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Abstract

This work introduces a real-time intention decoding algorithm grounded in muscle synergies (Syn-ID). The algorithm
detects the electromyographic (EMG) onset and infers the direction of themovement during reaching tasks to control a
powered shoulder–elbow exoskeleton. Features related tomuscle synergies are used in a GaussianMixtureModel and
probability accumulation-based logic to infer the user’s movement direction. The performance of the algorithm was
verified by a feasibility study including eight healthy participants. The experiments comprised a transparent session,
duringwhich the exoskeleton did not provide any assistance, and an assistive session inwhich the Syn-ID strategywas
employed. Participants were asked to reach eight targets equally spaced on a circumference of 25 cm radius (adjusted
chance level: 18.1%). The results showed an average accuracy of 48.7% after 0.6 s from the EMG onset. Most of the
confusion of the estimate was found along directions adjacent to the actual one (type 1 error: 33.4%). Effects of the
assistance were observed in a statistically significant reduction in the activation of Posterior Deltoid and Triceps
Brachii. The final positions of the movements during the assistive session were on average 1.42 cm far from the
expected ones, both when the directions were estimated correctly and when type 1 errors occurred. Therefore,
combining accurate estimates with type 1 errors, we computed a modified accuracy of 82.10±6.34%. Results were
benchmarked with respect to a purely kinematics-based approach. The Syn-ID showed better performance in the first
portion of the movement (0.14 s after EMG onset).

1. Introduction

Following a stroke, intensive motor training can improve the recovery of sensorimotor functionalities
(Langhorne et al. 2011). Robotic rehabilitation allows patients to actively participate during the exercises
(Lo et al. 2010; Skidmore et al. 2010), with adaptive and personalized level of support, fostering the
engagement of the patients and enhancing the overall rehabilitation outcome. Additionally, robotic devices
such as powered exoskeletons (Pan et al. 2022; Zimmermann et al. 2023) can be useful to promote task-
specific training, which is typically correlated with a superior improvement of the upper-limb motor
functionalities with respect to the usual care (Klamroth-Marganska et al. 2014; Winstein et al. 2016).
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To provide a natural and intuitive experience and promote neuroplasticity, exoskeletons must be
controlled according and synchronously to the user’s motor intention, amplifying spontaneous residual
movements (Balasubramanian et al. 2018; Li et al. 2018). To do so, intention decoding algorithms (IDAs)
can rely on the kinematic or biosignal information acquired and processed by the exoskeleton’s sensory
and control systems (Tucker et al. 2015).

Kinematic signals can be used as inputs of IDAs to provide human augmentation during rhythmic or
discrete tasks (Lanotte et al. 2021; Penna et al. 2023; Ronsse et al. 2011; Sanz-Morère et al. 2021).
However, since these approaches rely on the observation of the user’s limbmovement, they are not suitable
for those subjects suffering from severe motor disorders, who would benefit from an external aid to initiate
themovement. This problem can be addressed bymonitoring the nervous system activities associatedwith
the control of voluntary movements. Such an approach would provide additional time to the robot’s
controller, leveraging the temporal gap between the generation of electrical signals by the nervous system
and the subsequent generation of force in the muscles (and consequent limb movement), commonly
referred to as electromechanical delay (Cavanagh andKomi 1979). Surface electromyography (EMG) can
sense the peripheral nerve signals using a noninvasive technique that entails placing electrodes on the skin
over the area of the muscle of interest. Despite inherent limitations related to noise caused by crosstalk,
variability of the skin impedance, for example, due to sweat, andmovement artifacts (Farina et al. 2014), a
great evidence has been gathered over the years demonstrating the effectiveness of using EMG signals as
inputs of IDAs. EMG signals can be used to extract features both in the time and frequency domains
(Bi et al. 2019; Englehart et al. 1999), which can serve as inputs to infer human motor intentions using
model-based and/or machine learning techniques (Kiguchi and Hayashi 2012; Lotti et al. 2020; Novak
et al. 2013; Trigili et al. 2019).

EMG signals can be processed to extract muscle synergies, namely coordinated muscle activity
patterns. According to this theory, the central nervous system controls the execution ofmovements through
a reduced set of synergistic and coordinated muscle groups (d’Avella et al. 2003). Synergies have several
characteristics that make them good candidates for being input signals of IDAs. First, they are robust to
high-variance changes typical of EMG acquisitions (Ison and Artemiadis 2014). Second, they allow to
model EMG activations in a lower-dimensional features domain, by reducing the number of controlled
variables (Berniker et al. 2009). Finally, upper-limb muscle synergies were shown to be robust to
differences in motor performance and differences in cerebral lesion sizes and locations between poststroke
patients (Cheung et al. 2009). Grounded on these considerations, several attempts were made to employ
muscle synergies to classify single jointmovements of the shoulder, the elbow (Antuvan et al. 2016), and of
the forearm (Tse et al. 2023), as well as multi-joint reaching tasks (Israely et al. 2018). However, to date,
very limited attempts have been made to incorporate muscle synergies into exoskeleton controllers, with a
few exceptions limited to the lower limbs, showing promising results (Alibeji et al. 2018;Wei et al. 2020).

To overcome this knowledge gap, this work introduces and verifies a novel IDA exploiting muscle
synergies, named Syn-ID algorithm. Starting from the observation of the subject’s EMG signals, the
algorithm is able to (i) detect the muscle activation onset, (ii) infer the intended movement direction, and
(iii) control an upper-limb exoskeleton to guide the subject’s hand toward eight different directions. The
proposed approach was tested online with a shoulder–elbow exoskeleton (NEUROExos Shoulder-elbow
Module-γ, NESM-γ) for the use case of planar reaching tasks. The remainder of the paper is organized as
follows: Section 2 presents the NESM-γ exoskeleton, the EMG acquisition system, the Syn-ID algorithm,
and the design of the verification study. The results of the experiments are presented in Section 4;
Section 5 discusses the results and draws the conclusions.

2. Materials and methods

2.1. NESM-γ upper-limb exoskeleton

The NESM-γ is a shoulder–elbow exoskeleton designed for neurorehabilitation applications, developed
by the Wearable Robotics Lab (The BioRobotics Institute, Scuola Superiore Sant’Anna; Pan et al. 2022).
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The exoskeleton (Figure 1(a)) is equipped with four active degrees of freedom (DOFs), allowing shoulder
abduction/adduction (sAA), flexion/extension (sFE), internal external rotation (sIE), and elbow flexion
extension (eFE). Each of the active DOFs has a reactive-force series elastic actuation architecture with
custom torsional springs and embeds two absolute encoders measuring the joint position and torque (the
latter measured via the spring deformation). The exoskeleton is mounted on a support column with
lockable wheels. The kinematic chain of active DOFs is connected to the support column by four passive
DOFs (P1–4). This passive chain accounts for scapulohumeral rhythm and trunk rotation, and it has self-
alignment purposes (Pan et al. 2023).

The control system of NESM-γ runs on two processors: (i) a field-programmable gate array (FPGA)
processor, and (ii) a 667-MHz dual-core ARM processor running a National Instruments (NI, Austin,
Texas, USA) RToperating system. The FPGA processor runs a low-level control layer at 1 kHz, which is
responsible for the reading of the robot’s sensors and the execution of the closed-loop torque regulators,
which translate the error between the reference andmeasured torque into amotor command for the current
servoamplifiers driving the brushless DC motors. The digital input/output ports of the FPGA processor
are configured to execute synchronous serial interface (SSI) and serial peripheral interface (SPI)
communication protocols, facilitating the interaction of the robot with external data acquisition systems,
for example, EMG acquisition systems. The ARMRT processor implements a control loop at a frequency
of 100 Hz. This loop is responsible for the execution of the IDAs and the generation of the reference joint
torques for each joint. These reference torques are computed as the sum of the desired torques resulting
from the IDAs with a feed-forward gravity compensation term. This term compensates for the gravita-
tional torques due to the exoskeleton’s weight and it is dependent from the exoskeleton’s pose. Using this
control scheme, validated in (Pan et al. 2022), the robot can either be “transparent” to the user’s
spontaneous movements (transparent mode, when the desired torques are set to 0 Nm) or selectively
provide joint torques to assist the user’s movements, for example, creating a convergent force field toward
reference attraction points (assistive mode).

2.2. EMG acquisition system

We recorded EMG signals from six upper-limb muscles (Figure 1(b)), namely (i) biceps brachii,
(ii) triceps brachii (long head), (iii) anterior deltoid, (iv) medial deltoid, (v) posterior deltoid, (vi) upper
trapezius. The signals were recorded by an EMG acquisition system composed by the SeWi electromyo-
graph (OTBioelettronica, Torino, Italy) and a dedicated electronic board (SbRIO-9561, NI, Austin, TX,
USA). RawEMGsignals are processed at 1 kHZ, implementing a band-pass filter between 20 and 400Hz,
a notch-filter at 50 Hz, a rectification, and, finally, a low-pass filter at 4 Hz. The processed signals, that is,

Figure 1. Experimental setup comprising (a) the NESM-γ exoskeleton with the user interface (UI) and
(b) the EMG target muscles.

Wearable Technologies e14-3



the linear envelopes, are used by the electronic board to run the Syn-ID high-level control algorithm at
100Hz. Finally, the estimate of themovement direction, that is, the output of the Syn-ID control algorithm
is transmitted to the NESM-γ electronic board, via an SSI communication protocol.

2.3. The Syn-ID control algorithm

The proposed approach grounds on the following steps, performed in RT: (i) the system acquires EMG
signals from upper-limb superficial muscles and extract informative features on muscle synergies,
(ii) after the onset of the reaching movement is detected, a Gaussian Mixture Model (GMM) estimates
the direction of the movement based on the above features, and (iii) the control system of the exoskeleton
generates assistive torque profiles at the different joints to guide the user’s hand toward the desired target.
Before running the algorithm, an offline procedure is implemented to extract the muscle synergies and
train the GMMs. The block diagram of the algorithm is shown in Figure 2.

In the remainder of the article, the following mathematical notation conventions will be employed:
matrices will be denoted in bold (e.g., H), vectors will be represented as underlined (e.g., τ), and scalars
will maintain standard notation.

2.3.1. Offline muscle synergies computation and GMMs training
For the offlinemuscle synergies computation andGMMs training, first, EMG signals were recordedwhile
users performed reaching movements toward Ndir different directions, wearing the NESM-γ exoskeleton
in transparent mode. Then, the procedures comprised the following steps:

1. Non-negative matrix factorization. The segmented envelopes were used as input to the non-negative
matrix factorization (NMF) algorithm, whichwas implemented as described in Lee and Seung (2000),
and hereafter briefly recapped. Given the matrix of envelopesX∈ℝN × 6, whereN is the length of the
acquisition, the NMF iteratively searches the matricesW andH that minimize the root-mean-squared
residual betweenX andW�H. The matrixH∈ℝR× 6 represents the synergies matrix, which accounts
for the contribution of eachmuscle to the synergymodules (with R representing the number of muscle
synergies to consider, that was set to four (Israely et al. 2018)). The matrixW∈ℝN × 4 represents the
activation coefficients of each muscle synergy throughout the acquisition time.

2. Labeling.Training activation coefficients, contained inmatrixW, were labeled with respect to their
directions of movements, d, considering the Ndir possible directions.

Figure 2. Block diagram of the algorithm. When the onset of the EMG activation is detected, the signals
are used to extract the activation coefficients of the muscle synergies. The activation coefficients are used
as input to a Gaussian Mixture Model-based strategy, whose outputs allow inferring the direction of the
reaching movement. Finally, the exoskeleton is actuated with an impedance control-based strategy to
guide the hand of the user toward the inferred direction. In this figure, the dependency of the variables on

the program iteration i has been eliminated to enhance readability.
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3. GMMs training. The activation coefficients associated with each movement direction were
modeled as a weighted sum of three Gaussian components, resulting in a set of N dir GMMs. Thus,
the probability density function (PDF) of the GMM associated with the d-th direction was
computed as:

f
dð Þ
GMM ¼

X3

g¼1
π g,dð Þ �& g,dð Þ W dð Þ

� �
, (1)

where W dð Þ contained the activation coefficients of the movements toward the direction d,
and& g,dð Þwas the PDF the g-th Gaussian component, and π g,dð Þ were themixing coefficients weighing

the PDF and satisfying 0 < π g,dð Þ < 1 and
P3

g¼1π
g,dð Þ ¼1. The GMMs parameters were first initialized

through a k-means algorithm, with k equal to three, and then estimated iteratively through an
expectation-maximization algorithm.

2.3.2. Onset detection algorithm
The onset of the reaching movements was recognized using a real-time EMG-based segmentation
algorithm. The onset detection represented an extension of the threshold-based method described in
Solnik et al. (2010), modified to accommodate the concurrent activation of multiple muscles of our case
study. The algorithm computed the sum of the EMG envelopes of the six upper-limbmuscles. A threshold
ϑ was then computed as:

ϑ¼ μ+Ks �σ, (2)

where Ks is a tunable gain, μ is the mean, and σ is the standard deviation of the sum signal in a moving
window of 150ms.When the sum signal was greater than the threshold ϑ, the onset of the EMG activation
was detected.

2.3.3. Real-time high-level control
The real-time high-level controller computed an estimate of the reaching movement direction (bd)
observing an initial portion of the EMG activation patterns, from the detected movement onset i0, to a
given time instant T , called accumulation time. After the onset i0, at each program iteration i< T , the
algorithm performs the following steps:

1. Online non-negative least squares. Given the observed linear envelopes x⋆ ið Þ∈ℝ6, the associated
synergy activation coefficients w⋆ ið Þ∈ℝ4 were estimated solving a non-negative least squares
constraint problem:

w⋆ ið Þ¼ argmin
w > 0

w �H� x⋆ ið Þk k (3)

2. Conditional probability logics. The conditional probability density of each movement direction d,
given the estimated activation coefficients w⋆ ið Þ and the related PDF of the GMM obtained during

the offline training f dð Þ
GMM

� �
, is computed from the GMM as:

P dð jw⋆ ið ÞÞ¼ f dð Þ
GMMP

d f
dð Þ
GMM w⋆ ið Þð Þ

: (4)

The vector of conditional probability density P dð jw⋆ ið ÞÞ∈ℝNdir, was then normalized so
that

P
dP dð jw⋆ ið ÞÞ¼1.
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3. Evidence accumulation. An evidence accumulation approach was used to increase the confidence
over the most probable direction; a cumulative conditional probability Pc dð jw⋆ ið ÞÞ was computed
for each direction as:

Pc dð jw⋆ ið ÞÞ¼
Pi

t¼i0P djw⋆ tð Þð ÞP
d∈D

Pi
t¼i0P djw⋆ tð Þ� � : (5)

Again, the cumulative probabilities were normalized so that
P

dPc dð jw⋆ ið ÞÞ¼1.
4. Direction estimate. The movement direction was estimated as the one with the highest cumulative

probability, as:

bd ið Þ¼ argmax
d

Pc dð jw⋆ ið ÞÞ: (6)

The estimate of the target bd evolved according to (6) until the accumulation time T . Once the
accumulation time was elapsed, the estimate was kept fixed as its value at i¼T .

2.3.4. Assistive strategy
Along the movement, the NESM-γ exoskeleton was controlled to assist the reaching movement toward a

target position (bδ ið Þ∈ℝ3 ) associated with the estimated direction bd ið Þ:

1. Virtual stiffness. Avirtual stiffness control law was implemented to guide the movement of the user’s
hand toward the estimated target position.At each iteration i, the position of the user’s hand,EE ið Þ∈ℝ3

in the global frame was computed through direct kinematics (Pan et al. 2022). EE ið Þ and bδ ið Þ were
reported in the sAA frame (i.e., the first joint of the active kinematic chain) to account only for the active
chain for the generation of the assistive force.
A virtual stiffness K ∈ℝ3 was used to compute the virtual force γ ið Þ∈ℝ3, which was the
force necessary to direct the hand EE ið Þ toward the estimated target position, that is, the attraction
point:

γ ið Þ¼K � RsAA
0 � EE ið Þ�bδ ið Þ

� �h i
, (7)

where RsAA
0 ∈ℝ3 × 3 was the rotational matrix from the NESM-γ global frame to the sAA joint

(Figure 1(a)), and it was a function of the passive degrees of freedom.
2. Reference torques computation. Finally, the joint reference torques τr ið Þ∈ℝ4 were computed as:

τr ið Þ¼ τd ið Þ+ τg ið Þ (8)

where τg ið Þwere feed-forward, pose-dependent gravity compensation torques, and were a function
of qa ið Þ (Pan et al. 2022), while τd ið Þ were the desired assistive torques, computed applying the
statics equation of the active kinematic chain of the robot:

τd ið Þ¼ JT � γ ið Þ (9)

JT was the transposed Jacobian matrix of the active kinematic chain of the NESM-γ.

e14-6 Michele Francesco Penna et al.



2.4. Study design

In order to verify the performance of the Syn-ID control algorithm, we conducted a pilot study with eight
healthy participants (S1–S8, 5M/3F, height 173 ± 8.8 cm, weight 71 ±13 kg). The experimental pro-
cedures were approved by the Ethics Committee of Scuola Superiore Sant’Anna, Pisa, Italy (approval
no. 34/2021) and conducted in accordance with the principles stated in the Declaration of Helsinki. The
participants signed written informed consent to participate in the study.

Upon recruitment, electrodes for EMG were attached to the six target upper-limb muscles
(Figure 1(b)). The participant was asked to perform three repetitions of 5-second maximum voluntary
isometric contractions (MVC) for each muscle (Burden 2010). The MVC data were only used for offline
data analysis, while the Syn-ID algorithm used the non-normalized linear envelopes. The protocol
included two sessions, namely a transparent and an assistive session. During the transparent session,
the subject was asked to perform eight reaching movements toward eight different targets marked on a
table, while the NESM-γ was operated in transparent mode. The targets were equally spaced on a 25 cm
diameter circumference on the four cardinal (north (N), east (E), south (S), and west (W)) and the four
ordinal directions (north-west (NW), south-west (SW), south-east (SE), and north-east (NE)), so that the
angular distance between adjacent targets was 45 deg. All the reaching movements started with the
subject’s hand in a home position, which was marked on the table at the centre of the circumference and
aligned along the sagittal plane with the subject’s shoulder joint. A representation of a subject with the
hand in home position is shown in Figure 1. To guide the execution of the movements, the target positions
were shown to the user via LEDs on a graphical user interface (LED UI; Figure 1(a)). The LEDs were
programmed so that each onewould turn on for 5 s, in a randomized sequence. Once the target LED turned
off, the subject was asked to return to the home position, which was also indicated by a central LED.
Throughout the movement execution, the subject was instructed to focus on the LED UI and maintain a
consistent pose through the experiment while in the home position. Every 5 minutes, short breaks were
allowed to reduce the effects of muscle fatigue. The processed EMG signals, segmented between i0 and T ,
that is, the onset instant and the accumulation time, were used to compute the muscle synergies and train
the GMMs classifiers, as explained in Section 2.3.1. The accumulation time T was fixed to 0.6 s. The
transparent session lasted approximately 15 minutes.

During the assistive session, the subject performed the reachingmovements while the exoskeleton was
operated in assistive mode, implementing the Syn-ID algorithm. The exoskeleton was programmed to
assist the reaching movement and support the arm in position after the task, until the LED turned off. At
the beginning of the session, a quick calibration procedure was performed to identify the position of the

targets in the workspace (bδ): with the robot in transparent mode, the subject was asked to keep a stable
position on the home target and the EE value was acquired. Then, the EEpositions on the other targets
were obtained via geometrical considerations. After the calibration procedure, participants were
instructed to perform some movements toward the eight targets in assistive mode, while the experimenter
fine-tuned the value ofK, starting from a reference value ([0.01, 0.03, 0.01] N/m), until the participant felt
comfortable with the level of assistance. Finally, a total of 20 reachingmovements toward each target were
performed in the assistive modewith the tuned stiffnesses. For these movements, the accumulation time T
was fixed to 0.6 s. Every 5 min, short breaks were allowed to avoid muscle fatigue. The assistive session
lasted approximately 30 minutes. A video representing the execution of the experiment from a represen-
tative subject can be found in Supplementary materials.

2.5. Data analysis

The data collected in the experimental sessions were analyzed offline using custom MATLAB routines.
The performance of the Syn-ID algorithm was assessed computing the following key performance
indicators.
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1. Accuracy. Given the number of true positives NTP (i.e., movement directions correctly recognized
atT ¼0.6 s) andN tot the total number ofmovements, the accuracy of the algorithmwas computed as:

Accuracy %ð Þ¼ 100
NTP

N tot

� �
: (10)

2. Error types. Considering the geometry of the problem, the possible estimate errors were catego-
rized into four different error types, according to the location of the misclassified target relative to
the expected one:
a. type 1 error: misclassification to a direction adjacent to the expected one (e.g., N vs. NW);
b. type 2 error: misclassification to a direction perpendicular to the expected one (e.g., N vs. W);
c. type 3 error: misclassification to a direction near-opposite to the expected one (e.g., N vs. SW);

and
d. type 4 error: misclassification to a direction opposite to the expected one (e.g., N vs. S).
For each type, an error percentage was computed as in equation (10).

3. Modified accuracy. A modified accuracy value was computed as the sum of accuracy and type
1 errors.

4. Movement repeatability. The repeatability of the movements was quantified computing two
indicators in the home reference frame (EEhome, xhome, yhome, zhome; Figure 1(a)), that is, the
reference system parallel to the global frame and centered in the home position of the workspace,
using polar coordinates. The final position of the hand at the end of the assisted movement and a
reference centroid for each target, computed as the average final hand position of the transparent
movements toward that target, were transformed into polar coordinates using:

θ¼atan
y
x

� �
ρ¼

ffiffiffiffiffiffiffiffiffi
x2 + y2

p

8<
: , (11)

resulting in θ dð Þ
assist,ρ

dð Þ
assist

� �
and θ dð Þ

transp,ρ
dð Þ
transp

� �
, respectively. Then, for each movement, we computed

two error metrics, expressing the discrepancies between movements in assisted and transparent mode,
in terms of angular value and hand advancement with respect to the targets d:

ϵθ ¼ θ dð Þ
assist�θ dð Þ

transp

			 			,ϵρ ¼ ρ dð Þ
assist�ρ dð Þ

transp

			 			: (12)

3. Muscle activations.The effects of the assistance were evaluated computing the integral of the EMG
signals (iEMG) for the transparent and assistive sessions. Before computing the iEMG, the signals
were normalized in time between 0% and 100% and in amplitude with the MVC of each muscle.

5. Manipulability indexes. The manipulability indexes for the movements of the transparent and
assistive sessions toward each target was computed as:

ω¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det J �JT� �q

, (13)

where J is the Jacobian matrix of the active kinematic chain of NESM-γ and JT is its transpose. The
manipulability index is bounded between 0 and 1 and it depends on the exoskeleton’s configuration.
When ω¼0, the exoskeleton is in a singular configuration, where small end-effector velocities cause
large joint velocities; thus, higher values of ω (i.e., closer to 1) are preferred. For each movement, a
single manipulability index was computed as the mean of the ω observed from the initial position
toward the target. Before computing ω, movements were normalized in time between 0% and 100%.

Finally, the performance of the muscle synergies-based ID algorithm in estimating the reaching move-
ment direction was benchmarked offline with respect to a state-of-the-art kinematics-based ID algorithm.
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Given the end-effector position EEh ¼ xEE,yEE,zEE½ � in the home reference frame, the angular polar
coordinate θ was computed at each time instant i∈ i0,T ¼½ 0.6 s� as in (11).

Then, the direction bd was estimated as the one minimizing:

bd ið Þ¼ argmin
d

∣ θ ið Þ� Θ
dð Þ
± 22:5deg

� �
∣: (14)

WhereΘ ∈ℝ8 contains the angular polar coordinate of the actual targets, spaced at intervals of 45 deg.
For example, a movement was classified toward the N direction (ΘN ¼90 deg) if 67.5 < θ ið Þ< 112.5 deg.

2.6. Statistical analysis

Statistical significance changes in both iEMG values and manipulability coefficients across the trans-
parent and assisted sessions were investigated. Moreover, the possible significant differences in the
performance of the implemented muscle synergy-based ID algorithm and the offline benchmark were
evaluated. Outlier detection was conducted using Tukey’s method. The indicators were tested for
normality and homoscedasticity using the Kolmogorov–Smirnov test and Levene’s test, respectively.
None of the tested indicators resulted normally distributed. Therefore, the following tests were performed:

1. A bidirectional Wilcoxon signed rank test was used to check for possible significant differences
between transparent and assistive sessions, for iEMG values, and manipulability indexes.

2. A Friedman’s test was used to check for potential direction-dependent significant differences in the
manipulability indices. For comparisons yielding significant differences among the tested condi-
tions, a post-hoc analysis was performed using the Tukey’s honestly significant difference
correction.

3. Two one-tailed Wilcoxon signed rank tests were used to assess possible statistically significant
differences between the muscle synergy-based ID algorithm and the offline benchmark.

All statistical analyses were performed in MATLAB with a significance level α¼0.05.

3 Results

Threemovements of the assistive sessions (0.24%of the total) were excluded from the data analysis due to
onset detection errors, that is, the onset was not timely detected for estimating the movement direction;
moreover, a specific movement performed by S8 (assisted movement toward SE) was excluded from this
analysis, due to signal noise on the Biceps Brachii reading, likely caused by a sudden movement of the
subject against the NESM-γ upper-arm interface.

Figure 3 shows the hand trajectories of a representative subject (S4) toward the eight targets during the
assistive session, along with the mean ± standard deviation EMG activations of both transparent and
assistive sessions. Trajectories were normalized in duration considering as 0% the instant detected by the
EMG onset detection algorithm, and as 100% the instant detected by a state-of-the-art noncausal
kinematics-based algorithm, that is, the time instant on which the z coordinate of EE, decreases to a
value equal to 20% of its peak value during the movement, similarly to (Trigili et al. 2019). The z
coordinate was chosen because it had a bell-shaped profile for all targets. Most of the hand trajectories
reached the target end position, showing consistent patterns regardless of the error type. The direction that
was estimatedmore accurately for S4was SW (85%of accuracy), while the least accurate was SE (20%of
accuracy), which was confused with S in 70% of instances. The final hand positions during movements
toward adjacent targets were notably close one to each other. Among all, the centroids of N and NW
targets were the closest ones (8.35 cm apart in the xy plane), while the centroids of S and SEwere 14.92 cm
apart in the xy plane. Notably, the Syn-ID algorithm confused N with NW 35% of cases, and NWwith N
the 21% of instances. Instead, S was confused with SE 28% of cases, while SE was confused with S 30%

Wearable Technologies e14-9



of instances. Consistent patterns could be observed in the EMG activations between transparent and
assistive sessions. The action of the arm and forearm flexor muscles (i.e., Anterior Deltoid and Biceps
Brachii) peaked for movements toward N, NE, and NW, while the extensor muscles (i.e., Posterior
Deltoid andTriceps Brachii) activatedmostly formovements toward S, SE and SW.Notably, the Posterior
Deltoid exhibited the highest level of activation among all muscles for movements toward the S and SE
directions. Finally, for both transparent and assistive movements toward all the directions, the Biceps
Brachii kept a bell-shaped pattern of activation, with a peak around 50% from the EMG onset.

The confusion matrix for the ID algorithm based on muscle synergies is reported in Figure 4(a),
resulting in an average accuracy of 48.6% and modified accuracy of 82.1%, at T ¼0.6 s. The directions
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that, on average, were estimated more accurately were W and SW (61% and 58%, respectively), while
those that have been estimated less accurately were S and N (39% and 41%, respectively). The directions
with the highest modified accuracy were NE (88%) and NW (87%), while those with the lowest modified
accuracies were E (65%) and SW (76%). Figure 4(b) shows the accuracies and the estimate errors at T ¼
0.6 s, averaged on the participants. Most of the tested movements were estimated accurately
(48.6 ± 8.5%), while most of the confusion was detected along adjacent directions, as reflected by the
errors of type 1 being the most frequent errors (33.4 ± 4.5%). Modified accuracy was 82.1 ± 6.3%. Most
severe errors, that is, type 4, were also the least frequent ones (2.5 ± 1.6%).

The iEMG values aggregated on participants are reported in Figure 5. Aggregating data over
directions, four out of six muscles reduced their median iEMG between the transparent and assistive
sessions, with the exception of Biceps Brachii and Anterior Deltoid (+6.21% and +8.45%, respectively,
but without statistical significance). Triceps Brachii, Medial Deltoid, Posterior Deltoid, and Upper
Trapezius exhibited a reduction in the assistive session (�5.39%, �4.75% �6.10%, �7.17%, respec-
tively). The difference of the Triceps Brachii and of the Posterior Deltoid between the two sessions was
found statistically significant (p¼.0391, and p¼.0078, respectively).

Figure 6(a, b) presents raincloud plots (Allen et al. 2019) of the errors ϵρ and ϵθ, showing the PDF of the
indicators, grouped by error types, as well as the different observations aggregated. Accurate estimates and
type 1 errors showed the same median ϵρ (1.42 cm). Movements causing errors of type 3 and 4 showed the
highest discrepancies in terms of hand advancement, showing median ϵρ of 4.91 cm and 3.07 cm,
respectively. Consistently, the lowest angular errors occurred for accurate and type 1 movements showing
a median ϵθ of 3.94 deg and 5.28 deg, respectively. Figure 6(c) shows the distribution of the manipulability
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coefficients aggregated on participants. On average, the SW direction resulted the one with the highest
manipulability both in transparent and assistive sessions (0.62 ± 0.08 transparent, 0.61± 0.07 assistive).
Analogously, the NE direction resulted the one with the lowest manipulability in both sessions (0.23 ± 0.06
transparent, 0.22± 0.06 assistive). A bidirectional Wilcoxon test did not show any significant difference in
manipulability indices between transparent and assistive sessions (minimum p¼.3125). On the other hand,
several direction-dependent significant differences in the manipulability indices were found by the Fried-
man’s test, when analyzing the movements of the two sessions separately (Figure 6(d)). The strongest
differences were found between the SW and NE directions, in both transparent and assistive sessions
(p¼1e�7 and p¼3e�6, respectively).

Finally, Figure 7 shows the evolution over time of the modified accuracy for the Syn-ID and the
kinematics-based algorithms, aggregated over subjects. These signalswere computed from0.05 s after the
detected EMG onset and were averaged across the subjects. For both signals, the modified accuracy
increased over time, reaching a maximum of 82.11 ± 6.34% for the Syn-ID algorithm and 91.58 ± 4.76%
for kinematics-based benchmark at T ¼0.6 s. The statistical analyses showed that the Syn-ID algorithm
performed significantly better than the benchmark immediately after the onset detection (for 0.14 s;
minimum–maximum p¼.012–.027, nonsignificant results observed at 0.09 and 0.11 s). On the other
hand, the kinematics-based algorithm performed statistically better from 0.29 s after the EMG onset up to
the end of the inspected window (minimum–maximum p¼.004–.039).

4. Discussions

The choice of inferring the user movement intentions using features derived from muscle synergies is
rooted on neuroscientific principles of motor control (d’Avella et al. 2003). Incorporating concepts
retrieved by physiological process into the control algorithms of exoskeletons could enhance the
interaction between the robot and the user, creating a cognitive interface that is specifically tailored to
user’s needs and residual functionalities (Catalán et al. 2023; Crea et al. 2018; Lanotte et al. 2021; Penna
et al. 2022, 2023; Ronsse et al. 2011). Subject-specific customization of the exoskeleton behaviour could
be particularly effective in poststroke rehabilitation, during which it is important to accommodate the

Figure 7. Pattern of the modified accuracy (sum of the accuracy and of the errors of type 1) over the
accumulation time T for the proposed muscle synergies-based algorithm and the benchmark algorithm
based on kinematics. Horizontal lines with a star highlight the portions of the curves that show significant

differences (*p< .05).
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subject’s residual movements (Balasubramanian et al. 2018). The results of this study highlight the
feasibility of this approach and open new perspectives in poststroke upper-limb rehabilitation scenarios.

First, the accuracy in the classification of the movement direction based on muscle synergies (48.7%)
was notably higher than the chance level adjusted for the number of trials per directions (18.1%, with 95%
confidence; Müller-Putz et al. 2008). This result is particularly remarkable considering that the eight
movement targets were relatively close to each other in the space and muscle activations (and muscle
synergies) were very similar when considering adjacent directions. In line with this, the analysis of error
types underlined the prevalence of type 1 errors compared to other error types, showing that most of the
confusion of the estimate algorithm resulted along directions adjacent to the actual one. Therefore, the
modified accuracy may be considered as the accuracy of the algorithm in detecting movement direction
when it is acceptable to identify a more generic direction, namely type 1 errors are acceptable to achieve
effective assistance control. In this case, the accuracy reached 82% after 0.6 s from the iEMG onset. The
proposed algorithm has comparable or ameliorative results in terms of overall accuracy to state-of-the-art
works exploiting EMG-based features to estimate the reaching movement directions. (Irastorza-Landa
et al. 2017) obtained an accuracy of 78% using support vector machines to classify the directions of four
forward and four backward reaching movements (chance level 25%), using time windows of 1 s for
features extraction. (Novak et al. 2013) reached 90%of accuracy at the 75%ofmovement execution using
linear discriminant analysis to classify reaching movements toward three objects (chance level 33%).

In addition to estimate performance, this study assessed the algorithm capability of providing a
synchronous and repeatable assistance to the movements of the user through a shoulder-elbow exoskel-
eton. Overall, the assistivemode allowed participants tomove toward the desired target and reach the final
position with small errors in terms of hand advancement and angle. Indeed, highest median ϵρ was
4.91 cm, which was notably lower than the radius of the circumference on which the targets were placed
(25 cm). Analogously, the highest median angular error was 7.40 deg, which was lower than the angular
shift between different targets (45 deg). ϵθ and ϵρ errors were particularly small (median of 5.28 deg,
1.42 cm, respectively) when the classification algorithm classified the direction of movement correctly or
with type 1 error. Notably, the median ϵρ was the same for accurate movements and type 1 error ones.

The effects of the assistance on the user were assessed through EMG activations. Although four out of
six muscles showed a reduction of the iEMG values between the transparent and the assistive sessions,
only Triceps Brachii and Posterior Deltoid, that is, the extensor muscles of forearm and shoulder, showed
statistically significant reductions. This result could be correlated with the values of the manipulability
coefficients (ω) of the NESM-γ exoskeleton. Indeed, the values ofω for the north directions (i.e., N, NW,
and NE) were significantly lower than the ones for the south ones (i.e., S, SW, and SE). A lower value of
the manipulability index results in greater angular displacements in the joint space for an equal
displacement of the end effector in the Cartesian space, that is, hand trajectories, which is where the
movement planning occurs. This could have caused unexpected muscle contractions that influenced the
EMG values of movements toward north directions. For similar reasons, the lower values of ω for
the north directions could have hindered the classification performance, as reflected by poorer accuracies
for N and NE directions (up to 41%). Analogously, the SW and W directions, which have among the
highest manipulability coefficients, were also the best estimated directions. The S direction represented an
exception, since it was the second highestω value, but the overall worst estimated direction. Sincemost of
the estimate errors were toward SE (28% of instances), we hypothesized that these were caused by the
similar muscle activation patterns of the movements toward these directions, as shown in Figures 3 and 5.

Finally, the performance of the muscle synergies-based algorithm was assessed with respect to a
kinematics-based benchmark algorithm, implemented offline. This analysis showed, on average, signif-
icant better performance of the synergies-based approach immediately after the EMG onset (up to 0.14 s);
subsequently, it followed a phase (from 0.15 to 0.29 s) where the performance of the two algorithms was
analogous and no statistically significant differences were observed. The highest performance of the Syn-
ID algorithm in these two subphases can be attributed to the electromechanical delay, that is, the time
delay that occurs between the EMG and the kinematic onset. From the literature, this value is typically
between 0.04 and 0.07 s for forearm free flexion/extension movements without constraints (Cavanagh
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and Komi 1979); however, it is conceivable that the mechanical coupling of the user with the exoskeleton
required higher levels of EMG activations, and thus longer times, to initiate the movement (Irastorza-
Landa et al. 2017). Therefore, it is probable that in the initial time instants of the reaching task, the
movement intentions of the subjects were not reflected to any detectable kinematic activity, leading to
instabilities of the kinematic classification. Conversely, the information carried by the EMG synergies
was significantly higher to infer the intendedmovement. This consideration is emphasized by the fact that,
after the electromechanical delay, the kinematics-based algorithm performed better than the synergies-
based one, showing statistically significant results until the limit observation time (from 0.3 to 0.6 s).
However, considering the implemented assistive strategy, it is crucial to evaluate the potential impact of
assistive torques on the kinematic activity of participants, which served as inputs for the benchmark
analysis. Despite this potential influence, results suggest that the assistive torques did not disrupt the
participants’ voluntary movement patterns. First, as discussed above, the errors in terms of hand
advancement and angle in the polar plane were notably lower than the workspace geometries, with only
eight movements showing ϵθ > 45 deg (0.65% of the assisted movements), suggesting that the assistive
torques, despite sporadic severe errors, allowed the participants to complete their voluntary movements.
Second, the absence of statistically significant increases in the muscle activities among the two sessions
suggests that the participants’movements were not constrained by the assistance. Finally, the absence of
any significant difference in manipulability indices between transparent and assistive sessions (minimum
p¼.3125) underlines the coherence of kinematic patterns among the sessions. In this regard, it is
noteworthy that the assistance was not tuned with the aim of implementing a user passive mobilization.
Rather, the focus was placed on facilitating the subjects’ movements.

This study demonstrated that the observation of EMG-derived features could be useful to provide an
initial assistance profile which is sufficiently accurate (50% after � 0.15 s from EMG onset). Neverthe-
less, the adoption of the proposed approach in rehabilitation scenarios must be first assessed in terms of
effectiveness and robustness considering the severely compromised EMG activations typical of post-
stroke individuals. Several studies reported altered coupling of the shoulder–elbow muscles (Roh et al.
2013) and abnormal contribution of theDeltoid heads in synergies (Tropea et al. 2013), following a stroke.
However, there is evidence that supports the employment of muscle synergies in poststroke rehabilitative
practice. First of all, studies have shown that four synergies are sufficient to capture the variability in
altered EMG activations of poststroke individuals (Israely et al. 2018; Tropea et al. 2013). Second, it was
demonstrated that muscle synergies activation coefficients of poststroke individuals exhibit distinctive
patterns during three-dimensional reaching tasks toward different targets (Israely et al. 2018). Finally,
(Pan et al. 2018) observed consistent activation coefficients between poststroke individuals and a control
group of healthy participants during reaching tasks. These results pave the way for the application of a
classification logic using muscle synergies-based features in some poststroke populations. The Syn-ID
algorithm could be effective for the training of gross upper armmotor functions (e.g., reaching) in patients
with limited movement capabilities, who can express muscle activity, but need an amplification to drive
the upper-limb toward the desired direction.

The main limitation of the study lies in the assistive strategy, which currently does not include
countermeasures in case of misdetections. Indeed, when error of type 3 or 4 occurred, the exoskeleton
delivered an assistance that was contrary to the participant’s intendedmovement. Although the occurrence
of these errors was low (8.83% of the total) and healthy participants were still able to execute the desired
movements (median ϵρof 2.05 cm and median ϵθof 6.36 deg), this kind of behavior is not desirable in a
rehabilitative scenario, where the participants may not be able to contrast the action of the exoskeleton.
Our choice of the assistive strategy in this study was driven by the main objective of verifying the
performance of the real-time IDA evenwhen assistance is delivered in the initial instants of themovement.
In order to mitigate potential safety concerns in rehabilitation scenarios, the assistive strategy could
implement of a veto function, that is, a mechanism that allows the participant to voluntarily interrupt the
assistance in presence of unintended behaviors of the system (Clausen et al. 2017; Crea et al. 2018).
Alternatively, considering the target end users (i.e., people who can initiate the movement, but who need
the assistance to accomplish the task), we could also envision a modification of the assistive strategy, in
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which the movement is initially performed in transparent mode, and the assistance is enabled only when
the estimation has reached a certain cumulative probability level (Tortora et al. 2019).

The current algorithm structure could be improved investigating sensor fusion and sensor integration
strategies, mixing the contributions of kinematics and electromyographic information for intention
decoding purposes. Indeed, following the electromechanical delay, the kinematic information could be
then used to correct the EMG estimate, to further increase the overall accuracy of the intention estimate
(Novak et al. 2013). Moreover, classifiers different from GMMs will be tested aiming to improve the
estimate accuracy. Additionally, the assistive strategy could be modified to include also compensation for
the user’s arm gravitational torques, which could be beneficial for the training of poststroke individuals
(Prange et al. 2009). Finally, the robustness of the algorithm will be investigated in subject independent
scenarios, aiming at increasing the generalizability of the approach.

Supplementary material. The supplementary material for this article can be found at http://doi.org/10.1017/wtc.2024.16.

Data availability statement. The datasets generated during and/or analyzed during the current study are available from the
corresponding author on reasonable request.

Acknowledgments. The MATLAB routines implementing the raincloud and spider plots of Figure 6 employ open-source
routines available on MATLAB File Exchange and GitHub (Allen et al. 2019; NewGuy012, 2019/2024). The authors would like
to thank Giulia di Salvo and Gabriele Santin for their helpful contribution in the preliminary implementations of the algorithm.

Authors contribution. Conceptualization of the algorithm, M.F.P., S.T., E.M., N.V., S.C., E.T.; Software development: M.F.P.,
D.A., L.A., F.D.A.; Data acquisition: M.F.P., L.G., D.A, L.A.; Data analysis, M.F.P., L.G.; Data discussion, All authors. Writing-
original draft preparation, M.F.P. and L.G.; Writing-review & editing, All authors; Scientific supervision, E.M., E.G., N.V., S.C.,
E.T.; Funding acquisition, E.G., N.V., S.C., E.T. All authors have read and agreed to the published version of the manuscript.

Funding statement. This research was promoted by the Istituto Nazionale per l’Assicurazione contro gli Infortuni sul Lavoro
(Inail), within the BioARM (grant no. PR19-RRP3) and BioARMnext (grant no. PR23-RR-P3) projects, and by the EU commission
through the H2020 ReHyb project (Rehabilitation based on hybrid neuroprosthesis, Grant Agreement: 871767)‥

Competing interest. N.V. and S.C. have commercial interests in IUVO S.r.l., a spinoff company of Scuola Superiore Sant’Anna.
Currently. Part of the IP protecting the NESM-? exoskeleton has been licensed to IUVO S.r.l. for commercial exploitation.

Ethical standard. The experimental procedures were approved by the Ethics Committee of Scuola Superiore Sant’Anna, Pisa,
Italy (approval no. 34/2021) and conducted in accordance with the principles stated in the Declaration of Helsinki. The participants
signed written informed consent to participate in the study.

References
Alibeji NA,Molazadeh V,Moore-Clingenpeel F and Sharma N (2018) A muscle synergy-inspired control design to coordinate

functional electrical stimulation and a powered exoskeleton: Artificial generation of synergies to reduce input dimensionality.
IEEE Control Systems Magazine 38(6), 35–60. https://doi.org/10.1109/MCS.2018.2866603

AllenM, Poggiali D,Whitaker K,Marshall TR,Langen Jvan and Kievit RA (2019) Raincloud plots: A multi-platform tool for
robust data visualization. Wellcome Open Research 4. https://doi.org/10.12688/wellcomeopenres.15191.2

Antuvan CW, Bisio F,Marini F,Yen SC,Cambria E andMasia L (2016) Role of muscle synergies in real-time classification of
upper limb motions using extreme learning machines. Journal of NeuroEngineering and Rehabilitation 13(1), 76. https://doi.
org/10.1186/s12984-016-0183-0

Balasubramanian S,Garcia-Cossio E,Birbaumer N,Burdet E andRamos-Murguialday A (2018) Is EMG a viable alternative
to BCI for detecting movement intention in severe stroke? IEEE Transactions on Biomedical Engineering 65(12), 2790–2797.
https://doi.org/10.1109/TBME.2018.2817688

Berniker M, Jarc A, Bizzi E and Tresch MC (2009) Simplified and effective motor control based on muscle synergies to exploit
musculoskeletal dynamics. Proceedings of the National Academy of Sciences 106(18), 7601–7606. https://doi.org/10.1073/
pnas.0901512106

Bi L, Feleke AG andGuan C (2019) A review on EMG-based motor intention prediction of continuous human upper limb motion
for human-robot collaboration. Biomedical Signal Processing and Control 51, 113–127. https://doi.org/10.1016/j.
bspc.2019.02.011

Burden, A (2010)How shouldwe normalize electromyograms obtained fromhealthy participants?What we have learned from over
25 years of research. Journal of Electromyography and Kinesiology 20(6), 1023–1035. https://doi.org/10.1016/j.jele-
kin.2010.07.004

e14-16 Michele Francesco Penna et al.

http://doi.org/10.1017/wtc.2024.16
https://doi.org/10.1109/MCS.2018.2866603
https://doi.org/10.12688/wellcomeopenres.15191.2
https://doi.org/10.1186/s12984-016-0183-0
https://doi.org/10.1186/s12984-016-0183-0
https://doi.org/10.1109/TBME.2018.2817688
https://doi.org/10.1073/pnas.0901512106
https://doi.org/10.1073/pnas.0901512106
https://doi.org/10.1016/j.bspc.2019.02.011
https://doi.org/10.1016/j.bspc.2019.02.011
https://doi.org/10.1016/j.jelekin.2010.07.004
https://doi.org/10.1016/j.jelekin.2010.07.004


Catalán JM,Trigili E,NannM,Blanco-IvorraA,Lauretti C,Cordella F, Ivorra E,ArmstrongE,Crea S,AlcañizM,Zollo L,
Soekadar SR,Vitiello N and García-Aracil N (2023) Hybrid brain/neural interface and autonomous vision-guided whole-arm
exoskeleton control to perform activities of daily living (ADLs). Journal of NeuroEngineering and Rehabilitation 20(1), 61.
https://doi.org/10.1186/s12984-023-01185-w

Cavanagh PR and Komi PV (1979) Electromechanical delay in human skeletal muscle under concentric and eccentric
contractions. European Journal of Applied Physiology and Occupational Physiology 42(3), 159–163. https://doi.org/10.1007/
BF00431022

Cheung VCK, Piron L,Agostini M, Silvoni S, Turolla A, and Bizzi E (2009) Stability of muscle synergies for voluntary actions
after cortical stroke in humans. Proceedings of the National Academy of Sciences 106(46), 19563–19568. https://doi.
org/10.1073/pnas.0910114106

Clausen J, Fetz E, Donoghue J, Ushiba J, Spörhase U, Chandler J, Birbaumer N and Soekadar SR (2017) Help, hope, and
hype: Ethical dimensions of neuroprosthetics. Science 356(6345), 1338–1339. https://doi.org/10.1126/science.aam7731

Crea S, NannM, Trigili E, Cordella F, Baldoni A, Badesa FJ, Catalán JM, Zollo L, Vitiello N, Aracil NG and Soekadar SR
(2018) Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform
activities of daily living. Scientific Reports 8(1), Article 1. https://doi.org/10.1038/s41598-018-29091-5

d’Avella A, Saltiel P and Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior.Nature
Neuroscience 6(3), Article 3. https://doi.org/10.1038/nn1010

EnglehartK,Hudgins B,Parker PA and StevensonM (1999) Classification of themyoelectric signal using time-frequency based
representations. Medical Engineering & Physics 21(6), 431–438. https://doi.org/10.1016/S1350-4533(99)00066-1

Farina D, Merletti R and Enoka RM (2014) The extraction of neural strategies from the surface EMG: An update. Journal of
Applied Physiology 117(11), 1215–1230. https://doi.org/10.1152/japplphysiol.00162.2014

Irastorza-LandaN,Sarasola-SanzA,López-Larraz E,BibiánC,ShimanF,BirbaumerNandRamos-MurguialdayA (2017)
Design of continuous EMG classification approaches towards the control of a robotic exoskeleton in reaching movements. 2017
International Conference on Rehabilitation Robotics (ICORR), 128–133. https://doi.org/10.1109/ICORR.2017.8009234

Ison M and Artemiadis P (2014) The role of muscle synergies in myoelectric control: Trends and challenges for simultaneous
multifunction control. Journal of Neural Engineering 11(5), 051001. https://doi.org/10.1088/1741-2560/11/5/051001

Israely S,LeismanG,MachlufCC, andCarmeliE (2018)Muscle synergies control during hand-reaching tasks inmultiple directions
post-stroke. Frontiers in Computational Neuroscience 12. https://www.frontiersin.org/articles/10.3389/fncom.2018.00010

Kiguchi K andHayashi Y (2012) An EMG-based control for an upper-limb power-assist exoskeleton robot. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics) 42(4), 1064–1071. https://doi.org/10.1109/TSMCB.2012.2185843

Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, Ettlin T, Felder M, Fellinghauer B,Guidali M,Kollmar A,
Luft A,Nef T, Schuster-Amft C, StahelWandRiener R (2014) Three-dimensional, task-specific robot therapy of the arm after
stroke: A multicentre, parallel-group randomised trial. The Lancet Neurology 13(2), 159–166. https://doi.org/10.1016/S1474-
4422(13)70305-3

Langhorne P, Bernhardt J and Kwakkel G (2011) Stroke rehabilitation. The Lancet 377(9778), 1693–1702. https://doi.
org/10.1016/S0140-6736(11)60325-5

Lanotte F,McKinney Z,Grazi L,ChenB,Crea S andVitiello N (2021) Adaptive control method for dynamic synchronization of
wearable robotic assistance to discrete movements: Validation for use case of lifting tasks. IEEE Transactions on Robotics 37(6),
2193–2209. https://doi.org/10.1109/TRO.2021.3073836

LeeDandSeungHS (2000)Algorithms for non-negativematrix factorization.Advances inNeural Information Processing Systems
13. https://papers.nips.cc/paper_files/paper/2000/hash/f9d1152547c0bde01830b7e8bd60024c-Abstract.html

LiM,XuG,Xie J and Chen C (2018) A review:Motor rehabilitation after stroke with control based on human intent. Proceedings
of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 232(4), 344–360. https://doi.
org/10.1177/0954411918755828

LoAC,Guarino PD,Richards LG,Haselkorn JK,WittenbergGF, FedermanDG,Ringer RJ,Wagner TH,Krebs HI,Volpe
BT, Bever CT, Bravata DM, Duncan PW, Corn BH, Maffucci AD, Nadeau SE, Conroy SS, Powell JM, Huang GD and
Peduzzi P (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine
362(19), 1772–1783. https://doi.org/10.1056/NEJMoa0911341

Lotti N, Xiloyannis M, Durandau G, Galofaro E, Sanguineti V, Masia L and Sartori M (2020) Adaptive model-based
myoelectric control for a soft wearable arm exosuit: A new generation of wearable robot control. IEEE Robotics & Automation
Magazine 27(1), 43–53. https://doi.org/10.1109/MRA.2019.2955669

Müller-Putz GR, Scherer R, Brunner C, Leeb R and Pfurtscheller G (2008) Better than random? A closer look on BCI results.
International Journal of Bioelectromagnetism 10(1), 52–55.

NewGuy012. (2024) NewGuy012/spider_plot [MATLAB]. https://github.com/NewGuy012/spider_plot (Original work published
2019)

Novak D, Omlin X, Leins-Hess R and Riener R (2013) Predicting targets of human reaching motions using different sensing
technologies. IEEE Transactions on Biomedical Engineering 60(9), 2645–2654. https://doi.org/10.1109/TBME.2013.2262455

Pan B, Sun Y, Xie B, Huang Z, Wu J, Hou J, Liu Y, Huang Z and Zhang Z (2018) Alterations of muscle synergies during
voluntary arm reaching movement in subacute stroke survivors at different levels of impairment. Frontiers in Computational
Neuroscience 12. https://doi.org/10.3389/fncom.2018.00069

Wearable Technologies e14-17

https://doi.org/10.1186/s12984-023-01185-w
https://doi.org/10.1007/BF00431022
https://doi.org/10.1007/BF00431022
https://doi.org/10.1073/pnas.0910114106
https://doi.org/10.1073/pnas.0910114106
https://doi.org/10.1126/science.aam7731
https://doi.org/10.1038/s41598-018-29091-5
https://doi.org/10.1038/nn1010
https://doi.org/10.1016/S1350-4533(99)00066-1
https://doi.org/10.1152/japplphysiol.00162.2014
https://doi.org/10.1109/ICORR.2017.8009234
https://doi.org/10.1088/1741-2560/11/5/051001
https://www.frontiersin.org/articles/10.3389/fncom.2018.00010
https://doi.org/10.1109/TSMCB.2012.2185843
https://doi.org/10.1016/S1474-4422(13)70305-3
https://doi.org/10.1016/S1474-4422(13)70305-3
https://doi.org/10.1016/S0140-6736(11)60325-5
https://doi.org/10.1016/S0140-6736(11)60325-5
https://doi.org/10.1109/TRO.2021.3073836
https://papers.nips.cc/paper_files/paper/2000/hash/f9d1152547c0bde01830b7e8bd60024c-Abstract.html
https://doi.org/10.1177/0954411918755828
https://doi.org/10.1177/0954411918755828
https://doi.org/10.1056/NEJMoa0911341
https://doi.org/10.1109/MRA.2019.2955669
https://github.com/NewGuy012/spider_plot
https://doi.org/10.1109/TBME.2013.2262455
https://doi.org/10.3389/fncom.2018.00069


Pan J,Astarita D,Baldoni A,Dell’Agnello F,Crea S,Vitiello N and Trigili E (2022) NESM-γ: An upper-limb exoskeleton with
compliant actuators for clinical deployment. IEEE Robotics and Automation Letters 7(3), 7708–7715. https://doi.org/10.1109/
LRA.2022.3183926

Pan J, Astarita D, Baldoni A, Dell’Agnello F, Crea S, Vitiello N and Trigili E (2023) A self-aligning upper-limb exoskeleton
preserving natural shoulder movements: Kinematic compatibility analysis. IEEE Transactions on Neural Systems and Rehabil-
itation Engineering 31, 4954–4964. https://doi.org/10.1109/TNSRE.2023.3341219

PennaMF,Trigili E,Amato L,EkenH,Dell’Agnello F,Lanotte F,Gruppioni E,Vitiello N andCrea S (2023) Decoding upper-
limb movement intention through adaptive dynamic movement primitives: A proof-of-concept study with a shoulder-elbow
exoskeleton. 2023 International Conference on Rehabilitation Robotics (ICORR), 1–6. https://doi.org/10.1109/ICORR58425.
2023.10304723

PennaMF, Trigili E, Zollo L, Cipriani C,Cappello L,Controzzi M,Dalise S, Chisari C,Gruppioni E,Crea S and Vitiello N
(2022) Design and administration of a questionnaire for the user-centered design of a novel upper-limb assistive device for
brachial plexus injury and post-stroke subjects. In Miesenberger K, Kouroupetroglou G, Mavrou K, Manduchi R,Covarrubias
Rodriguez M and Penáz P (eds), Computers Helping People with Special Needs. Springer International Publishing, 420–427.
https://doi.org/10.1007/978-3-031-08645-8_49

Prange GB, Jannink MJA, Stienen AHA, van der Kooij H, IJzerman MJ and Hermens HJ (2009) Influence of gravity
compensation on muscle activation patterns during different temporal phases of arm movements of stroke patients. Neuroreh-
abilitation and Neural Repair 23(5), 478–485. https://doi.org/10.1177/1545968308328720

Roh J, Rymer WZ, Perreault EJ, Yoo SB and Beer RF (2013) Alterations in upper limb muscle synergy structure in chronic
stroke survivors. Journal of Neurophysiology 109(3), 768–781. https://doi.org/10.1152/jn.00670.2012

Ronsse, R,Vitiello, N,Lenzi, T, van denKieboom, J,Carrozza,MC, and Ijspeert, AJ (2011) Human–robot synchrony: Flexible
assistance using adaptive oscillators. IEEE Transactions on Biomedical Engineering 58(4), 1001–1012. https://doi.org/10.1109/
TBME.2010.2089629

Sanz-Morère CB,Martini E,Meoni B, Arnetoli G,Giffone A, Doronzio S, Fanciullacci C, Parri A, Conti R,Giovacchini F,
Friðriksson Þ, Romo D, Crea S, Molino-Lova R and Vitiello N (2021) Robot-mediated overground gait training for
transfemoral amputees with a powered bilateral hip orthosis: A pilot study. Journal of NeuroEngineering and Rehabilitation
18(1), 111. https://doi.org/10.1186/s12984-021-00902-7

Skidmore ER, Whyte EM, Holm MB, Becker JT, Butters MA, Dew MA, Munin MC and Lenze EJ (2010) Cognitive and
affective predictors of rehabilitation participation after stroke. Archives of Physical Medicine and Rehabilitation 91(2), 203–207.
https://doi.org/10.1016/j.apmr.2009.10.026

Solnik S,Rider P, Steinweg K,DeVita P, and Hortobágyi T (2010) Teager–Kaiser energy operator signal conditioning improves
EMG onset detection. European Journal of Applied Physiology 110(3), 489–498. https://doi.org/10.1007/s00421-010-1521-8

Tortora S, Michieletto S, Stival F and Menegatti E (2019) Fast human motion prediction for human-robot collaboration with
wearable interface. 2019 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on
Robotics, Automation and Mechatronics (RAM), 457–462. https://doi.org/10.1109/CIS-RAM47153.2019.9095779

Trigili E,Grazi L, Crea S, Accogli A, Carpaneto J,Micera S, Vitiello N and Panarese A (2019) Detection of movement onset
using EMG signals for upper-limb exoskeletons in reaching tasks. Journal of NeuroEngineering and Rehabilitation 16(1), 45.
https://doi.org/10.1186/s12984-019-0512-1

Tropea P,Monaco V,CosciaM, Posteraro F andMicera S (2013) Effects of early and intensive neuro-rehabilitative treatment on
muscle synergies in acute post-stroke patients: A pilot study. Journal of NeuroEngineering and Rehabilitation 10(1), 103. https://
doi.org/10.1186/1743-0003-10-103

Tse KC, Capsi-Morales P, Castaneda TS and Piazza C (2023) Exploring muscle synergies for performance enhancement and
learning in myoelectric control maps. 2023 International Conference on Rehabilitation Robotics (ICORR), 1–6. https://doi.
org/10.1109/ICORR58425.2023.10304809

Tucker MR, Olivier J, Pagel A, Bleuler H, Bouri M, Lambercy O, Millán JR, Riener R, Vallery H and Gassert R (2015)
Control strategies for active lower extremity prosthetics and orthotics: A review. Journal of NeuroEngineering and Rehabili-
tation 12(1), 1. https://doi.org/10.1186/1743-0003-12-1

Wei Q, Li Z, Zhao K, Kang Y and Su CY (2020) Synergy-based control of assistive lower-limb exoskeletons by skill transfer.
IEEE/ASME Transactions on Mechatronics 25(2), 705–715. https://doi.org/10.1109/TMECH.2019.2961567

Winstein CJ, Wolf SL, Dromerick AW, Lane CJ, Nelsen MA, Lewthwaite R, Cen SY and Azen SP (2016) Effect of a task-
oriented rehabilitation program on upper extremity recovery followingmotor stroke the ICARE randomized clinical trial. JAMA -
Journal of the American Medical Association 315(6), 571–581. https://doi.org/10.1001/jama.2016.0276

Zimmermann Y, Sommerhalder M, Wolf P, Riener R and Hutter M (2023) ANYexo 2.0: A fully actuated upper-limb
exoskeleton for manipulation and joint-oriented training in all stages of rehabilitation. IEEE Transactions on Robotics 39(3),
2131–2150. https://doi.org/10.1109/TRO.2022.3226890

Cite this article: Penna MF, Giordano L, Tortora S, Astarita D, Amato L, Dell’Agnello F, Menegatti E, Gruppioni E, Vitiello N,
Crea S and Trigili E (2024) A muscle synergies-based controller to drive a powered upper-limb exoskeleton in reaching tasks.
Wearable Technologies, 5, e14. doi:https://doi.org/10.1017/wtc.2024.16

e14-18 Michele Francesco Penna et al.

https://doi.org/10.1109/LRA.2022.3183926
https://doi.org/10.1109/LRA.2022.3183926
https://doi.org/10.1109/TNSRE.2023.3341219
https://doi.org/10.1109/ICORR58425.2023.10304723
https://doi.org/10.1109/ICORR58425.2023.10304723
https://doi.org/10.1007/978-3-031-08645-8_49
https://doi.org/10.1177/1545968308328720
https://doi.org/10.1152/jn.00670.2012
https://doi.org/10.1109/TBME.2010.2089629
https://doi.org/10.1109/TBME.2010.2089629
https://doi.org/10.1186/s12984-021-00902-7
https://doi.org/10.1016/j.apmr.2009.10.026
https://doi.org/10.1007/s00421-010-1521-8
https://doi.org/10.1109/CIS-RAM47153.2019.9095779
https://doi.org/10.1186/s12984-019-0512-1
https://doi.org/10.1186/1743-0003-10-103
https://doi.org/10.1186/1743-0003-10-103
https://doi.org/10.1109/ICORR58425.2023.10304809
https://doi.org/10.1109/ICORR58425.2023.10304809
https://doi.org/10.1186/1743-0003-12-1
https://doi.org/10.1109/TMECH.2019.2961567
https://doi.org/10.1001/jama.2016.0276
https://doi.org/10.1109/TRO.2022.3226890
https://doi.org/10.1017/wtc.2024.16

	A muscle synergies-based controller to drive a powered upper-limb exoskeleton in reaching tasks
	Introduction
	Materials and methods
	NESM-gamma upper-limb exoskeleton
	EMG acquisition system
	The Syn-ID control algorithm
	Offline muscle synergies computation and GMMs training
	Onset detection algorithm
	Real-time high-level control
	Assistive strategy

	Study design
	Data analysis
	Statistical analysis

	Results
	Discussions
	Supplementary material
	Data availability statement
	Acknowledgments
	Authors contribution
	Funding statement
	Competing interest
	Ethical standard
	References


