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ABSTRACT: The analysis of data-independent acquisition (DIA) mass
spectrometry data is crucial for comprehensive proteomics studies.
However, traditional single-run methods often fall short in terms of
identification depth and consistency. We present HFDiscrim, a specialized
multirun DIA analysis tool aimed at enhancing the depth and consistency
of reliable peptide identifications of DIA analysis tools. HFDiscrim was
extensively benchmarked on multiple data sets, including the MCB data set,
the ccRCC data set, and a three-species benchmark mixture. Compared to
PyProphet, HFDiscrim identified 22.04% more precursors, 19.1% more
peptides, and 13.2% more proteins while maintaining a controllable false
discovery rate. Furthermore, HFDiscrim demonstrated higher identification rates and improved reproducibility across multiple runs.
HFDiscrim is publicly available at https://github.com/yachliu/HFDiscrim.

■ INTRODUCTION
Proteins are indispensable and versatile molecules, essential for
nearly every aspect of cellular function and biological
processes.1−3 Data-independent acquisition (DIA) is a widely
used technique for exploring the proteome landscape of
biological samples through liquid chromatography coupled
with tandem mass spectrometry (LC-MS/MS).4,5 Unlike data-
dependent acquisition (DDA), which selects specific pre-
cursors based on their higher intensities for fragmentation,
DIA captures all precursors within a predefined isolation range
for MS2 acquisition in an unbiased manner. However, the
computational processing of DIA data sets remains challenging
owing to their inherent complexity. One major difficulty arises
from the fact that, in DIA, each precursor generates not just
one spectrum, but a series of chromatograms corresponding to
various fragment ions produced by collision-induced dissoci-
ation.6 Furthermore, these chromatograms are frequently
highly multiplexed because of interferences from cofragment-
ing precursors.7,8

To meet those challenges in DIA studies, various tools have
been developed. Existing tools like OpenSWATH,9 MaxDIA,10

DIA-NN,11 and DreamDIA12 employ various strategies to
enhance the distinction of peptide signals from interference
signals. OpenSWATH utilizes a peptide-centric analysis
approach, comparing chromatographic peak signals against a
spectral library to derive multiple subscores for signal
characterization. Target peptides are then identified using the
PyProphet13 algorithm, which differentiates them from decoy
peptides based on the derived subscores. DIA-NN further
increases the number of subscores to 73 and uses a neural
network to distinguish between target and decoy peptides.
MaxDIA improves the signal-to-noise ratio of chromatographic

signals through iterative hyperparameter optimization. Dream-
DIA extracts additional features from hundreds of theoretical
elution profiles of different ions for each precursor using a deep
representation network. These methods significantly enhance
the depth of peptide identification in single samples. However,
due to sample complexity, instrument stability, and variations
in experimental conditions, there remains substantial room for
improving the consistency of identification across multiple
runs. At the multirun level, the TRIC14 algorithm performs
retention time alignment of fragment ion chromatograms using
a nonlinear warping function to ensure consistency and
complete identification by determining the correct chromato-
graphic peak in each MS run. DIAlignR15,16 provides another
strategy for retention time alignment of SWATH-MS data
based on the direct alignment of raw MS2 chromatograms
using a hybrid dynamic programming approach. Similarly, in
MaxDIA,10 the MBR feature enhances identification consis-
tency and data completeness across runs by utilizing prior
knowledge to set thresholds for retention time, m/z, and ion
intensity during cross-sample peptide matching. Although
these three methods enhance identification consistency and
completeness, they lack statistically supported quality control,
which would lead to unreliable identification results. CRISP17

focuses on quantitative accuracy by utilizing the consistency of
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DIA runs to examine DIA data across the entire run set,
filtering out interfering signals through a single-center
comparison strategy. mapDIA18 enhances the accuracy of
differential protein expression analysis in DIA-MS by
leveraging multirun information for fragment-level normal-
ization, filtering noisy fragments, and performing robust
statistical analysis with controlled false discovery rates.
Despite the advances in these tools, the potential of multirun

level information for peptide identification remains underutil-
ized. Therefore, we present HFDiscrim, a specialized multirun
DIA analysis tool aimed at enhancing the depth and
consistency of reliable peptide identifications of DIA analysis
tools. HFDiscrim begins by aligning the retention times of
multiple runs based on single-run results obtained from
OpenSWATH and PyProphet. It then compares multirun
chromatographic peak signals to derive subscores representing
the cross-run features of the chromatographic peaks. By
comparing with multiple reference chromatographic peaks
instead of a single reference chromatographic peak, HFDiscrim
avoids errors arising from insufficient single-run feature
characterization. Finally, it distinguishes peptide signals from
interference signals using a semisupervised model based on
both single-run and cross-run features. Benchmarking results
on laboratory and clinical samples demonstrated that
HFDiscrim outperformed PyProphet and other multirun
tools in the two-species library, providing more accurate
quantification in the LFQbench test.19 This highlights the
advantages of incorporating hybrid features across multiple
runs for reliable identification.

■ METHODS
HFDiscrim Workflow. The HFDiscrim workflow includes

four primary components (Figure 1): (1) obtaining single-run
discriminant scores, (2) aligning retention times across
multiple runs, (3) extracting cross-run features based on
reference peak group, and (4) discriminating results based on
hybrid subscores. Briefly, in HFDiscrim, we first utilize the
chromatographic signal extraction, peak detection, and single-
run scoring modules from OpenSWATH for single-run feature
extraction. Additionally, we use PyProphet to obtain
discriminant scores on single runs. Afterward, HFDiscrim
incorporates cross-run features into the single-run features to
form an expanded set of hybrid subscores, leading to peptide
identification and quantification results.
Obtained Single-Run Discriminant Score. The raw data

were initially converted to the mzML format20 using
MSConvert (Version: 3.0.23143-e597efd) with default param-
eters. DDA mass spectrometry data were processed using
MSFragger21 to generate a DDA-based spectral library, while
DIA mass spectrometry data were processed using MSFragger-
DIA22 to create a DIA-based spectral library. Furthermore, an
endogenous peptide list was randomly generated for retention
time calibration. OpenSWATH (version: 3.1.0-prenightly-
2024−02−03) was utilized with default parameters. In
PyProphet (version: 2.2.5), the context parameter was set to
’global’ for both the Peptide and Protein functions, with all
other settings maintained as default. The results output by
PyProphet included candidate peak groups and the corre-
sponding single-run discriminant scores (SRDSs).
Retention Time Alignment. Single-run identification

results from all samples were filtered with a false discovery
rate (FDR) of less than 1% to retain high-confidence peptides

Figure 1. HFDiscrim: identification of candidate peak group using hybrid features. (A) Following the analysis of DIA mass spectrometry data by
OpenSWATH and PyProphet, candidate peak group and their single-run subscores (SR subscores, SR-Subs) and single-run discriminant score
(SRDS) are obtained. To mitigate intersample variability, the retention times across different runs are aligned. Subsequently, cross-run subscores
are calculated based on the chromatographic peak signals from multiple samples. Finally, the identification results are discriminated based on the
hybrid features. (B) The chromatographic peak with the highest SRDS in each sample is selected as the reference peak group. All candidate peak
groups are then compared to the reference peak group to derive cross-run subscores (CR-Subs). (C) Hybrid features are composed of single-run
features and cross-run features. For instance, two types of hybrid subscores were created for peak 11. (D) These hybrid subscores are then
processed through a semisupervised model to yield a hybrid discriminant score (HDS). For peak 11, only the hybrid features corresponding to the
highest HDS were retained.
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for multirun retention time alignment. A peptide set
comprising peptides identified in all individual runs was
selected to align the retention times across multiple runs to a
normalized retention time. Previous studies have demonstrated
that retention times across different samples are not merely
linear transformations.23 Consequently, a nonlinear mapping
was applied between the sample retention times and the
normalized retention time to accurately align the data.
Cross-Run Subscores Extraction. The single-center

comparison strategy, frequently employed in multirun analyses,
compares chromatographic peak signals by selecting the
chromatographic peak signal with the highest single-run
discriminant score across all runs as the sole reference
chromatographic signal.14,15 It assumes that the single-run
discriminant score can adequately characterize the chromato-
graphic peak signal. However, this assumption may not hold in
complex samples, which often contain high variability and
multiple interfering substances.24 To address this, we extended
the single-center comparison strategy to consider peak signals
from multiple runs. This approach, which we referred to as
multiple-center strategy, assumes that the chromatographic
peak signal corresponding to the peptide is most prominent in
at least one run, corresponding to the highest single-run
discriminant score. Consequently, the chromatographic peak
with the highest single-run discriminant score in each run was
selected to form a reference peak group. All candidate
chromatographic peaks are then compared with those in
other runs within the reference peak group to obtain the
corresponding cross-run subscores (Figure 1B). For the
comparison of chromatographic peaks, only the peptide
precursor ion and the first six fragment ions are considered.
In total, 17 cross-run subscores are generated for subsequent
analysis, which are further categorized into five types as
follows:

1. The maximum Pearson correlation coefficient between
each chromatographic signal of the candidate chromato-
graphic peak and all chromatographic signals in the
reference chromatographic peak. Specifically, for each of
the 7 chromatographic signals in the candidate
chromatographic peak, we calculate the Pearson
correlation coefficients with the 7 chromatographic
signals in the reference chromatographic peak and select
the highest correlation coefficient as one subscore,
resulting in 7 subscores;

2. The average Pearson correlation coefficient between
each chromatographic signal of the candidate chromato-
graphic peak and all chromatographic signals in the
reference chromatographic peak. For each of the 7
chromatographic signals in the candidate chromato-
graphic peak, we calculate the Pearson correlation
coefficients with the 7 chromatographic signals in the
reference chromatographic peak and take the average of
these coefficients as one subscore, resulting in 7
subscores;

3. The cosine similarity between the vectors composed of
signal intensities of all chromatographic signals in the
candidate chromatographic peak and those in the
reference chromatographic peak (1 subscore);

4. The absolute value of the difference in normalized
retention times between the candidate chromatographic
peak and the reference chromatographic peak (1
subscore);

5. The single-run discriminant score of the reference
chromatographic peak (1 subscore).

Nonlinear Discriminative Based on Hybrid Subscores.
In HFDiscrim, a single chromatographic peak signal’s single-
run subscore and cross-run subscore would combine to form
multiple different hybrid subscores (Figure 1C). The initial
hybrid discriminant score (HS) for each precursor, computed
using a binary classifier that integrates a random hybrid
subscore, is then used to refine the selection of the best peaks
and the best hybrid features, with the procedure repeated
iteratively several times. The final discriminative model was
trained using a positive-unlabeled learning framework based on
labels provided by the spectral library to enhance identification
accuracy (Figure 1D). In this framework, decoy precursors
generated in silico were used as confirmed negative controls,
while target precursors were treated as the unlabeled class, as
they may also include negative precursors.
Publicly Available Data Sets. Six publicly available data

sets were used in this study to evaluate and compare
identification performance. The MCB data set,25 Prostate
data set26 and ccRCC data set27 were utilized to compare
identification depth and consistency. To obtain more accurate
and comprehensive experimental results, the spectral library
was regenerated using the FragPipe platform. The Arabidopsis-
DDA data set28 was used to generate an Arabidopsis spectral
library, which was then merged into a two-species library. The
HYE124 and HYE110 data sets,19 employed to evaluate
quantitative results, contain hybrid proteome samples with
tryptic peptides combined in specific ratios. In HYE124 data
set, sample A comprises 65% w/w human, 30% w/w yeast, and
5% w/w E. coli proteins, whereas sample B comprises 65% w/w
human, 15% w/w yeast, and 20% w/w E. coli proteins. In
HYE110 data set, sample A comprises 67% w/w human, 30%
w/w yeast, and 3% w/w E. coli proteins, whereas sample B
comprises 67% w/w human, 3% w/w yeast, and 30% w/w E.
coli proteins.
Results of Other DIA Tools for Comparison.

HFDiscrim was benchmarked against other tools based on
OpenSWATH outputs, including PyProphet,13 TRIC,14

DIAlignR,15,16 DIA-NN11 and HFDiscrim with a single-center
comparison strategy (HFDiscrim-SC). In TRIC (version:
0.11.0), the feature_alignment.py function was used with
method = LocalMST, realign_method = lowess_cython,
max_fdr_quality = −1 and mst:useRTCorrection set to
True. In DIAlignR (version: 2.12.0), consistent with
PyProphet, the context parameter was set to “global”, with
all other settings maintained as default. In DIA-NN (version:
1.8.1), the Mass accuracy was set “0.0”, with all other settings
maintained as default. Notably, PyProphet, TRIC, HFDiscrim-
SC, and HFDiscrim were all based on single-run features
within the OpenSWATH framework, whereas DIA-NN, an
independent pipeline for processing DIA mass spectrometry
data, was the most widely adopted tool for DIA data analysis.
The FDR was estimated with the “internal” target-decoy
method and with the “external” method using mixing
Arabidopsis and target (human or mouse) samples for
generating the library and using only target sample in the
DIA runs.

■ RESULTS AND DISCUSSION
FDR Comparison for Tool Selection. DIA mass

spectrometry data analysis tools commonly use self-generated
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“internal” decoy to estimate the false discovery rate (FDR) of
analysis results. However, this estimated FDR may be bias as
the discriminant models are also trained based same set of
decoys, which can lead to overfitting and underestimate the
FDR. Therefore, we follow MaxDIA10 to report the FDR of
different tools based on “external” method using Arabidopsis
and human/mouse samples for generating the library and using
only human/mouse sample in the DIA runs.
We obtained output results from different tools on the

MCB, ccRCC, and Prostate data sets with an internal FDR of
less than 0.01 estimated by the target-decoy method. We then
compared the external FDR among these results (Figure 2).

HFDiscrim, HFDiscrim-SC, and TRIC consistently exhibit
external FDRs that are lower than or close to their internal
FDRs, indicating robust and reliable performance. Although
PyProphet’s external FDR (0.0122) for the Prostate data set is
slightly higher than the internal FDR (0.01), the average
external FDR across the three data sets is lower than the
corresponding average internal FDR. This indicates that while
PyProphet’s internal FDR estimates are sensitive to the data
set, they still approximate the true FDR level. In contrast,
DIAlignR demonstrates significantly higher external FDRs
compared to internal FDRs across all three data sets. This
substantial discrepancy highlights a critical issue in its
performance, suggesting that DIAlignR greatly underestimates
the proportion of false positives. As a result, DIAlignR’s results
are unreliable and hence are not included in the subsequent
analyses.
Improvement in Identification Coverage with HFDis-

crim. We utilized the MCB data set to evaluate the
identification performance of HFDiscrim, which incorporates
hybrid subscores based on both single-run and cross-run
features, with PyProphet, TRIC, DIA-NN, and HFDiscrim-SC.
The spectral library was created using results from analyzing
DDA data with MSFragger. Peptide precursors from
Arabidopsis thaliana proteins, not present in the MCB data
set, were included to generate a two-species spectral library for

comparison. The ratio of peptide precursors from mouse to
Arabidopsis thaliana in the library was 10:1.
Figure 3A shows that among all tools, PyProphet, which

relies solely on single-run features, identified the fewest mouse
precursors across various external FDR thresholds. Specifically,
at an external FDR of 0.01, PyProphet identified a total of
645,791 mouse precursors across 10 mouse samples. TRIC,
utilizing fragment-ion data for cross-run alignment, identified
5.5% more precursors than PyProphet. HFDiscrim and
HFDiscrim-SC, which align chromatographic peak signals
using single-sample discriminant scores to derive hybrid
features, identified 788,154 and 750,321 mouse precursors,
respectively, at an external FDR of 0.01. Compared to
HFDiscrim-SC, HFDiscrim exhibits a stronger capacity to
differentiate between true peptide chromatographic signals and
interference signals, approaching the performance of DIA-NN.
Additionally, HFDiscrim identified the highest number of

peptides and proteins from 10 mouse samples, with 559,137
peptides and 61,078 proteins at an external FDR of 0.01,
representing increases of 19.1% and 13.2%, respectively,
compared to the 469,932 peptides and 53,971 proteins
identified by PyProphet (Figure 3B and 3C). The multicenter
cross-run chromatographic peak comparison strategy em-
ployed by HFDiscrim can identify a greater number of
analytes compared to the single-center strategy. The single-
center strategy may erroneously use background signals as the
reference chromatographic peak, leading to the propagation of
incorrect peaks. In contrast, the multicenter comparison
strategy includes multiple reference spectrum peaks, increasing
the likelihood of capturing the true peptide signal and
significantly reducing the occurrence of error propagation.
Based on these results, we further investigated whether this

reliable identification boost remains consistent when the
spectral library is generated from DIA samples. A DIA-based
spectral library was generated by processing DIA samples using
the MSFragger-DIA and FragPipe analysis platforms. Using
this library with the same DIA data set as shown in Figure S1,
we observed the same improvement in identification across
external FDRs as before (Figure 3A−C). This demonstrates
that HFDiscrim does not require spectral libraries to be
generated in a specific manner to maintain identification
improvement. The observed improvement with HFDiscrim
can be attributed to its ability to integrate both single-run and
cross-run features, providing a more robust identification
framework.
To further validate the reliability of FDR estimation by these

tools on the MCB data set, we compared the relationship
between external FDR and internal FDR across a broad range
of external FDR values (Figure 3D). Within the external FDR
range of 0 to 0.1, the internal FDR of HFDiscrim and DIA-NN
consistently remained lower than the external FDR, indicating
a conservative discriminant model. HFDiscrim-SC and TRIC
exhibited slightly lower internal FDRs than external FDRs
when the external FDR exceeded 0.05, with overall external
FDR closely matching internal FDR. As the FDR increased, the
PyProphet discriminant model demonstrated a higher risk of
overfitting. This demonstrates that utilizing multisample
features not only enhances the depth of peptide identification
but also reduces the false positive rate.
To understand the effect of sample size on the performance

of HFDiscrim, we analyzed the number of precursors, peptides,
and proteins identified across different sample sizes. We used
one of the samples f rom the MCB data sets ,

Figure 2. Comparison of external and internal false discovery rates
(FDR) across tools and data sets. External false discovery rates (FDR)
corresponding to an internal FDR of 0.01 for different data sets
(MCB, ccRCC, and Prostate) using various tools (HFDiscrim,
HFDiscrim-SC, TRIC, PyProphet, and DIAlignR). The dashed line
indicates an external FDR threshold of 0.01.
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B G S _D _D 1 8 0 4 2 0 _ S 4 1 6 - n e w P r e p - D I A - D - S 1−
1_MHRM_R01_T0, and evaluated the results at an external
FDR of 0.01. Figure S2 illustrates the relationship between
sample size and the number of identified mouse precursors,
peptides, and proteins. As the sample size increases, so does
the number of identified precursors, peptides, and proteins.
This trend indicates that larger sample sizes enhance the
detection capabilities of HFDiscrim, leading to more
comprehensive identification. These findings highlight the
importance of considering sample size in proteomic analyses
using HFDiscrim. Larger sample sizes improve the overall
performance of the analysis by enabling more thorough
detection of precursors, peptides, and proteins. This under-
scores the need to account for sample size in experimental
design to achieve more robust and reliable proteomic data. The
ability of HFDiscrim to scale with sample size and effectively
leverage additional data to enhance identification rates makes it
a powerful tool for large-scale proteomics studies.
HFDiscrim Produces Reliable Identification Improve-

ments. To evaluate the reliability of the identification
improvements provided by HFDiscrim, we compared its
identification consistency with that of other tools. We
considered precursors, peptides, and proteins identified at a
1% precursor FDR using the external method across all 10 runs
on the MCB data set. The results indicate that compared to
TRIC, HFDiscrim-SC, and HFDiscrim, which use hybrid
features, PyProphet, which relies solely on single-run features,
identified the fewest precursors, peptides, and proteins across
the ten mouse samples.
Notably, the number of precursors, peptides, and proteins

identified by HFDiscrim across all 10 runs is significantly
higher than those identified by PyProphet, with increases of
52.0%, 44.1%, and 24.8%, respectively (Figure 4A−C). This

observation is consistent with the results from the previous
section (Figure 3A−C). Additionally, the number of
precursors, peptides, and proteins identified by PyProphet
but not by HFDiscrim is negligible. This can be attributed to
HFDiscrim and PyProphet sharing the same chromatographic
peaks and single-run features, with HFDiscrim incorporating
additional cross-run features. This demonstrates that the cross-
run features in HFDiscrim substantially enhance identification
capability without losing any target analytes already identified
by the single-run method.
Furthermore, we evaluated the intensity distributions of the

identified precursors to further validate the reliability of
HFDiscrim’s identifications. Figure 4D shows the logarithmic
intensity distributions of the mouse precursors identified at 1%
precursor FDR using the external method. The distributions
were z-normalized by subtracting the mean intensity and then
dividing by the standard deviation to make them comparable.
The similar distributions between HFDiscrim and PyProphet
indicate that HFDiscrim’s peptide identification is unbiased
with respect to signal intensity.
In addition, we examined the natural logarithm (ln)

intensities of the precursors uniquely identified by HFDiscrim
compared with PyProphet across all 10 biologically independ-
ent runs on the MCB data set. The Gaussian-like logarithmic
intensity distribution (Figure 4E) of the identified precursors
indicates that HFDiscrim has no abundance bias for peptide
identification. This further underscores the advantage of
incorporating cross-run features in HFDiscrim, enhancing its
identification performance and reliability.
Benchmarking HFDiscrim on Clinical Samples. Clin-

ical samples were collected from patients with diverse genetic
backgrounds, disease conditions, and lifestyle habits, resulting
in significant heterogeneity among the samples. To evaluate

Figure 3. Identification performance on all 10 samples of the MCB data set (DDA-based spectral library). (A) The number of mouse precursors
identified across all 10 samples of the MCB data set at different external FDRs was plotted. (B) Same as in (A) but reports the number of mouse
peptides. (C) Same as in (A) but reports the number of mouse proteins. (D) False-discovery rate validation: Internal FDR values were plotted
against external FDR values.
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the reproducibility of HFDiscrim results, 20 samples from clear
cell renal cell carcinoma (ccRCC) patients aged 30 to 90 years
were selected for analysis. FragPipe software and eight Data-
Dependent Acquisition (DDA) files, derived from fractionated
peptide samples (eight fractions from a pooled confirmatory
ccRCC sample), were used to construct a spectral library. This
spectral library comprised 7,380 proteins and 66,265 peptides,
retaining only the six most intense fragment ions for each
precursor ion. Additionally, Arabidopsis thaliana-specific
precursor ions were included to ensure equitable comparison
across different workflows, maintaining a 10:1 ratio of human
precursor ions to Arabidopsis thaliana precursor ions.
Our results indicate that although PyProphet identifies more

precursors, the precursors identified by HFDiscrim are highly
consistent across samples. Using the external method with a
1% precursor FDR, HFDiscrim identified 60,709 unique
peptide precursors from 20 samples, whereas PyProphet
identified 78,550. HFDiscrim consistently identified more

peptide precursors across varying numbers of samples.
Specifically, HFDiscrim identified 55,983 peptide precursors
in at least half of the samples, compared to 41,921 identified by
PyProphet, representing a 25.2% reduction. At the extreme,
HFDiscrim identified 33,851 peptide precursors in all 20
samples, whereas PyProphet identified only 11,266 (Figure
5A). Relative quantities were also compared under different
conditions. HFDiscrim identified 92.2% of its total peptide
precursors in at least half of the samples and 55.8% in all
samples. In contrast, PyProphet identified significantly lower
proportions under the same conditions, at 65.0% and 17.5%,
respectively (Figure 5B). Regardless of the sample count,
TRIC, which uses fragment ion-based multirun alignment,
identified fewer human precursors than PyProphet. Addition-
ally, HFDiscrim-SC identified fewer human precursors than
PyProphet when the sample count exceeded 15. This suggests
that improper use of multirun features would hinder the
separation of peptide chromatographic signals from interfer-

Figure 4. Evaluation of reliable identification results of HFDiscrim on the MCB data set. (A−C) Identification consistency of mouse precursors,
peptides, and proteins at 1% precursor FDR using the external method. Only precursors identified in all 10 runs on the MCB data set were
considered. (D) Logarithmic intensity distributions of the mouse precursors identified at 1% precursor FDR using the external method. All
precursor identification records in all 10 runs were considered. Logarithmic intensities were z-normalized by subtracting the mean intensity and
then dividing by the standard deviation to make the distributions comparable. (E) Natural logarithm (ln) intensities of the precursors uniquely
identified by HFDiscrim but not by PyProphet, in all 10 biologically independent runs on the MCB data sets.
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ence signals, underscoring the advantage of HFDiscrim’s
multicenter comparison strategy in analyzing multiple runs.
We employed a Prostate data set composed of multiple runs

with varying background proteins for further testing (Figure
5C,D). The 15 samples included 50% prostate cancer tissue,
with the remaining 50% comprising ovarian cancer tissue and
yeast cell lysate in varying proportions, ranging from 1:0 to 0:1.
Compared to PyProphet, HFDiscrim consistently showed
significant improvement in identifying consistent proteins. In
contrast to the results on the ccRCC data set, TRIC and
HFDiscrim-SC outperformed PyProphet, suggesting that the
robustness of TRIC and HFDiscrim-SC is inferior to that of
HFDiscrim.
HFDiscrim, using OpenSWATH results, not only exhibited

peptide identification performance comparable to that of DIA-
NN, but also demonstrated significantly superior consistency
in multirun identification compared to both DIA-NN and
other OpenSWATH-based workflows.
HFDiscrim Shows Better Quantification Performance.

HFDiscrim’s novel method for identifying candidate peaks
requires a thorough evaluation of its impact on quantification.
To achieve this, we applied quality metrics focusing on
accuracy and precision, utilizing the external data set from
Navarro et al. Specifically, we assessed (i) quantification
precision, determined by the median deviation of log2 fold
change distributions observed for each species, and (ii)
quantification accuracy, determined by the standard deviation
of observed log2 fold change distributions from the theoretical
centers based on known mixing ratios.

From the previous experiments, it is evident that HFDiscrim
demonstrates a stronger capability in identifying peptides and
proteins. However, the additional analytes identified by
HFDiscrim, compared to those identified by both HFDiscrim
and the other tools, often correspond to chromatographic
signals with lower signal-to-noise ratios. To fairly compare the
quantification performance of HFDiscrim and the other tools,
we evaluated the precision and accuracy of peptide
quantification, as well as the precision and accuracy of protein
quantification, under the same number of peptide precursors
for those tools.
The quantification results of a three-species benchmark

mixture, measured on a SCIEX TripleTOF 6600 instrument
with proteomes from human, yeast, and E. coli mixed in
defined ratios, were analyzed using HFDiscrim and other tools
(Figure 6). Due to the high human protein content in the
mixture, which results in higher accuracy and precision (lower
values), the comparison focuses on yeast and E. coli.
HFDiscrim and HFDiscrim-SC achieved similar accuracy,
outperforming PyProphet and TRIC for E. coli peptides and
proteins. However, for E. coli peptides, HFDiscrim-SC’s
precision performance was significantly lower than that of
the other tools. Similarly, for E. coli proteins, HFDiscrim-SC
and TRIC exhibited comparable performance, both inferior to
HFDiscrim. For yeast peptides and proteins, HFDiscrim and
HFDiscrim-SC outperformed TRIC and PyProphet in
accuracy, but HFDiscrim-SC displayed unstable precision,
performing worse than HFDiscrim. Overall, tools incorporat-
ing cross-run features exhibited better accuracy than

Figure 5. Evaluation of identification results of HFDiscrim on the ccRCC and Prostate data sets. (A) Number of human precursors identified by
HFDiscrim and other tools in at least N samples out of 20 runs in the ccRCC data set. The x-axis represents the number of samples (N) in which a
precursor was identified, and the y-axis shows the count of identified human precursors. Color bars represent the number of precursors identified by
each tool, and gray bars indicate the number of precursors not identified in N samples by the corresponding tools. (B) Relationship between the
proportion of human precursors and the sample identification rate in the ccRCC data set. (C) Same as in (A) but for the Prostate data set. (D)
Same as in (B) but for the Prostate data set.
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PyProphet. However, TRIC’s improvement was minimal, with
only a slight enhancement in E. coli protein accuracy.
HFDiscrim-SC’s improvement was inconsistent; despite
significant accuracy gains over PyProphet, it had lower peptide

precision than PyProphet. Only HFDiscrim outperformed the
other three tools in both accuracy and precision, indicating
that HFDiscrim’s quantification results are more consistent
and less variable.

Figure 6. Quantification of the HYE124 data set, which mixes proteomes from three species in a defined ratio, using HFDiscrim and other tools for
DIA. (A) E. coli peptide accuracy, (B) E. coli peptide precision, (C) E. coli protein accuracy, (D) E. coli protein precision, (E) yeast peptide
accuracy, (F) yeast peptide precision, (G) yeast protein accuracy, (H) yeast protein precision, as functions of the top N precursors identified. The
x-axis represents the top N precursors, while the y-axes show the corresponding accuracy or precision values.
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Additionally, the HYE110 data set yielded consistent
conclusions (Figure S3). These results indicate that
HFDiscrim consistently offers enhanced quantification per-
formance in terms of both accuracy and precision for peptides
and proteins. HFDiscrim outperforms PyProphet in both
accuracy and precision, making it a more reliable tool for
protein quantification. The improvement in HFDiscrim’s
performance can be attributed to the integration of single-
run and cross-run features, which allows HFDiscrim to identify
more accurate chromatographic signals, leading to better
quantification results.
Impact of Cross-Run Feature Design on Identification

Performance. HFDiscrim incorporates five types of cross-run
features, designed based on the principle that peptides should
exhibit similar chromatographic peak signals at similar
retention times across different runs. These features include:

1. Three types that measure the similarity of chromato-
graphic peak signals.

2. One type that assesses the proximity of chromatographic
peak signals in normalized retention time.

3. One type that evaluates the match between reference
chromatographic peaks and the spectral library.

To evaluate the contribution of each cross-run feature to
peptide identification, we conducted an ablation study. Seven
different compositions of hybrid features were constructed and
tested on ten samples of the mouse cerebellum data set using a
DDA-based spectral library. These compositions included:

1. One with all types of cross-run features.
2. Five with each missing a specific type of feature.
3. A control group without any cross-run features.
We used the curve of the total number of precursors

identified in ten samples of the MCB data set as a function of
external FDR (Figure 1A) to represent identification ability.
The results showed that the number of precursors identified
using cross-run features was significantly higher than those
identified using only single-run features, indicating that cross-
run features improve precursor identification. Furthermore, the
number of precursors identified by each of the five
compositions lacking one type cross-run feature was lower
than those identified with the complete set, suggesting that

each type of cross-run feature enhances HFDiscrim’s ability to
characterize chromatographic peaks. Among these, the single-
run discriminant score derived from the reference chromato-
graphic peak showed the most significant improvement,
reflecting the quality of the reference chromatographic peak.
The combination of the four types of cross-run features (Types
1, 2, 3, and 4) was more beneficial than Type 5, highlighting
the importance of consistency between the target and reference
chromatographic peaks (Figure 7). Therefore, the study
concludes that the integration of single-run features, the
quality of the reference chromatographic peak, and the
consistency between the target and reference chromatographic
peaks are all essential for distinguishing between the elution
patterns of real peptides and decoys.

■ CONCLUSIONS
In this study, we developed HFDiscrim, a multirun DIA
analysis tool designed to enhance the depth and consistency of
reliable peptide identification across multiple runs. HFDiscrim
effectively aligns retention times, compares multirun chromato-
graphic peak signals, and derives subscores representing the
cross-run features of the chromatographic peaks. This
multicenter comparison strategy, as opposed to a single-center
comparison strategy, mitigates errors associated with insuffi-
cient single-run feature characterization and improves the
accuracy and precision of peptide and protein quantification.
HFDiscrim is not limited to supporting only OpenSWATH

output but can also incorporate chromatographic peak signals
and corresponding single-run features from any DIA mass
spectrometry analysis tool, enhancing peptide identification
performance for DIA data.
Our benchmarking results on laboratory and clinical samples

demonstrated that HFDiscrim outperformed existing single-
run and multirun tools, such as PyProphet and TRIC.
HFDiscrim provided more accurate quantification in the
two-species library and LFQbench tests, highlighting the
advantages of incorporating hybrid features across multiple
runs for reliable identification. The tool’s ability to scale with
sample size further enhances its utility in large-scale proteomics
studies. Specifically, HFDiscrim identified a significantly higher
number of mouse precursors, peptides, and proteins compared

Figure 7. Optimization of the cross-run feature compositions in HFDiscrim was conducted. Six different compositions of cross-run features were
tested on ten samples of the MCB data set using a DDA-based spectral library. The FDR was estimated using the “external” method. The numbers
of mouse precursors identified at different FDRs were plotted to compare the performance.
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to single-run tool. The evaluation of HFDiscrim on clinical
samples, such as the ccRCC and Prostate data sets, confirmed
its superior performance in identifying consistent proteins
across varying sample backgrounds. Additionally, HFDiscrim
consistently achieved better accuracy and precision in
quantification compared to other tools, as evidenced by its
performance on the HYE124 and HYE110 data sets.
Overall, HFDiscrim represents a significant advancement in

DIA-based proteomics, offering a reliable solution for
consistent and comprehensive peptide and protein identi-
fication. Integration of cross-run features in DIA analysis and
utilization of a multicenter comparison strategy are shown to
enhance performance, leading to more accurate and reprodu-
cible protemomic data. The implementation in Python
framework ensures ease of use and flexibility for the DIA
proteomics community. HFDiscrim is available at https://
github.com/yachliu/HFDiscrim.
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