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Summary

A key challenge of learning a new task is that the environment is high dimensional—there 

are many different sensory features and possible actions, with typically only a small reward-

relevant subset. Although animals can learn to perform complex tasks that involve arbitrary 

associations between stimuli, actions, and rewards,1–6 a consistent and striking result across 

varied experimental paradigms is that in initially acquiring such tasks, large differences between 

individuals are apparent in the learning process.7–12 What neural mechanisms contribute to initial 

task acquisition, and why do some individuals learn a new task much more quickly than others? 

To address these questions, we recorded longitudinally from dopaminergic (DA) axon terminals in 

mice learning a visual decision-making task.7 Across striatum, DA responses tracked idiosyncratic 

and side-specific learning trajectories, consistent with widespread reward prediction error coding 

across DA terminals. However, even before any rewards were delivered, contralateral-side-specific 

visual responses were present in DA terminals, primarily in the dorsomedial striatum (DMS). 

These pre-existing responses predicted the extent of learning for contralateral stimuli. Moreover, 

activation of these terminals improved contralateral performance. Thus, the initial conditions of 
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a projection-specific and feature-specific DA signal help explain individual learning trajectories. 

More broadly, this work suggests that functional heterogeneity across DA projections may serve 

to bias target regions toward learning about different subsets of task features, providing a potential 

mechanism to address the dimensionality of the initial task learning problem.

Abstract

Graphical abstract. 
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Results

Idiosyncratic and side-specific learning of a standardized visual decision-making task

To study individual differences in learning, we leveraged a standardized visual decision-

making task.7,13–15 In this task, at the beginning of each trial, a visual grating was presented 

on a screen on either the right or left side. Mice received a reward by turning a steering 

wheel with their front paws in the direction that centered the grating on the screen (Figures 

1A and S1A−S1C). Correct wheel turns were rewarded with 3 μL sucrose water, whereas 

incorrect ones led to a short timeout (2 s) and white noise (0.5 s). Across trials, the 

visual gratings varied in contrast (100%, 25%, 12%, and 6.25%), with contrasts randomly 

and uniformly selected. To maximize interpretability of the neural recordings over the 

course of learning, we did not use a shaping procedure,7 a debiasing protocol,7,16 or other 

experimenter interventions.

Mice showed a large degree of variability in their learning trajectories, both in terms of the 

number of sessions to reach high accuracy (Figure 1B) as well as in their probability of 

choosing left vs. right wheel turns (Figure 1C). Whereas some mice selected both options 

(right and left) to an equal extent from the beginning of training, others appeared to prefer 

one side or the other.

To quantify choices across learning, we constructed a behavioral model (Figure 1D) that 

described each session’s contrast-dependent choices (i.e., psychometric curve) based on 

weights that evolved across sessions: a weight on the visual stimulus contrast on the left 

(βleft) or right (βright) that captured the stimulus-dependent tendency to make left or right 

choices, a choice bias (βbias) that captured the tendency to choose one side or the other, 

irrespective of the stimulus, and a choice history regressor (βhist) that captured the tendency 

to repeat previous choices (see STAR Methods for model details). This model successfully 

reproduced the diverse psychometric curves observed across learning (Figure 1E; 3 example 

sessions from 3 example mice) and allowed us to isolate the contribution of each variable to 

each mouse’s behavior across learning (Figure 1F).

The model revealed that whereas some mice learned to increasingly weight visual stimuli 

similarly on both sides as training progressed (e.g., show an increase across training in both 

βright and βleft in Figure 1F, top), many instead displayed idiosyncratic learning trajectories 

where they preferentially weighted one stimulus vs. the other (e.g., large βright vs. small βleft 

in Figure 1F, middle; large βleft vs. small βright in Figure 1F, bottom). This side-specific 

learning is consistent with the choice asymmetries evident in the raw data (Figure 1C), 

though note that the model enables distinguishing between stimulus-contrast sensitivity (the 

stimulus weight) and a stimulus-independent choice bias. The side specificity of stimulus 

learning at the end of the training (βright - βleft) was predicted by the bias parameter βbias 

at the beginning of training, as evidenced both by plotting the stimulus weights based on 

groups defined by the level of initial bias (Figures 1G–1J) and by correlating initial bias with 

the difference between the final stimulus sensitivity weights (Figure 1K). By contrast, early 

βbias did not predict final βbias (Figure 1L).
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Based on these observations, we concluded that mice display idiosyncratic side-specific 

learning trajectories that could be predicted by initial bias. We next explored how individual 

differences in striatal dopaminergic (DA) signals might explain these individual learning 

patterns.

Across the striatum, contrast-dependent DA visual responses tracked side-specific 
individual learning trajectories

We recorded striatal DA signals longitudinally over the course of learning using fiber 

photometry. To ensure consistent expression of the activity indicator across time and 

individuals, we used double-transgenic mice that expressed GCaMP6f in DA neurons (DAT-

Cre × Ai148). Before training, optical fibers were implanted into the following striatal 

subregions of each mouse: dorsomedial striatum (DMS), dorsolateral striatum (DLS), and 

nucleus accumbens core (NAc; Figures 2A and S2A−S2C). Each subregion was recorded 

unilaterally, with a mixture of left and right hemispheres across subregions within each 

mouse and across mice for each subregion. During each session for each mouse, we 

recorded simultaneously from all 3 subregions.

Given that DA neurons encode reward-predictive cues,17 behavioral and DA sensitivity 

to the stimuli should be expected to increase during task acquisition, as animals learn 

that the stimuli are predictive of reward.8,9,18–21 To test this, we quantified DA sensitivity 

to the visual stimuli by fitting the normalized fluorescence data with a linear encoding 

model for each session and subregion (model schematic in Figure S3A). This allowed us 

to estimate stimulus response kernels (Figure 2B), which reflect the contribution of the 

visual stimulus to the neural signals while (linearly) accounting for other task events (actions 

and outcomes). This model could accurately capture moment-by-moment fluctuations in 

fluorescence on each trial (Figures 2C and S3B) as well as the trial-averaged PSTHs 

(Figures S3C and S3D).

Averaged across mice, across all regions, the magnitude of these stimulus responses 

increased across sessions, as mice learned that the stimuli were predictive of reward (Figure 

2D; L2-norm of stimulus response kernels). Moreover, stronger stimulus responses emerged 

to the stronger contrasts, consistent with stronger contrasts becoming more predictive of 

reward as the animals acquired the task (i.e., increasing stimulus-sensitivity behavioral 

weight with training in Figures 1F–1J). Whereas stimulus responses in DLS and NAc 

dopamine were similar for contralateral and ipsilateral stimuli, the DMS had much stronger 

stimulus responses for contralateral than ipsilateral stimuli (Figure 2D).22,23

How do these stimulus responses relate to each mouse’s idiosyncratic and side-specific 

learning profiles (Figure 1)? For each mouse, across sessions, we correlated the contrast 

dependence of the behavioral trajectories for stimuli on one side (stimulus contrast weight 

from the behavioral model; Figure 1) with the contrast dependence of the neural trajectories 

for stimuli on the same side (difference in L2-norm for highest vs. lowest contrast stimulus 

kernel). There was a strong correlation between the behavioral and neural measures across 

all regions (example trajectories, Figure 2E; neural and behavioral correlations for all mice, 

Figure 2F). Whereas DLS and NAc dopamine showed this correlation for both ipsilateral 

and contralateral stimuli, in the DMS, this correlation was only apparent for contralateral 
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stimuli (Figure 2F), presumably reflecting the contralateral specificity of the stimulus 

responses themselves (Figure 2D).

Thus, across the striatum, we observed the co-evolution during task acquisition of side-

specific dopamine and behavioral sensitivity to the visual stimuli, consistent with reward 

prediction error signaling in DA neurons.

Pre-existing visual responses in DMS DA terminals predict learning on the contralateral 
side

Although the striatum-wide correlations between DA trajectories and learning trajectories 

were striking (Figure 2), they do not clarify whether there are DA signals that precede 
behavioral changes that could potentially explain individual differences in task acquisition. 

Notably, the DMS (unlike the other regions) exhibited contrast-dependent responses to the 

visual stimuli from the very first session (Figure 2D). To determine whether these signals 

existed before training or whether they emerged during the first session, we examined DA 

responses during an earlier pre-exposure session (“session 0,” before the first session) in 

which the visual gratings were presented but mice did not receive rewards nor could they 

turn the wheel (Figure 3A).

In the DMS, but not the NAc or DLS, DA terminals had contrast-dependent visual responses 

during stimulus pre-exposure before training (session 0; DMS, Figures 3B and 3C; NAc 

and DLS, Figure S4). These DMS DA responses were contralateral-side specific, similar 

to the pattern observed throughout training (Figure 2D). The stronger response to higher 

contrast stimuli may be interpreted as a salience-related signal.18,24–35 Although dopamine 

has been associated with novelty coding,18,32,34–37 these pre-existing visual responses did 

not attenuate during the 25 presentations of each stimulus (Figure 3C).

A previous theoretical account38 suggests that novelty- or salience-related DA signals could 

provide animals with a “bonus” (or head start) in forming stimulus-reward associations. 

Therefore, we wondered whether variability in these DMS-specific pre-existing DA 

responses to the visual stimuli might predict side-specific differences across individuals 

in learning trajectories.

Indeed, we observed a striking relationship between these pre-exposure stimulus responses 

in DMS DA and individual differences in learning about stimuli on the side contralateral 

to the recording. For visualization purposes, we median-split mice into 2 groups based 

on their pre-exposure visual responses (Figure 3D; “strong” vs. “weak” contrast-dependent 

contralateral DMS DA responses on session 0) and plotted the trajectory of the behavioral 

model weights during subsequent task training in each group (Figures 3E−3H). Over the 

course of training, the animals with larger pre-exposure visual stimulus responses developed 

larger contralateral behavioral stimulus sensitivity weights (Figure 3E). By contrast, the 

pre-exposure DMS DA visual responses were not predictive of the bias, choice history, 

or ipsilateral stimulus sensitivity behavioral weights (Figures 3F−3H). Moreover, in the 

NAc and DLS, pre-exposure visual responses did not significantly correlate with behavioral 

weight trajectories (Figures S4 and S5), consistent with the very weak or non-existent 

pre-exposure visual responses in those regions (Figure 3B).
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Thus, pre-existing visual responses in DMS dopamine (but not NAc or DLS dopamine) 

predict individual differences in learning about the contralateral visual stimuli, even before 

any training.

Activation of DMS DA terminals during contralateral stimulus presentation improves side-
specific performance

The strength of pre-existing visual responses in DMS DA terminals predicted side-specific 

learning (Figures 3D, 3E, and S5). Could these visual signals causally impact side-specific 

performance during learning? Although it is clear that DA signals at the time of outcome 

reinforce previous actions,39–43 whether DA signals at the time of a preceding cue impact 

learning is less clear.33,39,40,44–46

To test for a causal role of visual-stimulus-related DA signals in the DMS, we performed 

brief unilateral optogenetic stimulation of DMS dopamine terminals at the presentation 

of the contralateral visual stimulus throughout training (Figures 4A, 4B, and S2D). The 

stimulation, which terminated before the outcome period (Figures S1D and S1E), led to 

a significant improvement in performance between contralateral vs. ipsilateral trials for 

the opsin vs. control groups, which grew over early training (Figure 4C). We therefore 

concluded that DA signals in the DMS could improve performance for contralateral stimuli.

Discussion

As mice learn to perform a visual decision-making task, variation across individuals 

in learning trajectories closely tracks visual responses in DA terminals across striatum, 

consistent with widespread reward prediction error coding (Figures 1 and 2). In contrast to 

these striatum-wide patterns, prior to any reward or training, pre-existing contralateral-side-

preferring visual responses are present in DMS DA terminals, and these signals predict and 

help explain contralateral-side-specific learning trajectories (Figures 3 and 4). This work 

is significant in suggesting that (1) the initial conditions of the DA system are important 

in explaining individual differences in learning and (2) feature- and projection-specific DA 

signals could be a mechanism to simplify the problem of initial task acquisition.

Pre-existing visual responses in DMS-projecting DA neurons could serve to simplify initial 
task acquisition

A major reason that initial task acquisition is challenging is the issue of credit assignment: 

in virtually any task, even nominally simple ones, there are multiple possible dimensions 

of the environment that an animal could try to learn about, with most being irrelevant to 

reward. In the case of the visual decision-making task used here, mice need to learn that 

the side-specific relationship between visual stimuli and actions is what leads to reward, 

whereas other stimuli, actions, or stimulus-action relationships do not (including many 

high-dimensional, uncontrolled incidental features of the environment47).

Our data suggest that pre-existing side-specific and projection-specific visual DA responses 

could serve to decrease the dimensionality of this learning problem. Different striatal 

subcircuits could be initialized to more easily learn reward associations for different subsets 

of stimuli or actions. Although our data reveal that the pre-existing response in DA terminals 
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in the DMS to contralateral visual stimuli explains learning for stimuli that are contralateral, 

other striatal circuits may have pre-existing DA sensory responses to other modalities 

that could, in turn, predispose learning in favor of those associations. For example, DA 

terminals in the tail of the striatum, an area critical for auditory-motor learning,48–51 have 

been shown to have Please cite this article in press as: pre-existing auditory responses.52 

Under our proposed framework, these pre-existing auditory DA responses may contribute to 

auditory-motor learning, much like the visual responses we report here appear to contribute 

to visual-motor learning. However, this possibility remains to be directly tested.

Indeed, such hypothetical specialization simplifies the curse of dimensionality insofar as 

any given subcircuit would be initially biased to quickly discovering simple associations, 

appropriate for tasks in which a small set of stimuli are associated with reward. Of 

course, there is no free lunch. Such a bias for sparse solutions would not help and might 

indeed hinder detecting contingencies that depend on more complex (e.g., multimodal) 

combinations of features. This reasoning also leads to testable predictions about which types 

of contingencies are most easily learnable: those that well match the feature selectivity of a 

projection-defined DA population. This may explain why, in the present data, animals often 

learn more quickly to respond to stimuli on one side or the other, independently from those 

on the other side, rather than the fuller response rule combining both sides (Figure 1).

This framework is consistent with a classic idea38 about the role of salience signals in DA 

neurons18,24–35 in providing an optimistic bonus to support learning. However, it adds to 

this idea by suggesting that there are a number of separate and specialized circuits rather 

than a single, global prediction error. Specifically, the finding that a visual contralateral-side-

specific signal in the DMS supports contralateral-side-specific learning is what is most novel 

about the current work.

Initial conditions of the DMS DA system can explain individual differences in task 
acquisition

Our data also help to explain why different individuals learn the same task much more 

quickly than others (Figure 1). The variation across individuals in the pre-existing visual 

response in DMS DA signals before task training and the presentation of any reward 

predicts individual differences in acquisition of the visual-motor task on the contralateral 

side (Figure 3). This supports the idea that the pre-existing DMS DA visual responses 

facilitate reward learning and highlights the importance of the initial conditions of the DA 

system in understanding the emergence of individual differences in behavior.

Relationship to prior experimental work on the DMS DA system

Our results complement prior work characterizing the DMS DA system, demonstrating 

contralateral response preferences,22,23,53 visual responses,22,52 and stimulus-value-related 

responses.54 Our work adds to the literature primarily by revealing a pre-existing sensory-

feature-specific and projection-specific DA signal that explains later learning (Figures 3 and 

4).

On the other hand, the relationship between our work and recent work implicating DMS 

dopamine in individual differences in the development of a habitual55 or punishment-
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resistant56 behavioral strategy is not yet clear. Although it seems possible that a pre-existing 

sensory-feature-specific DA signal could contribute to the emergence of those strategies, 

more work is required to clarify a potential connection.

Whereas here we focus on visual responses in DMS DA, previous work from our group 

and others has identified putative action correlates in this population.23,53,57,58 Lateralized 

action-related DMS DA responses may relate to head-orienting behavior, as DMS is a 

target of frontal-orienting fields,59,60 has been implicated in tasks with orienting behavioral 

outputs,61–63 and the DMS DA signal itself reverses with changes in orientation.53 For 

this reason, in the present task, action responses may be at least partially obscured by 

head-fixation, which prevents orienting behavior. Regardless, we are confident that the 

contrast-dependent responses examined here are visual, as we isolated them from wheel 

movement with an encoding model and, furthermore, confirmed their presence during 

stimulus pre-exposure in the absence of task-related movements (Figures 3A and 3B).

Relationship to the feature-specific RPE model of DA heterogeneity

The presence of a visual-feature-specific DMS DA signal is consistent with a recent model 

that proposes that response variation across DA neurons can be explained, at least in part, 

by differences in the feature representations in the inputs that are used to calculate reward 

prediction errors (“feature-specific reward prediction error model”47). In this framework, 

different dopamine neurons calculate different reward prediction errors based on different 

subsets of the full feature space, based on the corticostriatal inputs they preferentially 

receive. This model thus predicts similar feature selectivity of the DMS-projecting DA 

neurons relative to the DMS neurons themselves, assuming an anatomical arrangement 

where the DMS projects (indirectly or directly) primarily to DMS-projecting DA neurons.64 

Consistent with this prediction, the DMS receives direct visual cortical inputs65 and has 

visual responses before task training.66 Alternatively, the visual responses we observed 

in DMS DA neurons could originate from the superior colliculus rather than the basal 

ganglia.67–69

Resource Availability

Lead contact

Further information and requests should be directed to and will be fulfilled by the lead 

contact, Ilana Witten (iwitten@princeton.edu).

Materials availability

This study did not generate new unique reagents.

Star⋆Methods

Detailed methods are provided in the online version of this paper and include the following:

• KEY RESOURCES TABLE

• EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
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∘ Mice

• METHOD DETAILS

∘ Surgery

∘ Behavioral task

∘ Fiber photometry

∘ Histology

∘ Optogenetic stimulation

∘ Behavioral model

∘ Neural model

• QUANTIFICATION AND STATISTICAL ANALYSIS

∘ Linear Mixed Models variable coding

Star⋆Methods

Key Resources Table

REAGENT or 
RESOURCE

SOURCE IDENTIFIER

Bacterial and virus strains

AAV2/5-EF1a-
DIO-ChRmine-
mScarlet-WPRE-
hGHpA

Princeton 
Neuroscience
Institute Viral Core

N/A

Deposited data

Photometry and 
behavioral data

Generated by this 
study

https://github.com/YSanchezAraujo/PRE_VIS_DA_CURR_BIO/blob/main/
alex_figure_1_4_supp_1/download_data.py. (This script downloads all raw and processed 
data from International Brain Lab servers) Documentation for loading the dataset: 
https://int-brain-lab.github.io/iblenv/notebooks_external/loading_photometry_data.html

Experimental models: Organisms/strains

B6.SJL-S/
c6a3tm1.1(cre)Bkmn/
J (DAT∷IRES-
Cre)

The Jackson 
Laboratory

Stock # 006660; RRID: IMSR_JAX:006660

B6.Cg-
lgs7tm148.1(tetO-
GCaMPSf,CAG-
tTA2)Hze/J (Ai148)

The Jackson 
Laboratory

Stock # 030328; RRID: IMSR_JAX:030328

Software and algorithms

Neural Encoding 
model

Generated by this 
study

https://github.com/YSanchezAraujo/PRE_VIS_DA_CURR_BIO/blob/main/pipeline

Behavioral 
model

Generated by this 
study

https://github.com/YSanchezAraujo/PRE_VIS_DA_CURR_BIO/blob/main/pipeline

Figure 
visualization

Generated by this 
study

https://github.com/YSanchezAraujo/PRE_VIS_DA_CURR_BIO/tree/main/pipeline/
figures

Statistical 
analyses

Generated by this 
study

https://github.com/YSanchezAraujo/PRE_VIS_DA_CURR_BIO/blob/main/pipeline

Other
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REAGENT or 
RESOURCE

SOURCE IDENTIFIER

Fibers for 
optogenetics

Thor Labs BFL37-300

Ferrules for 
optogenetics

Precision Fiber 
Products

MM-FER-2006SS-330

Fibers for fiber 
photometry

Neurophotometrics FOC_BF_200um/1.25mm

IBL Behavior 
Rig

International Brain 
Laboratory

https://figshare.com/articles/preprint/
A_standardized_and_reproducible_method_to_measure_decision-
making_in_mice_Appendix_3_IBL_protocol_for_setting_up_the_behavioral_training_rig/
11634732

Multi-fiber 
photometry rig

Neurophotometrics FP3002

Branching 
Bundle 
Patchcord - Low 
Autofluorescence

Doric Lenses Inc. BBP(3)_200/220/900-0.37_2m_SMA-3xMF1.25_LAF

Experimental Model and Study Participant Details

Mice—For the fiber photometry experiments (Figures 1, 2, and 3), a total of 22 mice (n=14 

male and n=8 female) were used from a cross of DAT::IRES-Cre mice (JAX 006660) and 

the GCaMP6f reporter line Ai148 (JAX 030328). For the optogenetic experiments (Figure 

4), we used a total of 13 DAT::IRES-Cre mice (n=4 male and n=9 female). Mice were 

maintained on a reversed 12 h light cycle and experiments were formed on their dark cycle. 

All mice used were 3-4 months old at the start of training. All experimental procedures were 

conducted in accordance with guidelines from the National Institutes of Health and were 

reviewed by the Institutional and Animal Care Use Committee at Princeton University.

Method Details

Surgery

Prior to the start of the surgery, mice received a preoperative antibiotic (5 mg/kg Baytril) and 

analgesic (10 mg/kg Ketofen). Postoperative analgesic (10 mg/kg Ketofen) was administered 

daily for 3 days from the day of the surgery.

Headbar implantation—For all stereotaxic surgeries, mice underwent sterile stereotaxic 

surgery under anesthesia (5% isoflurane for induction, 1.5-2% for maintenance). Briefly, 

the scalp and underlying periosteum was removed. Bregma and lambda were leveled, and 

a small steel headbar was centered at -6.9 mm Anterior-Posterior relative to bregma70 and 

cemented to the skull with Metabond (Parkell). Headbar implantation was followed by virus 

infusion and/or optical fiber implantation (see sections below).

Optical fiber implantation—For fiber photometry experiments (data shown in Figures 

1, 2, and 3), low-autofluorescence optical fibers encased in a ferrule (0.37 NA, ø200 μm 

core, 1.25mm ferrule, Neurophotometrics) were implanted at each of the following locations 

(fiber tip location relative to bregma):
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• DLS: 2.6 mm (Medio-lateral, M-L), 0 mm (Anterior-Posterior, A-P), -2.8 mm 

(Dorso-ventral, D-V).

• DMS: 1.5 mm M-L, 0.74 mm A-P, -2.4 mm D-V.

• NAc: 1 mm M-L, 1.45 mm A-P, -4.5 mm D-V.

In each mouse, fibers targeting DLS and NAc were always inserted in the same hemisphere, 

the DMS fiber was positioned in the opposite hemisphere. The hemisphere allocation was 

counterbalanced across mice. For DLS, the location above was targeted with a fiber rotated 

at 10° in the M-L/D-V plane. For the optogenetics experiments (Figure 4), fiber optic fibers 

(ø300 μm core/0.39 NA, 2.5 mm ferrule, ThorLabs) were implanted bilaterally to target the 

DMS at the following coordinates: +/- 1.5 mm M-L, 0.74 mm A-P, -2.4 mm D-V. These 

locations were reached with a 10° M-L/D-V rotation.

Virus injections—For the optogenetics experiments (Figure 4), AAV2/5-EF1a-DIO-

ChRmine-mScarlet-WPRE-hGHpA (opsin virus, titer: 9e12 genome copies/ml, Princeton 

Neuroscience Institute viral core) or AAV2/5-EF1a-DIO-EYFP-WPRE-hGHpA (control 

virus, titer: 1.5e14 genome copies/ml, Princeton Neuroscience Institute viral core) was 

infused bilaterally in the VTA-SNc (+/- 1 mm M-L, -3.1 A-P, -4.66 D-V) of ~4-6 weeks old 

mice. 500 nl were infused in each hemisphere at a speed of 75 nl/min. In order to achieve 

sufficient terminal expression by the start of training (3/4 months), all viral injections 

were performed a minimum of 8 weeks in advance of training and prior to the headplate 

implantation surgery.

Behavioral task

Behavioral apparatus—We used the standardized behavioral apparatus from the 

International Brain Laboratory. For detailed instructions on the components and operations 

of behavioral apparatus used please see International Brain Laboratory.71 Briefly, the rig 

consisted of an LCD screen (LP097Q × 1, LG) and a custom 3D-printed mouse holder 

and head fixation system that held the mouse in front of the screen such that its forepaws 

rested on a rubber steering wheel (86652 and 32019, LEGO). A spout was positioned in 

front of the holder, which the mouse could reach it with its tongue but it did not occlude 

the field of vision. The spout was connected to a water reservoir and water flow was 

controlled with a solenoid pinch valve (225P011-21, NResearch). The rig was constructed 

with Thorlabs parts inside a small soundproof cabinet (9U acoustic wall cabinet 600 × 

600, Orion). A speaker (HPD-40N16PET00-32, Peerless by Tymphany) positioned on top 

of the screen was used to play task-related sounds, and an ultrasonic microphone (Ultramic 

UM200K, Dodotronic) was used to record ambient noise from the rig. Wheel position 

was recorded with a rotary encoder (05.2400.1122.1024, Kubler) controlled by the Bpod 

Rotary Encoder Module (Sanworks). Video of the mouse was recorded with a USB camera 

(CM3-U3-13Y3M-CS, Point Grey). All task-related devices were controlled by a Bpod State 

Machine (Sanworks) and synched with a data acquisition board (USB201, Measurement 

Computing). The task logic was programmed in Python and the visual stimulus presentation 

and video capture was handled by Bonsai72 and the Bonsai package BonVision.73
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Behavioral task and training—We used a standardized visual decision-making task.7,13 

In this task, mice are head fixed in front of a LCD screen. A visual grating (Gabor patches, 

0.1 spatial frequency) whose contrast varied across trials (100%, 50%, 25%, 12.5%, 6.25%) 

appeared on either the right or left side of the screen (+/- 35° azimuth), accompanied by a 

0.1 s tone (5 kHz sine wave, 10ms ramp). A steering wheel that could be used to move the 

visual grating along the horizontal axis was placed under the mouse’s paws (4° of visual 

grating movement /mm of wheel movement). The mouse could obtain a small reward of 

10% sucrose water (3 μl) by moving the visual grating to the center of the screen. On the 

contrary, if the mouse steered the grating away from the center (35° from initial position) or 

failed to center the grating in 60 s, the trial was considered an error. Errors were signaled by 

the lack of reward delivery and a brief noise (0.5 s, 65 dB, white noise). After a choice was 

completed (correct or incorrect), wheel movements could no longer move the visual grating 

for 1 or 2 seconds on correct versus incorrect trials, respectively. After this timeout, all trials 

were followed by a 0.5 s inter trial interval where no gratings were presented. In order for a 

new trial to start, the steering wheel had to be still for a “quiescent period”, whose duration 

was randomly sampled on a trial by trial basis from an exponential distribution of mean 0.55 

s and truncated from 0.4 to 0.7 s.

To simplify the interpretation of neural activity correlates of behavior across learning, mice 

experienced the full extent of the task (no shaping or debiasing protocol) from the first 

session. All mice were trained for a minimum of 18 sessions, 5-7 days a week, for a 1h 

session each day. In order to motivate the mice to do the task, mice had restricted water 

access from 1 week before starting training until the end of the experiment. We monitored 

that their weight never dropped more than 20% from their pre-water restriction weight, and 

ensured that they consumed a daily minimum of 1 ml of water per 25 g of weight. Most 

mice were able to obtain their daily allocation of water through the task alone after a few 

sessions. When this minimum was not achieved, mice were supplemented at the end of the 

day. Mice did not have a limit on how much water they could obtain in the task (See Figure 

S1A for average trials completed across training). Mice were video recorded every session.

Stimulus pre-exposure—For the experiment in Figure 3, before training on the task 

(1-10 days prior to the start of training), 18 mice underwent two 1h pre-exposure sessions 

where we measured neural responses to task features in the absence of reward. In the first 

pre-exposure session, mice were presented with the same visual gratings used in the task 

(with the same range of contrasts) on either side of the screen for 250-272 trials with a 

10 seconds inter-trial interval. The stimulus contrast and side in each trial was randomly 

sampled between the 8 possible combinations. As in the standard task, presentation of the 

visual gratings was accompanied by a brief 0.1 s tone. However, during this pre-training 

session the wheel was locked and the visual gratings remained static on either side of the 

screen. In the second session (data not shown), mice were allowed to move the wheel and 

move the visual grating but no rewards were given.

Fiber photometry

Data acquisition—We simultaneously recorded GCaMP6f signals from DA terminals in 

DMS, DLS and NAc with a multi-fiber photometry system (FP3002, Neurophotometrics) 
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controlled with the Bonsai Neurophotometrics module.74 Briefly, the system consists of a 

CMOS camera acquiring fluorescence emissions and an LED exciting with 470 nm light of 

10 ms width pulses at 50Hz (464/476 sessions) or 20 Hz (12/476 sessions). At the tip of the 

patch cable, the excitation light was ~0.04 mW. The camera acquisition epochs were timed 

with the emission lights. We used a Low Autofluorescence Patch Cord with 3 branches 

(BBP(3)_200/220/900-0.37_2m_SMA-3xMF1.25_LAF, Doric) to be able to image DMS, 

DLS and NAc simultaneously. Prior to each recording day, we passed 0.5 mW 470 nm light 

through the patch cord for 1 hour in order to photobleach autofluorescence within the patch 

cord, and improve recording quality.

Signal processing—Fluorescence signals recorded during each session from each 

location were transformed to dF/F using the following formula:

dF
F = F − F0

F0

F0 was the +/- 30 s rolling average of the raw fluorescence signal. Finally, dF/F signals 

were z-scored per-session, using a mean and standard deviation calculated based on all the 

data from each session. To be included for analysis, every recording (i.e. one session from 

one fiber location) had to have at least one >=1% dF/F & > 3 standard deviation transient 

for every 10 min of recording (55/1440 recordings excluded). All data were sampled or 

resampled at 50 Hz for analysis. Example recording traces can be found in Figure S3.

Histology

To confirm the locations of the opticals fibers and viral expression (Figure S2), mice were 

anesthetized with pentobarbital sodium (2 mg/kg, Euthasol) and transcardially perfused 

first with 10 ml of ice-cold phosphate buffered saline (PBS) followed by 25 ml of 4% 

paraformaldehyde (PFA) in PBS. Brains were then dissected and post-fixed in 4% PFA 

overnight at 4°C. After fixation, brains were sliced with a vibrating blade microtome 

(Vibrotome VT100S, Leica) and mounted with DAPI Fluoromount-G (Southern Biotech). 

All slices were imaged with an automated slide scanner (NanoZoomer S60, Hamamatsu).

Optogenetic stimulation

For the optogenetic experiment in Figure 4, fibers were implanted bilaterally in the DMS 

to avoid potential behavioral biases related to an asymmetrical surgery. Stimulation was 

delivered unilaterally to DMS terminals expressing the red-shifted opsin ChRmine. The 

stimulated hemisphere was chosen randomly and kept constant throughout training for 

any given animal. The group identity of the mice (opsin vs. control) were blinded to the 

experimenter throughout the duration of training. The stimulation procedure consisted of a 

200 ms laser train timed to the onset of any visual stimulus presentation contralateral to the 

stimulated hemisphere. Each 200 ms train of stimulation consisted of 20 Hz and 5 ms width 

light pulses at a wavelength of 532 nm (Shanghai Laser and Optics & Co). The light power 

was adjusted daily to 0.25 mW at the fiber tip (in the brain). Light power was chosen to 

ensure activation of the terminals immediately below the fiber tip but minimize off-target 

activation outside DMS. ChRmine can reliably be activated with an irradiance of >= 0.1 
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mW/mm2.75 Therefore, we chose a stimulation power that ensured irradiance above this 

threshold within but not outside of DMS. According to Deisseroth76 the chosen power and 

fiber (~0.25 mW 532nm light through ø300 μm core/0.39 NA fiber) yields an irradiance of 

0.88 mW/mm2 (above threshold) just below the fiber tip (DMS) and 0.01 mW/mm2 (below 

threshold) at the DMS/NAc border (1.7 mm ventral from the fiber tip).

Behavioral model

Our approach in modeling behavior aims to descriptively characterize the relatively long 

time-scale dynamics of learning that would be required to correctly associate stimuli, 

actions, and outcomes, particularly in the absence of shaping, de-biasing, or other 

experimental protocols. This relates to previous modeling efforts of similar datasets; 

however, instead of focusing on trial-to-trial fluctuations in psychophysical weights77 or the 

emergence of multi-state behavior,78 we focus on session-level changes in psychophysical 

weights. We leveraged advances in MCMC79–81 to infer a set of parameters and weights for 

Bernoulli generalized linear models (GLM) that were expressive enough to capture the full 

set of behaviors that mice in our task explored.

To model the behavioral data, we built a hierarchical Bernoulli GLM to describe the 

relationship between the animal’s choices and a variety of task covariates. The dependent 

variable was per-trial choice (a Bernoulli variable). The covariates included the stimulus 

presented to the animal on each trial on the left or right (capturing the classic psychometric 

curve) together with two additional effects: the animal’s exponentially filtered choice 

history, and a bias term. We parameterized the stimulus using two regressors, xL and xR, 

corresponding to the contrast of the left-side and right-side stimulus on each trial; because 

the stimulus only appeared on a single side in each trial, one of these regressors was zero 

on each trial. We transformed each contrast regressor using a tanh function: xside = tanℎ(αS)
tanℎ(α) , 

where S is either xL or xR and α is a positive constant governing the shape of the nonlinear 

transformation. Dividing by tanh(α) ensures that at 100% contrast trials xside = 1. This 

parametrization allowed the model to saturate at contrast levels below 100%, sidestepping 

the need to use lapse parameters to account for the flattening of the psychometric function 

at high contrast levels.82–84 We generated the choice history regressor ct by exponentially 

filtering previous choices with time constant π: ct = ct − 1 + π yt − 1 − ct − 1), where 

choice yt takes values of -1 and +1 for left and right choices, respectively. We inferred 

the time constant p using MCMC sampling, along with the other model parameters (see 

all parameters below). Across animals, α was fit to 2.5+/- 0.5 (mean+/-sem), and π to 

0.52+/-0.004.

Bernoulli GLM weights varied across sessions within each mouse. All other parameters 

were shared across sessions, within each mouse. For each mouse we built a hierarchical 

model over sessions, instantiating a separate set of Bernoulli GLM weights for each session. 

We placed broad prior distributions on the means of the weights on the first session. For all 

subsequent sessions, we assigned the weights a prior centered around the previous session’s 

inferred values.
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In particular, weight priors for session d took the form of a Student’s t-distribution: βd ~ 

StudentT (ν, βd − 1, Σ), where v is the degrees-of-freedom parameter for the Student T prior. 

This allowed the model to partially pool data across sessions (smoothing the estimates), 

but to do so adaptively per-animal, taking on larger values of v for animals that steadily 

and slowly learned the task, and smaller values for v for animals that had sudden and large 

changes in their learning. We also inferred the covariance of the StudentT priors, allowing 

parameters to change across sessions in coupled fashion. Unlike the Bernoulli GLM weights, 

we used a single shared covariance across all sessions. This covariance was parameterized 

as the quadratic-form product of a diagonal matrix: D = σ⊙I and a correlation matrix 

Ω: Σ = DΩD. The diagonal had a truncated Gaussian prior. The correlation matrix Ω was 

constructed from a lower triangular matrix L, which is a cholesky factor of the correlation 

matrix. These factors had a prior distribution LKJCholesky. The LKJCholesky prior itself 

has a parameter that tunes the strength of the correlations of the cholesky factor, which we 

also inferred. Functions and distributions specified here were from the STAN probabilistic 

programming language, and all model fits were performed in STAN.85

We summarize the behavioral model below, (we note that xside below refers to only the 

contrast regressors, while x refers to the vector of all regressors i.e., bias, left and right 

contrast weight, choice history):

Model Variable Description

ν ~ Gamma(2,0.2) Student T degrees of freedom

η ~ Normal(0,10)+ LKJ correlation parameter

L ~ LKJCholesky(η) Lower triangular factor

σ ~ Normal(0, 1)+ Diagonal scale of covariance

λ ~ Normal(0, 1) Pre-transformed choice kernel time constant

π = Phi(λ) Choice kernel time constant

Ω = LL′ Correlation Matrix

D = σ ⊙I Scale Matrix

∑ = D ΩD Covariance Matrix

μ ~ StudentT(ν, 0,5) Initial prior mean

β1 ~ StudentT (ν, μ, ∑) First session choice weight vector

βd ~ StudentT (ν, βd−1, ∑) d’th session choice weight vector

l ~ Normal(− 2,0.5) Pre-transformed alpha

α = softplus(l) Scale factor on stimulus

xside = tanℎ α S
tanℎ α

Transformed stimulus

pt,d = logistic(xt,d · βd) Probability of right choice

yt,d ~ Bernoulli (pt,d) Distribution over choices

Neural model

To model the dopaminergic signals across learning, we built a linear-Gaussian regression 

encoding model to describe the relationship between task events such as the visual stimuli, 
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actions, and reward delivery with the measured dopamine (DA). Since these events can be 

correlated in time and their effects on dopamine are partly overlapping, estimating such an 

encoding model helps to tease apart their individual contributions.

The regression model was defined by a set of temporal kernels that describe the DA impulse 

response to different task-related events, namely “stimulus”, “action”, and “reward”. For 

stimulus onset events, we used contrast-specific right and left temporal kernels, giving us 4 

temporal kernels per side. All kernels were strictly causal, lasting for a period of 1 second 

(50 Hz).

Similarly, we used contrast-specific action kernels triggered at the onset of the first 

significant wheel movement for left and right choices (first movement larger than 0.1 radians 

after the end of the quiescent period). In addition to separating these kernels by contrast and 

side (right / left choices) we separated them by correct and incorrect trials, resulting in 8 

temporal kernels per side. Separating the action kernels in this manner provided an estimate 

of the DA response to the interacting effects of initial stimulus location and the movement 

of the stimulus towards or away the center of the screen. Finally, we defined reward kernels 

corresponding to the moment when the animal received a water reward or a short time-out 

period in the same fashion as the action kernels, giving us another 8 temporal kernels per 

side. Thus, in total we had 40 temporal kernels in the encoding model.

We parameterized the temporal kernels in this model using a basis of linearly scaled 

“raised cosine” functions spanning a 1-second window after each event.86 The cosine basis 

significantly reduces the dimensionality of the design matrix X (compared to a full series 

of individual lagged event dummies). The effect on estimation of using a cosine basis is 

regularization. Use of a temporally smooth basis is also justified by the observation that 

temporally adjacent responses are strongly correlated.

We used ridge regression to estimate the model parameters, with ridge parameter g and 

observation noise σf 2 estimated via evidence optimization.87 We optimized for the vector of 

weights β, and the two scalars σf
2, γ, which are related to the vector of neural response f as 

follows: Σ = αf - 2 X′X+γl)- 1, β = σf - 2ΣX′f

All weights that made up the entire set of temporal kernels were denoted by β, and could 

be indexed by their corresponding event type. For example the vector of weights β1:50 

contained the weights for the temporal kernel for stimulus appearing on the right at 6.25% 

contrast (after one transforms them into the standard basis). The vector of weights β51:100 

contained the weights for the temporal kernel for stimulus appearing on the right at 12.5% 

contrast, and so on for all remaining contrast levels, and event types. We further computed 

summary statistics of these temporal kernels, specifically the L2-norm for the stimulus 

responses. These summary statistics gave us a scalar measure of neural response for each 

training session that we then related to the estimates from the Bernoulli GLM.

The encoding model for Figure 3 was fit as described above, however we only modeled the 

stimulus responses, and so the full set of coefficients that made up the kernels was restricted 

to an intercept, the 4 temporal kernels for stimulus appearing on the right, and 4 temporal 

kernels for stimulus appearing on the left side of the screen.
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Quantification and Statistical Analysis

All statistics reporting a correlation coefficient and a p-value on that correlation coefficient 

were computed using robust regression, in order to reduce the sensitivity of our statistical 

conclusions to outliers. Robust regression was performed using the rlm function from the 

RobustModels package in the Julia programming language. We used M-Estimators with a 

HuberLoss Function,88 the cholesky solver for the method argument, and an initial scale 

value of 10. For the robust regressions, we computed correlation coefficient-like statistics 

analogous to Pearson’s R for classic regression. In particular, we computed a pseudo-R2 

statistic, and its signed square root r, using the RobustModels package deviance and 

nulldeviance functions: pseudoR2 = 1 − deviance(model)
nulldeviance(model) , r = sign β1 × pseudoR2. Deviance 

is a generalization of the residual sum of squares for linear models, and null deviance is a 

generalization of the total sum of squares.

Statistics in Figure 2F were computed with the OneSampleTTest function in the 

HypothesisTests package from the Julia programming language. Significance was 

determined at p < 0.05, and all p-values reported are two-sided unless otherwise noted. 

See Table S1 for detailed results of these tests.

Statistical tests for group differences in behavioral trajectories in Figures 3E−3H, 4C, 

S4C−S4F, and S5I−S5L, were carried out with the MixedModels and AnovaMixedModels 

packages in the Julia programming language. Linear Mixed Models from the MixedModels 

package were used to test simple effects such as the relationship between session 0 DMS 

stimulus response on behavioral weight values within each training period (early, middle, 

late). We further used type-3 F-test ANOVAs from the AnovaMixedModels package to test 

the overall effects in the model, such as, across training periods, is there an influence of 

session 0 DMS strength on behavioral weight trajectories. For all Linear-Mixed Models and 

ANOVAs, a*b*c expands into a + b + c + a*b + a*c + b*c + a*b*c.

Linear Mixed Models variable coding

Across Table S2; Data S1, the variable “session” is a transformation of sessions 1 to 20. 

Sessions are split into 3 categories: early, middle, and late. The early category contains 

sessions 1 to 7, the middle category contains sessions 8 to 14, and the late category 

contains sessions 15 to 20. This categorical coding of sessions is motivated by the non-linear 

trajectory of accuracy in Figure 4C. LinearMixedModels package in Julia uses the first 

session category as the reference category. Thus in these tables “dms” can be interpreted as 

“session early & dms”.

In Data S1 the variable denoting the striatal region (DMS, DLS, NAc) is the mean-

subtracted session 0 striatal region’s contrast dependent stimulus response magnitude. (L2-

norm of the difference of the 100% contralateral stimulus contrast response to the 6%.) 

session & <region> denotes the interaction of the variables session and <region>. The 

dependent variables: βcontra, βipsi, βbias βchoice history correspond to the behavioral model 

choice weights.
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In Table S2 the variable cohort denotes the group identity of each mouse, either Chrmine or 

YFP. The variable contra denotes whether the trial corresponded to a stimulus contralateral 

from the recording site. The dependent variable correct is the side-specific (contra or ipsi) 

accuracy. Interactions and reference levels are as described above, thus the term: cohort: 

chrmine & contra:ipsi is the 3-way interaction of the reference level for session (sessions 

1–7, e.g. “session early”), cohort, and contra.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Dopaminergic responses track side-specific learning trajectories in a 

visuomotor task

• Dopamine in the DMS has pre-existing responses to contralateral visual 

stimuli

• Pre-existing DMS dopaminergic responses predict learning trajectories for 

contralateral stimuli

• Activation of dopamine terminals in the DMS improves contralateral 

performance
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In brief

Pan-Vazquez, Sanchez Araujo, et al. show how pre-existing contralateral visual responses 

in dopamine terminals in the dorsomedial striatum help explain side-specific learning 

trajectories of a visuomotor task. These results suggest that feature- and projection-

specific dopamine signals could simplify the problem of learning a new task.
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Figure 1. Idiosyncratic and side-specific learning trajectories
(A) Schematic of the task. On each trial, a Gabor patch of a different contrast (6.12%, 

12.5%, 25%, or 100%) is presented on the right or left side of a screen. Centering the patch 

with a steering wheel leads to a small water reward, whereas moving it out of the screen 

results in a short timeout (2 s) and white noise (0.5 s).

(B) Accuracy (fraction of trials rewarded) across training sessions.

(C) Probability of right choices across training sessions. In (B) and (C), each line represents 

one mouse, colored by their mean accuracy in sessions 16–20.
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(D) Schematic of the behavioral model. Choice (left or right) on each trial is predicted with 

a logistic function based on weighting the contrast of the right and left visual stimulus (βright 

and βleft), a bias term (βbias) coded such that positive values indicate rightward choice, and a 

choice history kernel. Weights evolved across sessions (see STAR Methods for details).

(E) Psychometric curves (“data”) and model fits (“model”) from 3 example mice on the first, 

middle, and last session of training. Lines and shading represent mean ± SEM.

(F) Model weights across training for the same mice from (E). Lines and shading represent 

mean and 95% confidence intervals.

(G) Early βbias (average of sessions 1–5) for all the mice, showing the subdivisions used in 

subsequent panels between mice with weak, left, or right initial bias.

(H–J) Average trajectories of bias, right and left stimulus weights across training for mice 

subdivided by their initial bias as shown in (G). Lines and shading represent mean ± SEM 

across mice.

(K and L) Relationship between early βbias (average of sessions 1–5) and the late difference 

in stimulus sensitivity weights (βright - βleft for sessions 16–20). r = 0.417, p = 0.0007.

(I) Relationship between early βbias (sessions 1–5) and late βbias (sessions 16–20). R = 

0.174, p = 0.522.

In (K) and (L), each dot is a mouse. Correlation and p values from robust regression. **p < 

0.01; ns, not significant.

Across all panels, n = 22 mice.

See also Figure S1.
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Figure 2. In DA terminals across the striatum, contrast-dependent visual responses track 
individual side-specific learning trajectories
(A) Experimental strategy used for collecting the fiber photometry data from DA terminals. 

Left: schematic of the recorded projections using the GCamPG6f × DAT::Cre mouse line. 

Right: example histology. Scale bar, 1 mm.

(B) Contralateral stimulus response kernels from an example mouse on an example session.

(C) Z scored dF/F (solid line) and predictions from the encoding model (dashed line) on 5 

different trials for an example mouse on an example session. R2 is the variance explained 

across the session within all trial epochs (from stimulus onset to 1 s after feedback).

(D) Stimulus response magnitudes (L2-norm) in each region and session, averaged across 

mice, for contralateral (top) and ipsilateral (bottom) stimuli. Lines and shading represent 

mean ± SEM.

(E) Trajectories of the contrast-dependence of neural stimulus response magnitudes 

(“neural”; difference in L2-norm for 100% and 6.25% contrast) and the behavioral stimulus 
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choice weights (“behavioral”) for contralateral (top) and ipsilateral (bottom) stimuli (from 

an example mouse in which DMS is recorded on one hemisphere and DLS/NAc on the 

other).

(F) Correlations of the neural and behavioral trajectories as shown in (E). p values calculated 

with t tests. *p < 0.05, **p < 0.01, ***p < 0.001; ns, not significant. See Table S1 for 

statistical details for (F). n = 22 mice in (D) and (F).

See also Figures S2 and S3.
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Figure 3. Pre-existing visual responses in DMS DA terminals predict side-specific learning 
trajectories
(A) Schematic of the stimulus pre-exposure session before training (“session 0”).

(B) Stimulus response kernels in the NAc, DMS, and DLS for contralateral and ipsilateral 

stimuli of each contrast, averaged across mice, during session 0 (pre-exposure). Lines and 

shading represent mean ± SEM.

(C) Heatmap of stimulus responses on session 0 to 100% contrast stimuli in the DMS for the 

first 25 trials, averaged across mice.

(D) Histogram across mice of contrast-dependent contralateral stimulus responses on session 

0, quantified as the difference in the L2-norm of the highest and lowest contrast contralateral 

stimulus, colored by a median split.

(E) Contralateral stimulus sensitivity weights from the behavioral model for mice with 

strong vs. weak contralateral contrast-dependent stimulus responses during session 0 

(subdivision of mice shown in D). Lines and shading represent mean ± SEM. ***p < 0.001 

for the interaction between DMS stimulus response on session 0 and session in a two-way 

ANOVA (see Data S1.1–S3.2 for model details and full results).
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(F) Same as (E), except for the ipsilateral stimulus weight from the behavioral model. No 

significant interaction (ns) between DMS stimulus response on session 0 and session (see 

Data S1.3–S3.4 for model details and full results).

(G) Same as (E) and (F), but for the bias weights from the behavioral model (transformed 

such that positive means contralateral bias). No significant interaction (ns) between DMS 

stimulus response on session 0 and session (see Data S1.5–S3.6 for model details and full 

results). In all panels, n = 18 mice.

(H) Same as (G), but for the choice history weights from the behavioral model. No 

significant interaction (ns) between DMS stimulus response on session 0 and session (see 

Data S1.7 and 3.8 for model details and full results).

See also Figures S2, S4, and S5 and Data S1.
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Figure 4. Stimulating DMS DA terminals at the onset of contralateral stimulus presentation 
improves side-specific performance
(A) Schematic of the optogenetic stimulation of DMS DA terminals. Mice either expressed 

ChRmine or a control construct in DA neurons. DA terminals in the DMS were 

optogenetically stimulated unilaterally (532 nm, 0.2 s burst duration, 5 ms pulse width, 

20 Hz pulses, ~0.25 mW) at the onset of the contralateral stimulus presentation throughout 

training.

(B) Example histology image of optical fiber location and terminal expression of ChRmine-

mScarlet. Scale bar, 900 μm.

(C) Comparison of performance for contralateral and ipsilateral stimulus trials in control (n 
= 7, left) and ChRmine (n = 6, right) mice. Lines and shading represent mean ± SEM. *p < 

0.05 for cohort (ChRmine/YFP) and side (contra/ipsi) interaction in three-way ANOVA with 

cohort (ChRmine/YFP), day, and side (contralateral/ipsilateral) as factors (see Table S2 for 

model details and full results).
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See also Figures S1 and S2 and Table S2.
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