with other inter-
acting proteins, into nuclear lamina, a structure essential for nuclear
integrity and chromatin organization. Mutations in the LMNA give rise

to a variety of disorders, ranging from muscular dystrophy, lipody-
strophy, cardiomyopathy, and neuropathy to severe progeroid syn-
dromes, which are collectively referred to as laminopathies1. In
addition to the extensively studied typical laminopathy-based
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progeroid syndrome (TPS), e.g., Hutchinson-Gilford progeria syn-
drome (HGPS), a number of LMNA variants have been reported to
cause atypical progeroid syndrome (APS)2–5. Mandibuloacral dysplasia
type A (MAD), a rare genetic disorder resulting from LMNA recessive
mutation, is characterized by mandibular hypoplasia, cutaneous
atrophy, acro-osteolysis, lipodystrophy, growth retardation, and pre-
mature death and represents a classical APS6. However, little is known
about the molecular changes and the underlying mechanism behind
MAD pathogenesis.

The difference between TPS and APS stems primarily from the
production and accumulation of progerin or prelamin A, which com-
petes with lamin A/C for the interaction with lamina-associated proteins,
including DNA damage repair-associated proteins (DNAPKcs7, PARP18,
TRF29, SIRT110, and SIRT611) and epigenetic modifiers (RBBP4/712,
SUV39H113, HDAC214 and Polycomb proteins15,16), while specifically
impairing the mitochondrial fitness-associated PGC1α17 and anti-
oxidation related NRF218. These findings serve as, at least partially, the
driving force behind HGPS pathogenesis, while the LMNA variants pre-
sented in APS indicate a different mechanism than TPS. Therefore,
to understand how the specific LMNA mutation drives the pathogenesis
in MAD, it is necessary to examine the fundamental functions of lamin
A/C in chromatin organization.

Apart from as a nuclear structural component, lamins closely
interact with chromatin to form lamina-associating domains (LADs) at
the nuclear periphery19. Loss or gain of these critical contacts leads to
gene dysregulation and links to the pathogenesis of multiple lamino-
pathies and the aging process20–23. Lamina-chromatin interaction also
facilitates higher-order chromatin structure organization24. Indeed,
loss of nuclear integrity is frequently observed in laminopathies,
which likely mirrors chromatin disorganizations. Although individual
alterations of the chromatin, such as accessibility25,26, enhancer
remodeling27–29, histone modifications30,31, topologically associating
domains (TADs)32, and chromatin compartmentalization23,33–35, have
been investigated in senescence or aging, few of these have been
explored in MAD or other APS.

In this study, iPSCs derived from a male MAD patient harboring
the LMNA p.R527C mutation demonstrated features of premature
aging. Upon induced differentiation, these cells exhibited accelerated
senescence in mesenchymal lineages. Integrative analysis of aging
hMSC datasets with those fromMAD-MSCs identified gene expression
profiles associated with geroprotection and senescence, revealing a
high degree of similarity between MAD-MSCs and senescent primary
human MSCs(hMSCs). Multi-omic profiling of chromatin features
identified significant alterations in the chromatin architecture ofMAD-
MSCs, which were linked to the dysregulation of key genes involved in
epigenetic modifications, lineage specification, senescence, and ger-
oprotection. Considering the similarities in molecular alterations and
clinicalmanifestationsbetweenAPS andphysiological aging, this study
not only provides insights into normal aging and aging-related
degenerations but also suggests potential mechanisms of chromatin
disorganization for other laminopathies.

Results
iPSCs-derived mesenchymal lineages from a MAD patient
exhibited accelerated senescence
A previously reported male MAD patient was confirmed to carry the
c.1579C >T, p. R527C mutation in the LMNA gene (Fig. 1a). Isolated
patient fibroblasts did not show the additional visible isoform of lamin
A, though mutant cells exhibited earlier accelerated senescence,
higher percentage of misshapen nuclear morphology (69.6 ± 9.3 % in
MAD vs 10.8 ± 5.7 % in control, p = 0.0004) and abnormal epigenetic
modifications (Fig. 1a and Supplementary Fig. 1a–j). The patient-
specific iPSCs were generated using minicircle DNA as described
previously36, and two independent clones were picked out for further
validation (denoted as MAD-iPSCs #1 and #2). The two WT-iPSCs

clones were generated from a single healthy individual as previously
described36, and the WT-iPSCs and respective derivatives from WT-
iPSCs were used as control throughout the study. No random inte-
gration of the minicircle vector was detected in these iPSCs (Supple-
mentary Fig. 2a). Reverse transcription PCR and quantitative PCR
(qPCR) showed comparable expression levels of pluripotency-
associated genes in iPSCs and human ESCs H9 (Supplementary
Fig. 2b, c). The bisulfite sequencing of endogenous OCT3/4 promoter
region demonstrated rewriting of the DNA methylation after repro-
gramming (Supplementary Fig. 2d). The pluripotency and differentia-
tion potential of these iPSCs were further confirmed by
immunostaining and in vivo teratoma formationassay (Supplementary
Fig. 2e, f). Karyotyping analysis also ensured the genome integrity in
the iPSCs (Supplementary Fig. 2g).

Next, we examined the nuclear integrity and aging-associated
phenotypes in iPSCs. Lamin A/C was barely detectable in MAD-iPSCs,
whereas lamin B1 was restored (Fig. 1c, d and Supplementary Fig. 3b).
The decreased expression of lamin B2, LAP2, WRN, Ku70, FOXO3a,
PGC1α, HP1α, and HDAC2 were all restored in MAD-iPSCs (Fig. 1d and
Supplementary Fig. 3a). Furthermore, nuclear dysmorphology was res-
cued and proliferative capability was restored in MAD-iPSCs (Supple-
mentary Fig. 3a and 1i). These data collectively indicated that premature
senescence in MAD fibroblasts was rejuvenated in the pluripotent state.

To recapitulate the tissue-specific defects of MAD, we differ-
entiated MAD-iPSCs into multiple lineages, including vascular smooth
muscle cells (VSMCs), vascular endothelial cells (VECs), and neural
stem cells (NSCs). The differentiated MAD-VSMCs, marked by Calpo-
nin, smooth muscle alpha-actin (αSMA), and smooth muscle 22α
(SM22α) (Supplementary Fig. 4d–f, j), exhibited a remarkable increase
in nuclear deformation (90.6 ± 13.7% in MAD-VSMCs vs 2.0 ± 5.9% in
controls; p <0.0001) and elevated DNA damage at passage 5
(90.0 ± 10.9 % in MAD-VSMCs vs not detectable in controls;
p <0.0001) (Fig. 1e). MAD-VECs, marked by von Willebrand factor
(VWF) and endothelial nitric oxide synthase (eNOS) and validated by
the Ac-LDL up-taking function (Supplementary Fig. 4g–i, j), manifested
significantly elevated frequencies of nuclear blebbing (78.3 ± 7.2% in
MAD-VECs vs 12.9 ± 5.0% in WT-VECs; p <0.0001) and DNA damage
(85.40± 7.42% in MAD-VECs vs 23.39 ± 6.11% in WT-VECs; p <0.0001)
(Fig. 1f). The NSCs generated from MAD-iPSCs were validated by
sphere culture and expression of NESTIN, PAX6, and SOX2 (Supple-
mentary Fig. 4a–c, j). No significant differenceswereobserved either in
the differentiation efficiency between MAD-iPSCs and WT-iPSCs or in
the proliferative capability within 20passages betweenMAD-NSCs and
WT-NSCs (Fig. 1g and Supplementary Fig. 4c). Taken together, these
data revealed defects in multiple lineages in this MAD patient as a
result of the LMNA p.R527C mutation. The compromised vascular
systemwas in linewith the clinical features such as high bloodpressure
and atherosclerosis that are observed in MAD6,37.

MAD-MSCs recapitulated accelerated cellular senescence
Stem cell decline38 is an essential contributor to many age-related
morbidities39,40. The deterioration of vascular cells in MAD prompted
us to examine the progenitor/stem cells, particularly the MSCs. The
MSCs we generated satisfied the criteria of surface markers and tri-
lineage differentiation capability (P5 MSCs) (Fig. 2a and Supplemen-
tary Fig. 5a, b). The MAD patient iPSCs-derived MSCs(hereafter refer-
red to as MAD-MSCs) exhibited a shorter cellular lifespan, impaired
proliferative capability, and accelerated senescence (P13 MSCs)
(Fig. 2b–d), which were accompanied by the upregulation of cell cycle
arrest genes p16 and INK4b as well as the activation of senescence-
associated inflammasome (CXCL1, VEGFA, IL6, IL8, PAI, BMP2, PAI and
BMP2) (P13MSCs) (Supplementary Fig. 6c, d). As expected,MAD-MSCs
manifested increased nuclear blebbing and DNA damage (P13 MSCs)
(Fig. 2e and Supplementary Fig. 6b, e). Of note, MAD-MSCs exhibited
enlarged nuclei (Fig. 2g, h and Supplementary Fig. 6f). Transmission
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electron microscopy (TEM) revealed a loss of peripheral hetero-
chromatin in P13 MAD-MSCs (Fig. 2f). Furthermore, there was a sig-
nificant increase in the percentage of mitochondrial damage in P13
MAD-MSCs (22.6% in MAD-MSCs vs 4.1% in WT-MSCs, p <0.0001)
(Fig. 2f). These data indicated MSCs from the MAD patient recapitu-
lated accelerated cellular senescence.

To investigate early epigenetic changes behind MAD-MSCs aging,
we examined the nuclear integrity and histone modifications at P9
when MAD-MSCs have not yet undergone senescence (Fig. 2b and
Supplementary Fig. 6a). Significantly decreased lamin B1 and
H3K9me3 were shown in MAD-MSCs compared with the control
(Fig. 2g, h). Although the loss of LAP2a and HP1a were observed in
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multiple senescence conditions and MAD fibroblasts (Fig. 1d), sig-
nificant changes in neither protein were observed in MAD-MSCs at P9
(Fig. 2g, h), but appeared at late passage P13 (Supplementary Fig. 6f).
This suggests that loss of LAP2a and HP1a were not the initial response
for senescence in MAD scenario. In addition, H3K9m3/H3K27me3-
enriched heterochromatin budded off from the nuclei in MAD-MSCs
(Supplementary Fig. 6e), which was in line with previous reports in
different human MSCs senescence models41,42. Strikingly, the active
histone markers H3K4me3 and H3K27ac were also found in regions of
the budded nucleus and were even at times scattered in the cytoplasm
(Supplementary Fig. 6e), reflecting the dramatically disorganized
nucleus inMAD-MSCs. Thesefindings suggested that accelerated stem
cell senescence in this MAD patient could be a consequence of col-
lapsed homeostasis in the nucleus.

Transcriptome comparison between MAD-MSCs and other
human MSCs aging models
To investigate the potential contributors to MAD-MSCs senescence,
RNA-seq was performed and compared between MAD-MSCs and WT-
MSCs derived from theWT-iPSCs both at P9. Overall, 1488 genes were
downregulated, while 1447 were upregulated in MAD-MSCs (two-fold
change, p <0.05) (Supplementary Fig. 7a, b; Supplementary Data 3).
GO term analysis revealed the enrichment of extracellular matrix
(ECM) organization (n = 39, p = 6.59E-10), negative regulation of cell
proliferation (n = 49, p = 1.50E-05), cell cycle arrest (n = 21, p = 6.57E-
04), cytoskeleton organization (n = 26, p = 3.29E-05) and inflammatory
response (n = 43, p = 3.65E-04) in the upregulated genes, while notch
signaling pathway (n = 19, p = 1.10E-04), transcription factor binding/
activity (n = 80, p = 8.40E-04), angiogenesis and cancer-associated
pathways were enriched in the downregulated genes (Fig. 2i). Inter-
estingly, analysis of genetic assoicated diseases (GAD) database
revealed that genes associated with cardiovascular disorders and
metabolism disturbance were enriched in MAD-MSCs (Supplementary
Fig. 7c, d).

To explore the similarities and differences between MAD-MSCs
and other senescence models, we cross-analyzed 26 aging hMSCs
transcriptomicdatasets, including 20premature senescent hMSCs and
6 senescence-delayed hMSCsmodels, termed ‘accelerated hMSCs’ and
‘alleviated hMSCs’, respectively (Supplementary Fig. 8a). Senescence, a
process of cellular deterioration marked by chronic loss of home-
ostasis in macromolecules, is associated with increased expression of
senescence-promoting genes and decreased expression of anti-
senescence-associated genes. Based on this assumption, we defined
the upregulated genes in senescent hMSCs and downregulated genes
in alleviated hMSCs as senescence-associated genes, whereas the
downregulated genes in senescent hMSCs and upregulated genes in
alleviated hMSCs as geroprotection-associated genes (Supplementary
Fig. 8b, c). The intersection of these gene sets revealed that different
hMSCs aging models exhibited distinct transcriptional profiles and
clustering of some datasets, indicating the aging process is

complicated while interconnected (Fig. 2j). Notably, MAD-MSCs
exhibited the highest transcriptional similarity to bone marrow-
derived hMSCs undergoing replicative aging (Fig. 2j and Supplemen-
tary Fig. 8d).

LADs reorganization in MAD-MSCs
LADs reorganization has been reported in several laminopathy-based
disorders, varying by cell-context20,23,43,44. It is well known that loss of
lamin B1 is a biomarker of senescence, and lamin B1 LADs reorgani-
zation is involved in various aging models45,46. We performed both
lamin A/C and lamin B1 chromatin immunoprecipitation and sequen-
cing (ChIP-Seq) in WT andMAD-MSCs (MSCs at P9-P11). The lamin A/C
LADs (A-LADs) and lamin B1 LADs (B-LADs) were identified by Enriched
Domain Detector47 and further classified into three categories, e.g.
loss, overlap, and gain, according to the specific change of genomic
regions in MAD-MSCs when compared with WT-MSCs (Fig. 3a).
Genome-wide comparison showedan increasednumberof bothA- and
B-LADs (237 lost vs 628 gained in A-LADs; 274 lost vs 295 gained in B-
LADs) in MAD-MSCs (Fig. 3d, e). The genomic coverage of A-LADs
increased dramatically from 94Mb in WT-MSCs to 217Mb in MAD-
MSCs, whereas the B-LADs coverage was slightly decreased (293Mb in
WT-MSCs vs 268Mb in MAD-MSCs) (Fig. 3b). Of note, the enrichment
strength of both A- and B-LADs decreased significantly in MAD-MSCs
(Fig. 3c). Overall, 865 differential A-LADs and 569 differential B-LADs
were identified in MAD-MSCs compared with WT-MSCs (Fig. 3d, e).

To further investigate the effects of LADs reorganization on
transcriptional regulation, we integrated the transcriptome with dif-
ferential LADs. Overall, 253 genes were dysregulated in reorganized A-
LADs, while 318 were found in B-LADs (Fig. 3f; Supplementary Data 4).
Notably, the gained LADs were associated with the majority of the
transcriptomic changes when compared to the lost regions (221 genes
in gained A-LADs vs 32 genes in lost A-LADs; 235 genes in gained
B-LADs vs 90 genes in lost B-LADs) (Fig. 3f; Supplementary Data 4). To
further evaluate the effect of LADs reorganization on MSCs aging, the
dysregulated genes were cross-analyzed with senescence/ger-
oprotection-associated gene profiles in hMSCs aging models. The
expression changes observed in this MAD case, potentially mediated
by LAD reorganization, were co-enriched with a variety of hMSCs
models, especially normal old hMSCs and HGPS-MSCs (Fig. 3g).
Notably, the gained LADs-associated genes were dominant for the co-
enrichment of senescence- and geroprotection-associated pro-
file (Fig. 3g).

For example, we observed a correlation between the down-
regulation of HDAC4, a gene associated with geroprotection48, and
the gain of A-LADs in MAD-MSCs (2.6-fold decrease, FDR = 1.17e-38)
(Supplementary Fig. 9a). CDK18, a cell cycle checkpoint factor safe-
guarding genome integrity49, was repressed inMAD-MSCs as it fell into
the gained A-LADs (12.5-fold decrease, FDR = 3.20e-155) (Supplemen-
tary Fig. 9a). Similarly, several potential geroprotection-associated
genes, including FOXC1 (22.5-fold decrease, FDR =0), RNF130

Fig. 1 | Mesenchymal lineages derived from MAD iPSCs manifested progeroid
defects. a The pedigree of a MAD family and Sanger sequencing confirming the
homozygous pointmutation in LMNA (c.1579 C> T, p. R527C).b Immunostaining of
lamin A/C (LMNA, green) in normal and MAD-patient derived dermal fibroblasts.
DAPI, blue. Scale bar 10μm. The experiment was repeated three times with similar
results. c Immunostaining of lamin A/C (LMNA, green), H3K9me3 (red), lamin B1
(LMNB1, green) and LAP2 (red) in WT-iPSCs and MAD iPSCs clones. DAPI, blue.
Scale bar 10μm. The experiment was repeated three times with similar results.
d Immunoblotting of lamin A/C (LMNA), lamin B1 (LMNB1), lamin B2 (LMNB2),
EMERIN, LAP2, and WRN, KU70; HADC2, HP1a and FOXO3, PGC1a in dermal
fibroblasts and two independent WT- and MAD- iPSCs clones. β-Actin was used as
the loading control and only shown once as limited space. The experiment was
repeated three times with similar results. e Representative images of lamin A/C

(LMNA, green) and γ-H2A.X (red) co-immunostaining in passage 8 (P8) of WT and
MAD-VSMCs with a corresponding statistical analysis. DAPI, blue. Scale bar 10 μm.
Data are mean ± SD, the p value was calculated using two-tailed unpaired t-test,
n = 6. Three independent differentiation experiments were performed with similar
results. f Representative images of lamin A/C (LMNA, green) and γ-H2A.X (red) co-
immunostaining in passage 12 (P12) of WT and MAD-VECs with a corresponding
statistical analysis. DAPI, blue. Scale bar 10μm. Data are mean± SD, the p value was
calculated using two-tailed unpaired t-test, n = 7. Three independentdifferentiation
experiments were performed with similar results. g Representative images of Ki 67
(red) staining in WT-NSCs and MAD-NSCs at passage 20. Data are mean ± SD, the p
value was calculated using two-tailed unpaired t-test, n = 4. Three independent
differentiation experiments were performed with similar results. DAPI, blue. Scale
bar 10 μm. Source data are provided as a Source Data file.
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(22.5-fold decrease, FDR =0), ZNRF2 (6.2-fold decrease, FDR= 3.02E-
68) and PRMT3 (22.5-fold decrease, FDR =0), were downregulated as a
result of gain of LADs (Supplementary Fig. 9a). Interestingly, lineage
associated genes were also found to be dysregulated as LADs reorga-
nization. Neural-related NEDD9 (4.1-fold increase, FDR = 1.50E-82),
ANXA1 (2.6-fold increase, FDR = 1.13E-59), ANXA6 (2.1-fold increase,

FDR = 1.13E-59), and immune-related IL7R (5.9-fold increase, FDR =
2.53E-121) and TRBC2 (5.1-fold increase, FDR = 6.32E-24),were found to
be abnormally activated as a result of loss in LADs (Supplementary
Fig. 9a). Thedata collectively suggest anassociationbetween extensive
reorganization of LADs and altered expression profiles of genes that
are involved in aging and lineage specification in MAD-MSCs.
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Reposition of non-LAD lamina-chromatin binding peaks parti-
cipated in aging-associated gene regulation in MAD-MSCs
When interpreting lamina-chromatin interactions, we identified many
non-LAD lamina-chromatin binding peaks, termed ‘peaks out of LAD’,
that were dispersed outside of LADs (Fig. 4a). Strikingly, there were a
total of 1959 peaks out of A-LADs in WT-MSCs and 9442 peaks out of
A-LAD inMAD-MSCs,with only a small portion (637 peaks) overlapping
(Fig. 4b). Likewise, 636 and 1494 peaks out of B-LADswere identified in
WT-MSCs and MAD-MSCs respectively, with only 139 shared peaks
(Fig. 4b). To further investigate the potential function of these non-
LAD lamina-chromatin interaction peaks, genome-wide co-occurrence
between non-LADs lamina-chromatin binding peaks and promoters
were analyzed. Notably, non-LADs peaks were not randomly reposi-
tioned but rather co-occurred with the promoter (permutation test,
p =0) (Fig. 4c), suggesting that non-LAD peaks were likely involved in
transcriptional regulation. Indeed, a total of 569 differential genes fell
into the repositioned non-LADs peaks in MAD-MSCs (Fig. 4d; Supple-
mentary Data 4). Among these genes, the gained peaks out of A-LADs
accounted for themajority of the changes (401 genes, 77.1%), while the
gained peaks out of B-LADs contributed 16.0% (91 genes) to the
changes (Fig. 4d). These dysregulated genes were further cross-
analyzed based on senescent and geroprotective gene profiles to
evaluate the co-enrichment between repositionednon-LADspeaks and
senescence. Notably, the gained peaks out of A-LADs exhibited the
highest enrichment in upregulated senescence-associated genes and
downregulated geroprotection-associated genes across the different
hMSCs aging models (Fig. 4e).

TBX2, an indispensable transcription factor for early development
and geroprotection50, showed decreased expression in MAD-MSCs, cor-
responding to the increased lamina-chromatin binding peaks in MAD-
MSCs (5.1-fold decrease, FDR= 1.09E-226) (Supplementary Fig. 10a).
DCP2, a protein responsible formRNAdecapping, RNAdecay and closely
associated with the aging process51,52, was downregulated in MAD-MSCs,
possibly due to the gained lamina-chromatin binding peak in its pro-
moter (2.1-fold expression decreases, FDR=9.17E-27) (Supplementary
Fig. 10a). Similarly, CEP70, a centrosomal protein critical for micro-
tubules organization during mitosis, was downregulated in MAD-MSCs,
which could be attributable to the gained LAD and lamina-chromatin
binding peak at its promoter (2.7-fold decrease, FDR= 1.57E-33) (Sup-
plementary Fig. 10a). Interestingly, several lineage specific genes,
including NNAT (5.2-fold increase, FDR=3.45E-60) and NAV2 (2.8-fold
increase, FDR= 1.01E-82), were also abnormally activated in repositioned
lamina-chromatin binding peaks (Supplementary Fig. 10a). These obser-
vations suggest that in addition toLADs reorganization, the repositioning
of non-LAD lamina-chromatin binding peaks may also be associated
with changes in transcriptional regulation, potentially influencing
MAD-MSCs senescence and aspects of progeroid pathogenesis.

Lamina-chromatin interaction coordinated with chromatin fea-
tures to regulate transcription in MAD-MSCs
To explain transcriptional upregulation in the gained lamina-
chromatin interaction sites and transcriptional downregulation in
the lost lamina-chromatin binding regions (Figs. 3e and 4e), we inte-
grated multiple profiling data, including active marks A transposase-
accessible chromatin with sequencing (ATAC-Seq) and H3K27ac ChIP-
Seq as well as repressive marks H3K9me3 and H3K27me3 ChIP-Seq, to
examine the contribution of chromatin features to the transcriptional
dysregulation in MAD-MSCs compared to WT-MSCs (Fig. 5a). ATAC-
Seq revealed a more open chromatin state in MAD-MSCs with 45,906
lost peaks and 93,844 gained peaks (FDR <0.05) (Fig. 5b). Con-
sistently, H3K27ac ChIP-Seq identified 21,349 lost peaks and 37,770
gained peaks in MAD-MSCs, corresponding to 31,478 inactivated
typical enhancers (TEs), 188,270 activatedTEs, 560 inactivated and264
activated super-enhancers (SEs) (Fig. 5e and Supplementary Fig. 11c-g).
Globally, the ATAC signals were mainly located in intron (48%) and
intergenic regions (41%). About 20% of ATAC was associated with the
enhancer, and 11% occurred at LADs (Supplementary Fig. 11a, 11h). Of
note, 22% of the lost ATAC peaks in MAD-MSCs were enriched at
promoter regions and more than half were mapped to the enhancer
regions, especially SEs (46%) (Supplementary Fig. 11h). Meanwhile, 11%
of gained ATAC peaks in MAD-MSCs were associated with enhancers
(Supplementary Fig. 11h). In lost ATAC peaks, 6% were mapped to
A-LADs and 9% was mapped to B-LADs. In the gained ATAC peaks, 4%
were mapped to A-LADs and 12% to B-LADs (Supplementary Fig. 11a).
About 9% of gained ATAC fell in lamin B1-specific LADs, in contrast to
1% in LAMIN A-specific LADs (Supplementary Fig. 11a). The altered
enhancers inMAD-MSCs exhibited a pattern similar to that of ATAC in
the distribution of lamin A/C- and lamin B1-LADs (Supplementary
Fig. 11a, b). Interestingly, the enriched ATACmotifs inMAD-MSCswere
highly matched with the pioneer transcriptional factors binding
regions enriched in HGPS fibroblasts53 (Supplementary Fig. 11i). When
integrated with transcriptomic profiling, it was noted that ATAC and
H3K27ac signals were significantly higher in the promoter regions of
upregulated genes compared with the promoter regions of down-
regulated genes, regardless of the lamina-chromatin interaction states
(Figs. 5c, d, 5f, g).

In parallel, H3K27me3 peaks and H3K9me3 signals were also
found to be increased (13,751 lost vs 21,219 gained and 9059 lost vs
29,085 gained, respectively) in MAD-MSCs (Fig. 5h, k), with a dis-
tribution pattern that differs to ATAC and H3K27ac peaks (Supple-
mentary Fig. 11j–k). Interestingly, H3K27me3 and H3K9me3 signals
were significantly higher in the promoter regions of down-regulated
genes compared with the promoter regions of up-regulated genes,
which is independent of the lamina-chromatin interaction states
(Figs. 5i–j, 5l–m).

Fig. 2 | MAD-iPSCs derived mesenchymal stem cells (MAD-MSCs) recapitulated
accelerated cellular senescence.a,HumanMSCsderived fromWTandMAD-iPSCs
by a temporal neuralized ectoderm induction method. b Growth curve of MSCs.
Bars represent the mean± SD.; n = 3 independent biological replicates;
***p < 0.001; n.s., non-significant;p valuewas calculatedusing two-wayANOVA test.
c Proliferative capability measured by Ki 67 (red) using P13 MSCs. DAPI, blue. Scale
bar 10μm. Data represent the mean± SD, n = 5. d SA-β-gal staining of MSCs at
passage 13; Scale bar 100 μm. Data are mean± SD, n = 3. e Representative image of
γ-H2A.X (red) immunostaining at passage 13. DAPI, blue. Scale bar 10 μm. Data are
mean ± SD, n = 8. The p values were calculated using two-tailed unpaired t-test.
Experiments in c-e were repeated three times with similar results. f Representative
transmission electron micrographs (TEM) of P13 WT- and MAD-MSCs. Scale bar
250 nm. The percentage of damaged mitochondria was quantified and calculated
in MSCs. Data are mean± SD, n = 462WT, n = 368 MAD. The p value was calculated
using two-tailed unpaired t-test. Three independent replicates were performed
with similar results. g Representative images of co-staining of lamin B1 (LMNB1,

green) and HP1a (red), lamin A/C (LMNA, green) and LAP2 (red), lamin A/C (LMNA,
green) and H3K9me3 (red), lamin A/C (LMNA, green) and H3K27me3 (red), lamin
A/C (LMNA, green) and H3K27ac (red), and lamin A/C (LMNA, green) andH3K4me3
(red) in passage 9MSCs. DAPI, blue. Scale bars 10 µm. h Fluorescence intensity of g
were quantified, including Lamin B1 and HP1a (WT n = 189, MAD n = 79), lamin A/C
and LAP2 (WT n = 84, MAD n = 51), H3K9me3 (WT n = 88, MAD n = 64), H3K27me3
(WT n = 71, MAD n = 31), H3K27ac (WT n = 163, MAD n = 55), H3K4me3 (WT n = 145,
MAD n = 79) and nuclei size (WT n = 293, MAD n = 143). Data are mean ± SD; the
lines in scatter dot plot indicate the averaged intensity and the p values were
calculated using two-tailed unpaired t-test. Three independent biological experi-
ments were performed with similar results. i GO and KEGG enriched signaling
pathways in MAD-MSCs. All p-values were determined by two-sided modified
Fisher’s exact test using DAVID. j Comparison of aging-associated gene profilings
between MAD-MSCs and other human MSCs aging models. Color depth indicates
the level of transcriptional similarity. Source data are provided as a SourceData file.
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The lower signals of ATAC and H3K27ac and higher
H3K27me3 signals in HDAC4 and CDK18 gene loci may explain the
downregulation of geroprotection-associated HDAC4 and CDK18
within gained A-LADs in MAD-MSCs (Supplementary Fig. 12a). Simi-
larly, down-regulation of ZSCAN12 (2.8-fold decrease, FDR= 4.74E-16)
and DHRS3 (42.3-fold decrease, FDR= 1.93E-292) were observed in

gained B-LADs with lower signals of ATAC and H3K27ac and higher
signals of H3K9me3 and H3K27me3 (Supplementary Fig. 12b). On the
other hand, loss of A-LADs occupancy in NEDD9 locus with higher
ATAC and H3K27ac signals at the promoter region may have con-
tributed to the activation of a lineage specific gene (Supplementary
Fig. 12a). Lower signal of repressive marks and higher signal of active
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marks enriched in the lost LADs resulted in up-regulation ofNTM (27.1-
fold increase, FDR=0) and NEK7 (5.2-fold increase, FDR = 4.93E-266)
(Supplementary Fig. 12c). The PDGFA locus, located in the gained LAD
inMAD-MSCswith a 4.9-fold increase in transcription (FDR = 4.53E-93),
exhibited a higher signal of ATAC and H3K27ac but lower signal of
H3K9me3 (Supplementary Fig. 12d). In the FBXO4 locus, the lower
active marks explained why FBXO4 expression decreased in MAD-
MSCs (2.5-fold decrease, FDR = 9.38E-28) even though LAD occupancy
was lost (Supplementary Fig. 12d). The regulation of transcription by
integrated chromatin features were also observed in genes located
around non-LADs lamina-chromatin binding peaks, such as KAT2B,
MYO6, SMAD2 and HIPK2 (Supplementary Fig. 13). Taken together,
these observations suggest the transcription landscape observed in
MAD-MSCs could be a coordinated action of lamina-chromatin inter-
action state and specific local chromatin features.

Hierarchical chromatin disorganization potentially shapes stem
cell aging
Given that nuclear lamins facilitate the establishment of high-order
chromatin architecture19,24, we then interrogated the chromatin con-
formation change in MAD-MSCs. Hi-C was performed with two biolo-
gical replicates for each sample (Supplementary Fig. 14a), the statistics
of the relevant datasets were summarized in Supplementary Data 7,
and high-resolution of chromosome conformation was obtained
(Supplementary Fig. 14c). In MAD-MSCs, an increase in short-distance
interaction frequency and a decline in long-distance interaction fre-
quency were observed (Supplementary Fig. 14b). While clear segre-
gation of compartment A and B was observed in WT-MSCs, the
separation became largely indistinct in MAD-MSCs (Fig. 6a and Sup-
plementary Fig. 15). Saddle plot analysis indicated a global loss of
compartmentalization, quantifying the strength of chromatin com-
partment based on the interaction frequencies arranged by eigen-
vector. The interactions of compartment A-B and B-B were increased,
while the interactions of compartment A-A were decreased in MAD-
MSCs (WT_AA:1.266, MAD_AA:1.109; WT_BB:1.270, MAD_BB1.308;
WT_AB:0.707, MAD_AB:0.796) (Fig. 6b). When lamins-associated
chromatin was analyzed, the interactions of the lamin-binding chro-
matins were significantly decreased inMAD-MSCs (Fig. 6c), suggesting
that MAD mutation in LMNA possibly impairs high order chromatin
organization and compartmentalization through jeopardized the
chromatin interaction. Additionally, we observed 4.66% of compart-
ment A converted to B and 14.36% of compartment B switched to A, in
addition to the compartmental strengthening and weakening (Sup-
plementary Fig. 14d). The higher percentage of compartment B to A
switching was consistent with chromatin features observed in MAD-
MSCs, including increased ATAC and H3K27ac marks.

TopDom54 analysis revealed 3823 and 4001 TADs inWT-MSCs and
MAD-MSCs, respectively (Fig. 6e). The increased TAD number inMAD-
MSCs was accompanied by a shorter TAD length (725 kb on average in
WT-MSCs vs 683 kb on average in MAD-MSCs) (Fig. 6d). The differ-
ential TADs were subsequently classified into three categories, with a
significant portion of TADs (627) being either shortened (15.67%),
shifted without length change (0.87%) or enlarged (4.27%), despite of
79.18%of stable structuredTADs (FDR <0.05) (Fig. 6f). CCCTC-binding
factor (CTCF) is a core factor for TAD boundary maintenance
and CTCF ChIP-Seq revealed the increased CTCF binding peaks in

MAD-MSCs (Fig. 6g). The increased CTCF tended to bind at the A-LADs
and B-LADs lost regions in MAD-MSCs which aligned with the bound-
aries of gained TADs (p =0.0048) (Supplementary Fig. 16a), indicating
that themutant lamin A/Cmay contribute to TADs separation inMAD-
MSCs. To further investigate the relationship between TADs reorga-
nization and senescence, chromatin features and transcriptomic pro-
files were integrated with TAD structure. Notably, remarkable changes
in ATAC, H3K27ac, CTCF binding, H3K9me3, as well as transcription
were all observed in the shortened TADs (Fig. 6i). Higher gene
expressionwithin the shortened TADs has been noted previously55 and
may be linked to their relatively higher level of accessibility. Further
analysis identified 110 genes (SupplementaryData 8) located in regions
overlapped by shortened TADs and reorganized LADs or altered non-
LAD lamina-chromatin binding peaks, with the highest co-enrichment
to senescence/geroprotection-associated profile in normal hMSCs
aging (Fig. 6k). Among them, 80 were downregulated while 30 were
upregulated (FDR <0.05) (Supplementary Fig. 16b). For example,
shortened TADs of SETDB2, a H3K9me3 methyltransferase, was
accompanied by lower ATAC, reduced H3K27ac and decreased tran-
scription in MAD-MSCs (3.4-fold decrease, FDR = 5.80E-66) (Fig. 6j).
Similarly, PPARα, a member of the peroxisome proliferator-activated
receptor regulating energy metabolism and oxidative stress during
aging process, was repressed (3.2-fold decrease, FDR = 1.18E-85)
(Supplementary Fig. 16d). In addition, KRT19, a type I cytokeratin
mainly expressed in epidermis and involved inmesenchymal-epithelial
transition (MET), was upregulated in MAD-MSCs (6.8-fold increase,
FDR = 9.15E-281), possibly linked to the changes in shortenedTADs and
local chromatin state(Supplementary Fig. 16d). GO term analyzes
revealed the enrichment in ECM regulation, collagen biogenesis,
ossification, and DNA binding transcription factor activity in MAD-
MSCs (Supplementary Fig. 16c). Dysregulation of ECM remodeling and
collagenbiogenesis are known to be involved in aging both in vitro and
in vivo56,57. Acroosteolysis is an important featureofMADwhile chronic
bone loss is a typical clinical manifestation in normal aging. The
enrichment of negative regulation of ossification associated with TAD
shortening (Supplementary Fig. 16c) was cosistent with observed
acroosteolysis in MAD.

At the chromatin loop level, 5121 strengthened and 4496 wea-
kened chromatin loops genome-wide were annotated in MAD-MSCs
(Fig. 7a). Among which, 2008 and 2030 enhancer-promoter (E–P)
loops were further identified based onH3K27ac signals (Fig. 7a). These
differential E-P loops presented significant correlation with transcrip-
tion regulation as strengthened E-P loops occupied regions of elevated
gene expression (p = 1.8e −07) while weakened E-P loops hold
decreased transcription (p =0.0026) (Fig. 7b), corresponding to 126
upregulated genes and 99 downregulated genes, respectively (Sup-
plementary Fig. 17a; Supplementary Data 9). Intersection analyzes of
the datasets revealed the highest co-enrichment in senescence-
associated genes and geroprotection-associated genes between
MAD-MSCs and hMSCs of normal aging (Fig. 7c). For examples, E-P
loop was strengthened in TGFB2 locus with abnormal activation of
TGF-β2 (29.7-fold increase, FDR =0, n = 5) (Fig. 7d), amember of TGF-β
family exhibiting inhibitory effect on cell proliferation and induces
cellular senescence58. Conversely, CBX7, a geroprotection associated
gene encoding a component of the polycomb group PRC1-like
complex59, was decreased (4.4-fold decrease, FDR = 1.12E-84, n = 10)

Fig. 3 | LADs reorganization is linked to aging-associated genes in MAD-MSCs.
a Representative distribution of LADs at specific genome loci in WT and MAD-
MSCs, including A-LADs and B-LADs. b The length of genomic coverage of A-LADs
and B-LADs in WT and MAD-MSCs. c Boxplot showing Lamin enrichment in WT
A-LADs (n = 340), MAD A-LADs (n = 535), WT B-LADs (n = 257), and MAD B-LADs
(n = 326), with 2 biological replicates for lamins ChIP-seq. Box plots display the
median as the center line, the 25th and 75th percentiles as the bounds of the box,
and the whiskers represent theminimum andmaximum values within 1.5 times the

interquartile range from the lower and upper quartiles. All p-values were deter-
mined using the two-sided Wilcoxon rank-sum test. d, e Heatmap of differential
A-LADs and B-LADs in WT and MAD-MSCs. f Differentially expressed genes asso-
ciated with LADs reorganization. Genes with over 2-fold transcriptional changes
were counted.gCross-analysis of the enrichment of dysregulated genes due toLAD
reorganization inMAD-MSCs with geroprotection/senescence-associated profile in
different hMSCs aging models. Color depth indicates enrichment score.
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due to weakened E-P loop (Fig. 7d). Interestingly, E-P loop of KDM6A
locus was weakened in MAD-MSCs with a decreased expression of
KDM6A (2.1-fold decrease, FDR = 5.71E-40, n = 5), a demethylase of
H3K27me3 (Fig. 7d). The reduced KDM6A in MAD-MSCs may explain
why global loss of H3K27me3 was not observed in MAD-MSCs, con-
trary to the reduced H3K9me3. In addition, dysregulation of

senescence-associated gene, such as MMP1460 (3.2-fold increase,
FDR = 1.66E-161, n = 5), (Supplementary Fig. 17d), fell into the altered
E-P loop. Additionally, several other potential aging-associated genes
resulted from E-P loop alterations were also annotated, including TBX2
(5.1-fold decrease, FDR = 1.09E-226, n = 14), PCK2 (2.8-fold decrease,
FDR = 1.18E-41, n = 5) and MMP16 (59.5-fold increase, FDR =0, n = 5)
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(Supplementary Fig. 17d). These data indicate that mutant lamin A/C is
associated with global disorganization of the chromatin hierarchy,
potentially contributing to accelerated aging in stem cells by influen-
cing the regulation of genes involved in epigenetic modification,
senescence, and geroprotection.

Discussion
APSs caused by LMNA mutations are underrepresented in the litera-
ture, compared with the intensively studied TPS. In this study, iPSCs
were established from a male patient with MAD, a representative APS
with a specific LMNA mutation (c.1579 C >T, p. R527C), to investigate
the changes in chromatin organization and themechanism underlying
the pathogenesis of MAD. In addition to LADs, dramatic changes
leading to dysregulation of senescence- and geroprotection-
associated genes were also observed in non-LADs lamina-chromatin
binding peaks, whose alteration has not received much attention.
Examination of the chromatin conformation revealed a hierarchical
disorganization is an intrinsic force modulating stem cell aging
in MAD.

Consistent with previous reports7,61, senescence-associated
defects observed in parental MAD-fibroblasts were rejuvenated in
iPSCs, implying that temporal activation of reprogramming factors
may be a potentially effective strategy in ameliorating aging-related
deterioration62. MAD mesenchymal lineages exhibited defects corre-
sponding to cardiovascular dysfunction in progeria patients. LMNA
mutation in MAD affects both lamin A and lamin C whereas the HGPS
mutation only affects lamin A. It has been reported that neural-specific
miR-9 can repress the expressionof laminAandprogerinbut not lamin
C, providing an explanation for the absence of neurological defects in
HGPS63,64. Given that neither neural cells defects nor neurological
symptoms were observed in MAD patients, it is plausible that lamin C
variants alone is insufficient to deteriorate neuronal cell functions.

Genome-wide LADs identification provides a comprehensive
landscape of lamina-chromatin interaction65–67 and reveals close cor-
relations between transcriptional regulation and lamina-chromatin
contacts during development and disease pathogenesis20–22,43,68,69. In
this study, we mapped both A and B-LADs in MAD-MSCs and found
that the pathogenic mutation gave rise to a decreased strength in the
lamina-chromatin interaction but increased LAD number and cover-
age. The gained LADs accounted for the majority of transcription
changes commonly enriched in the senescence- and geroprotection-
associated gene profiles, suggesting a critical role of gained LADs in
drivingMAD-MSCs aging (Fig. 3f, g). In addition, despitemore thanhalf
of the genes were modulated by overlapped A-and B-LADs, consider-
able gene expression in MAD-MSCs were regulated independently by
either A- or B-LADs (Supplementary Fig. 9b, c and Supplemen-
tary Data 6).

The fundamental changes in the lamina-chromatin interaction
in MAD-MSCs also extended beyond LADs. The altered non-LADs
lamina-chromatin binding peaks were not randomly distributed but
rather preferentially occurred in the promoter regions (Fig. 4c). Spe-
cifically, the gained A-type non-LAD lamina-chromatin binding
peaks that co-occurred with 3849 promoters were responsible for the
dysregulation of nearly 400 genes in MAD-MSCs, representing
the initial changes of MAD. In line with this observation, the altered
pS22-lamin A/C binding peaks have been linked to the premature

senescence in HGPS by co-enrichment of enhancers and c-JUN70.
Therefore, transcription regulation by non-LAD lamina-chromatin
binding peaks plays a critical role in MAD-MSCs aging and must be
taken into consideration when dissecting the mechanisms behind the
various laminopathies.

Interestingly, the gained lamina-chromatin interaction was not
always accompanied by the decreased gene expression in MAD-MSCs
(Figs. 3f and 4d). Conversely, loss of lamina-chromatin interaction did
not necessarily lead to transcriptional activation (Figs. 3f and 4d),
though to a lesser extent. Our data revealed that silencing or activation
of transcription requires a coordinated action between lamina-
chromatin interaction and active/repressive chromatin marks (Fig. 5
and Supplementary Fig. 12, 13). This is in line with previous observa-
tions that promoters within LADs can escape the intrinsic repression
and the genes are not upregulated upon LADs loss65,67,68,71,72. These
observations undermined a commonly held belief that lamina-
chromatin binding is transcriptionally repressive. Our study high-
lights the importanceof LADs andnon-LADs lamina-chromatin binding
peaks in gene regulation and disease pathogenesis.

Laminopathies are generally accompanied by loss of nuclear
integrity closely linked to 3D genome disorganization. These hier-
archical changes in MAD-MSCs represented the most drastic chro-
matin reorganization, compared to other senescence models23,32–35

reported so far where only subtle changes in chromatin compart-
mentalization and TADs were observed. We propose that the genome-
wide compartmentalization loss, also observed in late passage ofHGPS
fibroblast, is associated with a decreased nuclear lamina-chromatin
binding strength (Fig. 6a–c), supporting the concept that lamins are
essential for the establishment of chromatin architecture24. Interest-
ingly, Zheng et al. reported that the overall chromatin architecture and
TADs profiling were preserved in triple lamin-depleted mESCs while
only certain intra- and inter-TAD interactions were altered67. One
plausible explanation of this discrepancy is that unidentified factors
compensate lamins’ function in chromatin organization in mESCs but
are degraded upon senescence as the activation of nuclear
autophagy42,73,74.

Many hallmarks have beenproposed, including cellular senescence,
genome instability, epigenetic modification, intercellular communica-
tion alteration and mitochondria dysfunction38, and characterized as
biomarker of aging, however, the driving force underlying all these
hallmarks but not alone behind a specific aging model remains unclear.
In this study, we found alterations of lamina-chromatin interaction were
responsible for cell cycle related CDK18 and chromatin remodeler
HDAC4 (Supplementary Fig. 12a). The cross-analysis of the shortened
TADs and lamina-chromatin interaction identified 110 potentially dys-
regulated genes, including SETDB2 and PPARα (Fig. 7j). As the reduced
H3K9me3, a downstream target of SETDB2, is characterized as a driving
force for aging30 and was also observed in MAD-MSCs even at early
passages (Fig. 2g), the decreased SETDB2 resulted from a shortenedTAD
therefore provides a new mechanistic explanation for the loss of het-
erochromatin and accelerated senescence in MAD-MSCs. The identifi-
cation of reduced PPARα as reorganized TAD structure likely explains
the mitochondria damages in MAD-MSCs (Fig. 2f and Supplementary
Fig. 16d). In addition, alteration of chromatin loops revealed the dysre-
gulation of several aging-associated genes (i.e., epigenetic factor CBX7)
and development-associated genes, including TBX2, PDGFC andMYL12A

Fig. 4 | Reposition of non-LAD lamina-chromatin binding peaks modulates
aging-associated genes in MAD- MSCs. a Distribution of non-LADs lamina-chro-
matinbindingpeaks at specific genome loci inWTandMAD-MSCs. Eachvertical bar
represents one peak out of LADs. b Global non-LAD lamina-chromatin binding
peaks identified in WT and MAD-MSCs. The number of the peaks are indicated.
c Genome-wide co-occurrence of non-LAD lamina-chromatin binding peaks with
promoters using a one-sided permutation test. The vertical axis density represents
the frequency of co-occurrence of non-LAD binding peaks with promoters while

horizonal axis represents predicted co-occurrence number. The observed co-
occurrence number are indicated. dDifferentially expressed genes associated with
repositioned non-LADs lamina-chromatin binding peaks in MAD-MSCs Genes with
over 2-fold transcriptional changeswere counted.eCross-analysis of enrichment of
dysregulated genes due to reposition of non-LAD lamina-chromatin binding peaks
in MAD-MSCs with geroprotection/senescence-associated profile in different
hMSCs aging models. Color depth indicates the enrichment score.
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(Fig. 7d and Supplementary Fig. 17d) from another layer. Notably, the
dysregulation of epigenetics associated genes are identified in all levels
of disorganized chromatin hierarchy. Taken together, our integrated
omics analyzes systematically dissect the mechanisms underlying many
different aging hallmarks in MAD-MSCs from the conception of chro-
matin hierarchy change.

More importantly, our study also revealed abnormal activation of
multiple lineage specification genes in MAD-MSCs (Supplementary
Figs. 9a, 10a, 16d, 17d). Abnormal expression of neural associated PAX6
and SOX2 has been reported in laminopathy-based cardiomyocytes43

and a very recent study reported that the reactivation of placenta-
specific PSG4 in late passage ofMSCs derives accelerated senescence75.
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Although it remains uncertain whether the sporadic expression of
lineage-specific genes in MAD-MSCs influences senescence, it clearly
indicates a disordered state of transcription influenced by altered
chromatin architecture. Additionally, the activation of other lineage-
specific genes in MSCs suggests a reason for the reduced differentia-
tion potency observed in senescent MSCs, posing challenges to MSC-
based therapies76–79.

Our study suggests that a pathogenic LMNAmutationmay lead to
changes in the organization of chromatin at multi-levels. These chan-
ges could affect gene activity and contribute to the aging of stem cells
in laminopathy-based atypical progeria. While significant progress has
beenmade in understanding themolecular alterations associated with
the MAD mutation, it remains challenging to definitively distinguish
the direct primary effects from the indirect secondary consequences.

This work systematically investigates the multidimensional chro-
matin conformation alterations underlying accelerated stem cell aging
from atypical progeria MAD. Although we demonstrated the dis-
organized chromatin hierarchy plays a critical role in stem cells aging,
manipulation of specific chromatin structure, such as fusing the
separated TADs, has not been achieved to ameliorate aging. In addi-
tion, our study identified a number of genes potentially involved in
ageing processes, such as PCK2, TBX2. Further characterization of
these genes in aging both in vitro and in vivowould provide additional
evidence supporting our findings and strengthen our conclusion.

Methods
Primary cell isolation and culture
Skin tissueswere collected froma 3-year-oldmaleMADpatient, 5-year-
old male HGPS patient and a 26-year-old female healthy person with
the informed consent given by guardians and under the guidance of
ethical regulations in Dongguan Eighth People’s Hospital, Dongguan,
China. Skin tissues were sterilized and cut into small pieces before
transferred T25 flasks. Five milliliters of fibroblast culture media con-
taining DMEM/HG, 10% human umbilical cord blood serum, 1mM
GlutaMax, and 1% Penicillin/ Streptomycin, was then added for culture
and the expansion of spindle-like fibroblast cells was monitored daily.
Human iPSCs were reprogrammed from fibroblasts using minicircle
DNA vector as previously described36. Cells were maintained in a
humid incubator at 37 °C and 5% CO2 and tested negative for myco-
plasma infection based on PCR method by the Center for PanorOmic
Sciences, Li Ka Shing Faculty of Medicine. We have obtained informed
consent from all participants for the publication of information,
including clinical information, that may identify them.

Teratoma formation
Undifferentiated iPSCs (about 3 × 106) were harvested and resus-
pended in a 50% Matrigel solution, and then injected into the
abdominal cavity of female NSG (NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ)
mice, which were aged between 6–8 weeks. Teratomas were isolated
after 8–12 weeks, fixed in 4% PFA, dehydrated in 70% ethanol, and
embedded in paraffin. Sections were stained with hematoxylin and
eosin (H&E) for analysis of mesoderm, ectoderm, and endoderm dif-
ferentiation. The mice were housed in a 12 h light/12 h dark cycle at

~23 °C and 40% relative humidity. All mice experimental protocols
were approved by the Committee on the Use of Live Animals in
Teaching and Research (CULATR) of The University of Hong Kong.

Generation of NSCs, VSMCs and VECs from human iPSCs
NSCswerederived fromhuman iPSCs as discribed61. Briefly, iPSCswere
dissected to single cells and plated in a Matrigel-coated 6-well plate
overnight. The culture medium was switched to neural induction
medium (50% DMEM/F12, 50% Neurobasal, 1% N2 supplement, 2%
B27 supplement and 10 ng/ml of human LIF, 4μM CHIR99021, 3μM
SB431542) for one week. NSCs were then split at 1:4 with NSCs main-
tenancemedium (50%DMEM/F12, 50%Neurobasal, 1% N2 supplement,
2% B27 supplement, 2mMGlutaMAX and 10 ng/ml of human LIF, 3μM
CHIR99021, 1μM SB431542). NSCs were further characterized by
NESTIN, PAX6 and SOX2 after additional 5 passages and then sub-
jected to downstream assays. The VSMCs and VECs were generated
from iPSCs as previously described80. Cells were firstly induced to
mesoderm and then switched to VSMC induction medium (N2B27
basal medium plus 20 ng/ml PDGF-BB, 2 ng/ml Actvin A and 2μM
Heparin) or VECs induction medium (N2B27 basal medium plus
200ng/ml VEGF-A and 2μM Forskolin) for another 7–10 days. Gener-
ated VSMCswere further cultured in LG-DMEMmedium containing 5%
FBS, 1 ng/ml TGFβ1, 5 ng/ml PDGF-BB, 5 ng/ml bFGF and 5 ng/ml EGF.
VECs were purified by sorting of double positive CD31+ /CD144+

population. The sorted cells were cultured on fibronectin coated plate
in VECs maintaining medium (F12K basal medium, 20 ng/ml VEGF-A,
20 ng/ml IGF, 5 ng/ml bFGF, 5 ng/ml EGF, 2μM Heparin and 1X ITS).
iPSCs differentiated NSCs, VSMCs and VECs were also characterized
using flow cytometry with corresponding antibodies (NESTIN and
SOX2 for NSCs, αSMA for VSMCs and CD31 for VECs).

MSCs derived from human iPSCs and related assays
MSCswere differentiated as previously described36. Briefly, iPSCs were
firstly induced to neural ectoderm in medium (50% Neurobasal,
50% DMEM/F12 medium, 1% N2 and 2% B27 and 3–6μM CHIR-99021
and 10μM SB-431542) for 7 days and switched to MSCs medium
(alpha- MEM basal medium, 10% FBS, 1X Glutamax solution, 5 ng/ml
bFGF, 5 ng/ml EGF and 1X Penicillin-Streptomycin) for another 7 days.
Split the cell at low ratio, such as 1:2–1:3 at early passages with
TrypLE Express. MSCs surface markers were characterized using
fluorescent antibodies (antibodies from BD 562245 and Biolegend) at
passage 5. For adipocyte differentiation, cells at passage 5 growing to
90–100% confluency were washed with 1X PBS for three times before
switched to adipocyte induction medium, consisting of HG-DMEM
basal medium supplemented with 10% FBS, 0.5mM 3-isobutyl-1-
methylxanthine (IBMX), 100 µM Indomethacin, 1 µM Dexamethasone,
10 µg/ml Insulin and 1X Penicillin-Streptomycin solution, with medium
change every 3 days. After 21 days of induction, cells were fixed in
4% paraformaldehyde and stained with Oil Red O solution. For
osteoblast differentiation, cells at passage 5 growing to 90–100%
confluency were washed with 1X PBS for three times before switched
to osteoblast induction medium, consisting of HG-DMEM basal
medium supplemented with 10% FBS, 50μg/ml L-Ascorbic acid, 0.1 µM

Fig. 5 | Lamina-chromatin interaction coordinates with chromatin features to
regulate gene expression. a Representative distribution of different chromatin
features in lamina-chromatin binding sites. b Overall view of ATAC peaks redis-
tribution in MAD-MSCs. c Averaged chromatin accessibility in promoter regions
with different A and B-LADs reorganization. d Averaged chromatin accessibility in
the promoter region with different non-LAD lamina-chromatin binding peaks.
e Overall view of H3K27ac peaks redistribution in MAD-MSCs. f Averaged H3K27ac
peaks in promoter regions with different A and B-LADs reorganization. All p-values
were determinedusing the two-sidedWilcoxon rank-sum test.gAveragedH3K27ac
peaks inpromoter regionswith different non-LAD lamina-chromatinbindingpeaks.
Allp-valuesweredeterminedusing the two-sidedWilcoxon rank-sum test.hOverall

view of H3K27me3 redistribution inMAD-MSCs. iAveragedH3K27me3 peaks in the
promoter regions with different A and B-LADs reorganization. All p-values were
determined using the two-sided Wilcoxon rank-sum test. j Averaged H3K27me3
peaks inpromoter regionswith different non-LAD lamina-chromatinbindingpeaks.
Allp-valuesweredeterminedusing the two-sidedWilcoxon rank-sum test.kOverall
view of H3K9me3 redistribution in MAD-MSCs. l Averaged H3K9me3 peaks in
promoter regions with different A and B-LADs reorganization. All p-values were
determined using the two-sided Wilcoxon rank-sum test. m Averaged H3K9me3
peaks inpromoter regionswith different non-LAD lamina-chromatinbindingpeaks.
All p-values were determined using the two-sided Wilcoxon rank-sum test.
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Dexamethasone, 10mM β-glycerophosphate, 1mM Sodium pyruvate
and 1X Penicillin-Streptomycin solution, with medium change every
3 days. After 21 days of induction, cells were fixed in 4% paraf-
ormaldehyde and stained with Alizarin Red S solution. For chon-
drocyte differentiation, cells at passage 5 growing to 90–100%

confluencywerewashedwith 1XPBS for three timesbefore switched to
chondrocyte induction medium, consisting of LG-DMEM basal med-
ium supplemented with 10% FBS, 50μg/ml L-Ascorbic acid, 0.1 µM
Dexamethasone, 10 ng/ml TGFβ3, 1mM Sodium pyruvate, 1X Insulin-
Transferrin-Selenium solution and 1X Penicillin-Streptomycin solution,
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with medium change every 3 days. After 21 days of induction, cells
were fixed in 4% paraformaldehyde and stained with Alcian blue
solution.

Senescence β-Galactosidase Staining
SA-b-gal staining was performed using the commercial kit (Beyotime
Biotechnology) according to instruction manual. In brief, cells were
fixed in fixative at RT for 5min. After fixation, cells were stained with
freshly prepared staining solution at 37°C overnight. Images were
taken and the percentage of senescent cells were analyzed by ImageJ
for quantitative analysis.

Immunostaining
The cells were blocked with blocking buffer (PBST containing 5% FBS
and 5% BSA) for 1 hour after fix with 4% polyformaldehyde and per-
meabilization before incubated with primary antibodies at 4 °C
overnight. After washing with PBST, the cells were incubated in sec-
ondary fluorescent antibodies for 1 hour and counterstained with
DAPI (Life Technology). Images were acquired with the confocal
microscope with z-stacks (Carl Zeiss LSM800) and were processed
using ZEN Blue software with maximum projections. All antibodies
source and working concentration can be found in the Supplemen-
tary Data 2.

Reverse-transcription PCR and quantitative PCR
RNA was extracted from culture cells by Trizol (Sigma) and 1μg RNA
was used for cDNA synthesis. For reverse PCR, cDNAs were diluted to
200-fold as template and high-fidelity DNA polymerase was used. For
qPCR, SYBR Green PCR Kit (Applied Biosystems) was used with cDNAs
diluted 50-fold as template and PCR was carried out at standard
thermal cycling conditions (95 °C for 20 s; 40 cycles 95 °C for 20 s;
60°C for 30 s. Formelting curve, 95 °C for 15 s; 60°C for 1minute; 95 °C
for 15 s), three different repeats were performed and ΔΔCT values were
calculated for statistical analysis. The detailed information of primer
sequences is list in Supplementary Data 1.

ATAC-Seq
ATAC-seq assay was performed with 5 × 104 beginning humanMSCs as
previously described81. HumanMSCswere lysedwithHypotonic Buffer
(10mM Tris-Cl pH 7.4, 10mM NaCl, 3mM MgCl2, 0.1% v/v NP-40) on
ice for 10mins and pelleted by centrifugation at 1000g for 5min.
Transposition reactions were prepared by re-suspending nucleus with
38μl ddH2O, 10μl TAPS-MgCl2-DMF buffer and 2μl assembled Tn5
transposome (5μM, homemade), followed by incubation at 37 °C for
30mins. The tagmentated genome DNA purified by DNA purification
Kit was eluted with 20μl TE buffer. ATAC-seq library was set up with
25μl of NEBNext Ultra II Q5 master mix, 4μl of 5mM i5-index and i7-
index primer mixture, 5μl of purified DNA and 16μl ddH2O. PCR
reaction was carried out at 72 °C for 5min firstly, 98 °C 30 s for dena-
turation, followed by 11 cycles of 98 °C for 10 s, 63 °C for 30 s and 72 °C
for 30 s, and additional 72 °C 5min for elongation. The ATAC-seq

librarieswere pooled together andpurifiedwith 1.2 x AMPureXPbeads
before next generation sequencing with paired-end 150-bp reads on
NovaSeq 6000 Sequencing System (Novogene Co., Ltd.).

Chromatin immunoprecipitation (ChIP) and ChIP-seq library
preparation
Briefly, about 5 106MSCs were collected, fixedwith 1% formaldehydes,
quenched with glycine, washed twice with PBS and transferred to
−80 °C after snap-frozen. Cells were suspended in 1mL hypotonic
buffer to isolate nucleus, and subsequently lysed with 200μl nuclei
lysis buffer (1% SDS, 10mM EDTA, 50mM Tris-HCl pH 8.0, EDTA-free
protease inhibitor cocktails, 1mMPSMF and 10mM sodium pyruvate).
The lysates were further sonicated with Diagenode Bioruptor Pico
(HKU, Imaging & Flow Cytometry Core facility) for 15–20 cycles to
generate chromatin fragments ranging from 200–1000 bp. The chro-
matin supernatants were further diluted with 800μl ChIP dilution
buffer (0.1% SDS, 1% Triton X-100, 2mMEDTA, 20mMTris-HCl pH 8.0,
200mMNaCl) and incubatedwith 5μg antibody at 4 °C overnight. The
chromatin-antibody mixture was then incubated with 30μl blocked
protein A or protein G magnetic Dynabeads (Thermofisher) for 3 h.
Afterwards, the immunoprecipitated chromatinwaswashedwith three
times low salt washing buffer (0.1% SDS,1% Triton X-100, 2mM EDTA,
20mM Tris-HCl pH 8.0,150mM NaCl), three times high salt washing
buffer (0.1% SDS,1% Triton X-100, 2mMEDTA, 20mMTris-HCl pH 8.0,
500mM NaCl) and once LiCl wash buffer (0.25M LiCl, 1% NP-40, 1%
Sodium Deoxycholate,1mM EDTA, 10mM Tris-HCl pH 8.0) sequen-
tially before subjected to proteinase K digestion. The ChIP DNAs were
extracted by phenol-chloroform-isoamyl alcohol method and quanti-
fied by qubit fluorometer (Thermofisher). ChIP libraries were prepared
byNEBNext®ΜltraTMDNALibrary PrepKit using Illumina® (NEB E7370)
following the instructionmanual. The deep sequencingwasperformed
with paired-end 150-bp reads on the NovaSeq 6000 Sequencing Sys-
tem (Novogene Co., Ltd.).

Bridge linker based Hi-C (BAT-Hi-C)
BAT-Hi-C was performed according to a previously published
protocol82. Cells (5 × 106 – 1 × 107) were prepared as above mentioned
and lysed in 500μl of lysis buffer ((0.1%SDS, 50mM HEPES-KOH,
pH7.5; 150mM NaCl; 1mM EDTA; 1% Triton X-100; 0.1% Sodium
Deoxycholate) containing protease inhibitors, and incubatedon ice for
20min. Cells were washed twice in lysis buffer and incubated in 50μl
of 0.5% SDS at 62 °C for 10min. The SDS was quenched with 25μl of
10%Triton-X and 145μl H2Oat 37 °C for 15min. NEBBuffer 2 and 100U
of AluI (NEB) were added and the chromatin was digested at 37 °C
overnight with gentle rotation. Nuclei were collected after AluI inac-
tivation. Resuspended in 400μl of Klenow (3’−5’exo-) solution (40μl
NEBBuffer 2, 8μl 10mMdATP, 40μl 10%TritonX-100, 304μl H2O, and
8μl Klenow (3’−5’exo-)) and incubated at 37 °C for 1 h. Washed nuclei
twicewith 1× T4DNA ligase buffer followedby resuspending in 1200μl
of proximity ligation solution (120μl T4 DNA ligase buffer, 120μl 10%
TritonX-100, 939μl H2O, 6μl T4 DNA ligase, 12μl 10mg/ml BSA, 3μl

Fig. 6 |MADmutation associateswith loss of chromatin compartmentalization
and increase in TADs. a Normalized heatmap of specific region (q arm of chro-
mosome 1) inWTandMAD-MSCs. Thecolormaps of relative interactionprobability
in WT-MSCs and MAD-MSCs were displayed on the same scale. The A and B com-
partments were defined by PC1 signal (positive PC1 regions in red color represent A
compartments, negative PC1 regions in blue color represent B compartments).
b Statistical analysis of compartment interaction between compartment A and
compartment B in WT-MSCs and MAD-MSCs according to Saddle plot analysis.
c Analysis of the lamina-compartment interactions. d Boxplot showing length of
WT TADs (n = 3823) andMAD TADs (n = 4001), with 2 biological replicates for Hi-C.
Box plots display themedian as the center line, the 25th and 75th percentiles as the
bounds of the box, and the whiskers represent the minimum andmaximum values
within 1.5 times the interquartile range from the lower and upper quartiles. All p-

valueswere determined using the two-sidedWilcoxon rank-sum test. eOverall view
of TAD number in WT-MSCs and MAD-MSCs. f Category of differential TADs
number presented in MAD-MSCs, including stable, shortened, shifted without
change in length, and enlarged. g Overall view of CTCF redistribution in MAD-
MSCs.hThedistributionofCTCF across lamin-chromatin interaction sites. iOverall
view of altered chromatin features, including CTCF binding, ATAC, H3K27ac,
H3K27me3, H3K9me3, and gene expression in TADs. All p-values were determined
using the two-sided Wilcoxon rank-sum test. j Integrative analysis of TAD dis-
organization and chromatin features in genomic region covering a dysregulated
aging-associated gene, SETDB2, in MAD-MSCs. k Cross-analysis of the enrichment
of dysregulated genes resulted from shortened TADs in MAD-MSCs with ger-
oprotection/senescence-associated profile in hMSCs aging models. Color depth
indicates enrichment score.
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Bridge linker (200 ng/μl)) and rotating at ~22°C for 4 h. Centrifuged at
3500 g for 5min at 4 °C to remove the supernatant, and then added
70μl lambda exonuclease buffer, 4μl lambda exonuclease (NEB), 6μl
exonuclease I (NEB), 618μl H2O, rotated at 37 °C for 1 h. For reverse

crosslinking, chromatin was resuspendedwith 1370μl digestion buffer
(10mM Tris-HCl, pH 8, 25mM EDTA, 1% SDS, 1mg/ml proteinase K),
incubated at 55 °C for 1 h. Then, 130μl 5M NaCl was added and incu-
bated at 68 °C overnight with shaking. DNA was purified by phenol
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Fig. 7 | Altered chromatin E-P loops in MAD-MSCs are implicated in stem
cell aging. a Statistical analysis of global changes in chromatin loop and enhancer-
promoter loop. b The transcription changes of altered E-P loops in MAD-MSCs. All
p-values were determined using the two-sided Wilcoxon rank-sum test. c Cross-
analysis of the enrichment of dysregulated genes resulted from E-P loop alteration
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hMSCs aging models. Color depth indicates enrichment score. d Representative
transcriptional dysregulation corresponds with strengthened and weakened E-P
loops, respectively.
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chloroform extraction and ethanol precipitation, followed by
sonication usingCovaris Focused-ultra-sonicator to 200–1000bp. The
biotinylated DNA fragments were further enriched using 30μl of
10mg/ml DynabeadsMyOne Streptavidin T1 beads. Hi-C libraries were
prepared using NEBNext® ΜltraTM DNA Library Prep Kit and amplified
with 10–12 PCR cycles. The final products were size-selected with
AMPure XP beads and sequenced with paired-end 150-bp reads on the
NovaSeq 6000 Sequencing System (Novogene Co., Ltd.).

Quality control of sequencing reads
All the Illumina sequencing reads used in the study were firstly quality
controlled by Trim Galore (version 0.6.7, https://github.com/
FelixKrueger/TrimGalore). In details, we removed the bases with
quality below 20 and the adapter sequences from the 3’ end and fil-
tered the reads with length less than 50nt.

RNA-seq analysis
For read alignment and expression quantification, we first removed
low quality reads, and trimmed the adapter sequencewith TrimGalore
(version 0.6.7, https://github.com/FelixKrueger/TrimGalore). Then we
mapped the remaining pair-end reads to the reference genome hg19
using STAR83 with ENCODE option bundles. Using HTSeq-count84, we
counted the uniquely mapped reads, and normalized the read count
by trimmed mean of M values (TMM), and transformed to reads per
kilobases per million reads (RPKM) by edgeR85. With an expression
cutoff of RPKM ≥ 1 in at least one sample group, we removed low
abundant genes, and detected the differentially expressed genes using
edgeR. Genes were considered differentially expressed when the
overall false discovery rate (FDR) < 0.05 and fold change is above 2.0.

Gene ontology (GO) analysis
Gene symbols were first converted to EntrzID with R package
BiomaRt86 (version 2.42.0). ‘ensembl’ was used as biomart database,
and ‘mmusculus_gene_ensembl’ was used as dataset. EntrzID of inter-
est genes was uploaded to DAVID 6.887 (https://david.ncifcrf.gov).

Comparison with published human MSCs aging models
The published transcriptome data of hMSCs aging models were
downloaded and re-processed from GEO GSE26093 (labeled as
“HGPS”, differentially expressed genes were calculated by comparing
HGPS-iPS-MSC toN-iPS-MSCwithdetectionp-valueof probe<0.05 and
absolute value of fold change > 2.0), GSE39540 (labeled as “Age-
Correlate”, differentially expressed genes were reported in Table 2 of
the reference paper)61, GSE35958 (differentially expressed genes
labeled as “NomalOld” were reported in Table S2 column 3 and “Nor-
malSenecent” were reported in Table S2 column 4 of the reference
paper)88, GSE39250 (labeled as “TERT_OE”, differentially expressed
genes were from Table S1 of the reference paper with q-value% <12 as
reported)89, GSE48662 (labeled as “Irradiation”, differentially expres-
sed genes were reported in Table S3 and Table S4 of the reference
paper)90, GSE52285 (labeled as “WRN_KO”, differentially expressed
genes were reported in Table S2 Sheet 3 and 4 of the reference
paper)30, GSE64642 (labeled as “SIRT6_KO”, differentially expressed
genes were reported in Table S2 of the reference paper)91, GSE84694
(labeled as “NRF2_mut”, differentially expressed genes were calculated
by comparing AG_MSC_LP to WT_MSC_LP with FPKM ≥ 1 of both
replicates in at least one sample group and absolute value of log2 fold
change >0.58)92, GSE102004 (labeled as “ATF6_KO”, differentially
expressed genes were reported in Table S3 of the reference paper)93,
GSE122654 (labeled as “RAP1_KO”, differentially expressed genes were
calculated by HTSeq-count and edgeR as described in “RNA-seq ana-
lysis”partwith RPKM ≥ 1 of both replicates in at least one sample group
andabsolute valueof log2 fold change> 0.58)94, GSE117084 (labeled as
“CBX4_KO”, differentially expressed genes were reported in Table S1
Sheet 3 and 4 of the reference paper)95, GSE145019 (labeled as

“CLOCK_KO”, differentially expressed genes were reported in Table S4
of the reference paper)96, GSE116277 (labeled as “FOXO3_mut”, differ-
entially expressed genes were reported in Table S2 Sheet 7 and 8 of the
reference paper)97, GSE113117 (labeled as “DGCR8_mut”, differentially
expressed genes were calculated by HTSeq-count and edgeR as
described in “RNA-seq analysis” part with RPKM ≥ 1 of both replicates
in at least one sample group and absolute value of log2 fold change
>0.58)98, GSE110268 (differentially expressed genes labeled as
“YAP_KO”were reported in S2 Data column 1–15 and “FOXD1_KO”were
reported in S5 Data of the reference paper)99, GSE146387 (labeled as
“ZKSCAN3_KO”, differentially expressed genes were reported in
Table S3 Sheet 1 and2of the referencepaper)100, GSE146247 (labeled as
“SIRT7_KO”, differentially expressed genes were reported in Supple-
mentary material 5 of the reference paper)101, GSA HRA000466
(labeled as “SIRT3_KO”, differentially expressedgeneswere reported in
Table S4 Sheet 2 of the reference paper)102, GEO GSE175733 (differen-
tially expressed genes labeled as “GAtreatHGPS” and “GAtreatWS”
were respectively calculated by HTSeq-count and edgeR as described
in “RNA-seq analysis” part with RPKM ≥ 1 of both replicates in at least
one samplegroup and absolute value of log2 fold change> 0.58, genes
with top 100 average RPKM in the three replicates of “DMSO_HGPS”
were labeled as “HGPS_DMSO” and genes with top 100 average RPKM
in the three replicates of “DMSO_WS” were labeled as “WS_DMSO”.
“GAtreat”means that the cells were treated by gallic acid (GA), which is
a natural phenolic compoundwith antioxidant, anti-inflammatory, and
antineoplastic properties)103 and GSE124197 (genes labeled as “Sene-
cenceDriver” were reported in Data file S1 Sheet 1 and differentially
expressed genes labeled as “WS” were reported in Data file S1 Sheet 3
of the reference paper)104.

As listed in Extended Data Fig. 5a, those human MSCs aging
models were classified into “Accelerated hMSCs” and “Alleviated
hMSCs” according to published cellular phenotypes. The up-regulated
genes in Accelerated hMSCs, down-regulated genes in Alleviated
hMSCs, top 100 genes in “HGPS_DMSO” and “WS_DMSO”, and “Sene-
senceDriver” were defined as “senescence-associated genes” in this
study, while the down-regulated genes in Accelerated hMSCs and up-
regulated genes in Alleviated hMSCs were defined as “geroprotection-
associated genes”. The relationship between those gene lists were
quantified by hypergeometric tests in Figs. 3j, 4g, 5e, and 7k. The
hypergeometric tests were performed by homemade Perl script which
call “phyer” function in R with the parameter “lower.tail = FALSE” and
adjusted the p-value by “p.adjust” function with “method = ‘fdr’”.
Clustering of the results of hypergeometric test was performed and
visualized by pheatmap using ward’s method (version 1.0.12, https://
cran.r-project.org/web/packages/pheatmap).

ChIP-seq and ATAC-seq analysis
Fastq files were trimmed adapters by TrimGalore (version 0.6.7, https://
github.com/FelixKrueger/TrimGalore) and aligned to hg19 reference
genome using Bowtie2 (version 2.2.5, http://bowtie-bio.sourceforge.net/
bowtie2/) with default parameters. Readswith amapq score less than 30
and PCR duplications were filtered out by using Samtools105 (version 1.9,
http://samtools.sourceforge.net). Reads aligned to the regions in
ENCODE blacklist (http://mitra.stanford.edu/kundaje/akundaje/release/
blacklists/) were discarded through bedtools106 (version 2.29.1, https://
bedtools.readthedocs.io/en/latest/). ATAC-seq data were processed
same as ChIP-seq data. Peaks were called with MACS2107 (version
2.1.2, parameters: ‘-q 0.05 -m 5 50’ for ATAC-seq, H3K27ac and CTCF, ‘-q
0.05 -m 5 50 --broad’ for H3K27me3, H3K9me3, Lamin A/C and Lamin
B1) using input as control.

LAD and non-LAD lamina-chromatin binding peaks analysis
The replicates of Lamin A/C and Lamin B1 ChIP and input BAM files
were combined and down-sampled to 16M read counts prior to LAD
calling using Samtools105 (version 1.9, http://samtools.sourceforge.
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net). LADswerecalled using EnrichedDomainDetector47 (EDD, version
1.1.19, http://github.com/CollasLab/edd, parameters: ‘max_CI_value =
0.25, required_fraction_of_informative_bins = 0.80, p_hat_CI_method =
agresti_coull, log_ratio_bin_size = 10’). The non-LAD lamin-chromatin
binding sites were Lamin peaks out of LADs, calculated by bedtools106

(intersectBed -v). In details, the calling of LADs or peaks were per-
formed on each replicate before calling the consensus LADs or peaks.
Lamin peaks were called with MACS2 with parameters detailed in
‘ChIP-seq and ATAC-seq analysis—Data processing’ section.

Enrichment analysis
Enrichment analysis of ChIPon different regions in Figs. 4c, 6c–f, h, i, k,
l, and 7j were performed by deepTools108 (version 3.1.1, https://
deeptools.readthedocs.io/en/develop/). In details, BAM files were
converted to bigwig files using “bamCoverage” function with normal-
ization method “RPKM” and compared to Input by “bigwigCompare”
function with default parameters. The signals in different regions were
calculated by “computeMatrix” functionwith parameters ‘-m 1 -b 0 -a 0
-bs 1 --averageTypeBins mean’ and visualized by R package ggplot2
(version 3.3.5, https://cran.r-project.org/web/packages/ggplot2/index.
html). All p-values were determined by R package ggpubr (version
0.4.0, https://cran.r-project.org/web/packages/ggpubr/index.html)
with Wilcoxon rank-sum test.

Differential analysis. Differential regions of LADs were computed by
“subtractBed” function of bedtools (version 2.29.1, https://bedtools.
readthedocs.io/en/latest/). Differential analysis of ChIP were per-
formed by R package DiffBind (version 3.2.5, https://bioconductor.
org/packages/release/bioc/html/DiffBind.html, parameters: ‘dba.-
count(summits = 250), dba.contrast(minMembers = 2) and dba.ana-
lysze() with default parameters’). Peaks were considered differential
when FDR < 0.05. RPKM of differential peaks were converted to
z-score and visualized by pheatmap (version 1.0.12, https://cran.r-
project.org/web/packages/pheatmap).

Permutation test of overlapped regions
Permutation test in Fig. 5c was performed by homemade Python3-
script. In details, numbers of lamin-peaks out of LADs overlappingwith
gene promoters (TSS ± 3 kb) were compared to a null distribution of
numbers consisting of 1000 draws of randomly shuffled Lamin-peaks
overlapping with gene promoters. The overlapping was performed by
bedtools and all p-value of permutation test were determined by R
function “pnorm”.

Peak density analysis
Density of differential CTCF peaks in different regions in Fig. 7h were
calculated by numbers of CTCF peaks within interested regions divi-
ded by total length of the regions and normalized to the ratio of this
value to the value of all CTCF peaks in the whole genome.

Hi-C analysis
Adapters were first trimmed by Trim Galore (version 0.6.7, https://
github.com/FelixKrueger/TrimGalore). Next, bridge linkers of
paired-end reads were trimmed with trimLinker program (part of
ChIA-PET2, version 0.9.3, https://github.com/GuipengLi/ChIA-PET2,
parameters: ‘-t 20 -m 1 -k 1’). Subsequently, the Hi-C paired-end reads
were aligned to the hg19 reference genome and paired using HiC-
Pro109 (version 2.11.1, parameters: ‘LIGATION_SITE = AGCT’ which
digested hg19 by AluI). The correlation of Hi-C matrices was ana-
lyzed by hicCorrelate (part of hicexplorer110, version 3.5.3, para-
meter: ‘--range 5000:200000, --method=pearson, --log1p’). The two
replicates were merged in the following analysis and visualization
(except for differential domain boundaries detection, details in ‘TAD
analysis’). Then the data was used to generate contact metrices and
corrected with ice_norm111 (part of HiC-Pro). For each chromosome,

the ICE normalized 10 kb, 40 kb and 100 kb resolution contact
matrices were used for further analysis. The 40 kb ICE normalized
contact metrices of each chromosome were used to analyze relative
contact probability (RCP) with GENOVA (version 0.9, https://github.
com/robinweide/GENOVA).

For compartmental analysis, the first eigenvector (PC1) values
were calculated from ICE normalized matrices (100 kb bin) at each
chromosome separately, with CscoreTool112 (version 1.1, parameters:
20 1000000). Next, each bin was assigned into A or B compartments
according to its PC1 values and average gene density across the whole
regions by homemade Perl script. The gene-rich compartments were
finally defined as A, and the gene-poor compartments as B. For com-
partment display, the absolute values of PC1 were kept, positive value
represents compartment A, whereas negative value represents com-
partment B. Finally, considering a TAD is always contained in one
compartment, the compartments were smoothed in TAD level. TADs
were assigned to either the A- or the B- compartments, by calculating
the average dominant eigenvector of each TAD. Compartment regions
were determined by combining adjacent bins with same type. The
100 kb resolution contactmatriceswere transformed into anobserved
over expected (O/E)matriceswith hicTransform110 (partof hicexplorer,
version 3.5.3, parameter: ‘--method obs_exp_lieberman’) before calcu-
lating average contacts. Quantification of average A-A, B-B, A-B con-
tacts and visualizationof saddle plots in Fig. 7bwere done by cooltools
compute-saddle (version 0.3.2, https://github.com/open2c/cooltools,
parameter: ‘-n 50 --qrange 0.005 0.995’) using 100 kb ICE normalized
O/Ematrices. Compartment strength was calculated by average A-A or
B-B contacts divided by average A-B contacts. The homotypic inter-
action saddle plots in Fig. 7c were also drawn by cooltools compute-
saddle, but with bins sorted based on their signal of Lamin bindings
rather than PC1 as previous reported113.TAD boundaries were detected
using 40 kb ICE-normalized matrices by TopDom54 (version 0.0.2,
http://zhoulab.usc.edu/TopDom, parameters ‘w= 5’), a continuous
quantitative method that has been proved to be robust to resolution
and sequence depth114. The differential TAD boundaries using diffHic115

(version 1.22.0, https://anaconda.org/bioconda/bioconductor-diffhic).
In details, the valid HiC interaction reads were converted to HD5 files
by eachnormalized replicate, andused to calculate theDirection Index
by “domainDirections” function settingwidth as 40k and spanas7. The
significant differences test with replicates were performed by
“glmQLFTest” function. Only the raw TopDom TAD boundaries with
FDR <0.05 were treated as reorganization, and their corresponding
TAD were classified as shortened, unchanged length and enlarged by
homemade Perl script. Chromatin loops of Hi-C were determined by
cLoops116 (v0.93, https://github.com/YaqiangCao/cLoops, parameters:
‘-eps 10000 -minPts 5 -hic’). The loops were considered significant
when the “significant” column (15th) of cLoops outputs equals 1. Dif-
ferential analysis of loops were performed by diffloop117 (v1.9.0,
https://github.com/aryeelab/diffloop, “quickAssoc”) and E-P loops
were selected by “keepEPloops” with the union set of WT and MAD
enhancers. Only the E-P loops with FDR <0.05 were considered as
altered loops. APA analysis was performed with 10 kb ICE normalized
matrices using GENOVA (version 0.9, https://github.com/robinweide/
GENOVA) with default parameters in Fig. 7a. Genomic browser view of
ChIP-seq, ATAC-seq, and RNA-seq tracks in Figs. 4a, 5a, 6a,and 7j were
plotted using IGV118 (version 2.4.10). Pearson correlation matrices in
Fig. 7a and contact matrices in Fig. 7j were visualized using Juicebox119

(version 1.11.08, https://www.aidenlab.org/juicebox). Figure 2a,
Extended Data Fig. 4a, d and, g contained modified images from Ser-
vier Medical Art (https://smart.servier.com) licenced by a Creative
Commons Attribution 4.0 Unported License.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The RNA-seq, ATAC-seq, Hi-C and ChIP-seq data generated in this
study have been deposited in the GEO database under accession code
GSE193694. The differential gene lists and all chromatin loops gener-
ated in this study are provided in the Supplementary Information. The
published transcriptome data of hMSCs aging models are listed in the
following: GSE26093 [https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc= GSE26093], GSE39540 [https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc= GSE39540], GSE35958, GSE39250, GSE48662,
GSE52285, GSE64642, GSE84694, GSE102004, GSE122654, GSE117084,
GSE145019, GSE116277, GSE113117, GSE110268, GSE146387, GSE146247,
GSA HRA000466 GSA HRA000466 [https://doi.org/10.1093/nar/
gkab161], GSE175733 and GSE124197. Source data are provided in
this paper.
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