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ABSTRACT: The activity coefficient represents the deviation
between an actual solution and an ideal solution, influencing the
solubility and diffusion of CO2 within a saltwater layer.
Consequently, it serves as a crucial parameter for numerical
simulations of CO2 storage in deep saltwater layers. However, in
numerical simulations of CO2 geological storage, the majority of
studies rely on the Helgeson−Kirkham−Flowers (HKF) equation
to compute activity coefficients, which necessitates obtaining
Debye−Hückel (DH) parameters. The conventional method
calculates the DH parameters via an interpolation algorithm,
which requires a long computation time during the numerical
simulation. Therefore, developing a method to quickly and
accurately calculate activity coefficients is vital for the overall
model efficiency. This study employed machine learning algorithms to train DH parameters derived from the IAPWS-95 method. It
could establish empirical formulas for DH parameters as functions of temperature and pressure, which were then substituted into the
HKF equation to swiftly compute activity coefficients. The results demonstrate that the activity coefficients obtained using this
method exhibit a small relative deviation from experimental values, with an average coefficient of determination of 0.9463 and an
average relative error of 2.28%. Furthermore, the computational speed was improved by 48%. This approach reduces the calculation
time for activity coefficients in geochemical reaction modeling, enabling DH parameters to be calculated solely based on temperature
and pressure, which is easy to use and has high accuracy. It facilitates rapid calculation of activity coefficients for solutions within a
temperature range of 0 to 300 °C and a pressure range of 0 to 200 MPa. Ultimately, this study holds significant importance for the
numerical simulation of geochemical reactions.

1. INTRODUCTION
People have recently become increasingly concerned about
CO2 emissions and environmental pollution in the petrochem-
ical industry, which has attracted widespread global attention
to reducing CO2 emissions and using clean energy. As
economic development progresses, China currently ranks first
in the world for annual CO2 emissions.

1−3 Consequently,
China has actively proposed the ambitious goal of achieving
peak CO2 emissions by 2030 and attaining carbon neutrality
before 2060.4,5 The primary means to achieve this goal is to
control the concentration of CO2 in the air. The capture,
utilization, and storage of CO2

6,7 are the key technologies for
reducing CO2 content and represent current research hotspots.
Among these, CO2 storage in deep saline water

8 is an effective
approach. However, due to the slow physical and chemical
interactions between CO2 and the surrounding water, rocks,
and other formations at specific temperatures and pres-
sures,9−11 the use of numerical simulation methods to study
geochemical reaction equilibrium models12 has emerged as one
of the most crucial research methods. The activity coefficient is
a crucial parameter in the geochemical reaction equilibrium

model13,14 and serves as a measure of the activity of substances
under specific conditions. In electrolyte solutions, due to ion
interactions, the total concentration of the electrolyte does not
accurately represent its effective concentration. Therefore, an
activity coefficient is introduced to quantify the deviation
between the actual and ideal solutions. Furthermore, the
calculation of activity coefficients in saline layers is intricately
linked to the DH theory.15−17 However, when applying the
Debye−Hückel (DH) theory to calculate activity coefficients,
the DH parameter must first be determined using the
interpolation method.18 Given the numerous seepage chem-
istry iterations required for numerical simulations of CO2
geological storage, the efficiency of the DH parameter
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interpolation algorithm significantly impacts the overall
simulation efficiency. Consequently, rapidly calculating the
activity coefficient in the geochemical reaction equilibrium
model is paramount for enhancing the speed and accuracy of
CO2 geological storage numerical simulations.
At present, many scholars both domestically and interna-

tionally use the DH theory correction model to calculate the
activity coefficient of solutions. It adds new parameters or
short-range interactions between ions based on the DH theory.
Frapiccini et al.19 used the Pitzer model to calculate the activity
of water and the activity coefficients of cations, anions, and
neutral species in the solution, Pitzer model considered short-
range interactions between ions based on DH theory and
established a semiempirical Pitzer model, but due to the
application trend of the Pitzer model toward multivariate
systems and a wider range, there are many mixed parameters in
the Pitzer model, and the physical meaning of the parameters is
not clear. Hessen et al.20 applied an improved e-NRTL
model21 to CO2−H2O monoethanolamine and CO2−H2O
methyldiethanolamine systems. The e-NRTL model22,23

indicates that only short-range interactions are considered
between ions of the same charge, therefore the model uses the
Pitzer−Debye−Hückel term to explain long-range Coulomb
interactions. Novikov24 improved the Helgeson−Kirkham−
Flowers (HKF) equation of state for polar undissociated
substances under infinite dilution conditions to describe the
properties and equilibrium of As(OH)3 and H3PO4 aqueous
solutions under infinite dilution conditions, and clarified the
anion parameters. This equation can theoretically and
consistently describe polar non charged species, and its
accuracy is comparable to the classical HKF equation. The
HKF model is based on the DH theory, Some parameters in
the HKF model ignore the properties of the electrolyte and are
determined only by pressure and temperature. The model can
be used to calculate the activity coefficient of solutions under
high-temperature and high-pressure conditions. Dolejs2̌5

evaluated the extrapolation behavior and accuracy of the
HKF model, and found that the solubility of quartz is
insensitive to the dielectric constant of aqueous solvents, and
the solubility of aqueous silica is too high under high pressure.
After recalibration, the solubility of quartz at high temperatures
was underestimated. The predicted solubility values of
corundum and calcite differ significantly from experimental
values under high temperature and high pressure. Although the
HKF model is flexible and recalibratable, it is difficult to infer

between hydrothermal and high temperature and high pressure
conditions, and there is significant numerical uncertainty due
to parameter autocorrelation and function form issues. Akinfev
et al.26 proposed a novel equation of state (EoS) for describing
the thermodynamic properties of aqueous non electrolytes
under infinite dilution. This equation only requires three
empirical parameters to fit experimental data, which are
independent of temperature and pressure and can predict the
entire thermodynamic properties of solutes under infinite
dilution. The new EoS is compatible with Helgeson−Kirkham
Flowers’ aqueous electrolyte model and is applicable to
reactions of minerals, gases, and water ions. Chen27,28 used
Newton−Raphson iteration29 to calculate the DH parameters
and the Pitzer equation when establishing a geochemical
reaction model to calculate activity coefficients. However, this
calculation method has convergence issues, and the calculation
process is cumbersome. Li30 used the HKF model to calculate
the chemical equilibrium constant in the CO2-water-salt-ore
body phase equilibrium coupling chemical equilibrium model.
However, because the parameter calculation method only
covers the range of temperatures and pressures from 0 to 250
°C and 0 to 100 MPa, there is a lack of data from the HKF
model under most pressure and temperature conditions.
Long31 used the BP neural network algorithm to train the
theoretical values in the study of CO2 geological buried models
to obtain empirical formulas for activity coefficients, this
method has small calculation errors and improves the
calculation speed.
Although various correction models can be used to calculate

the activity coefficient, most of them are time-consuming in
determining the DH parameters and involve numerous
parameters. Given that the HKF model can overlook the
complex composition of the electrolyte solution system, some
parameters are independent of its properties and only require
solving for the DH parameters and related ion parameters.
Therefore, building on previous research, this study introduces
machine learning algorithms for the first time to establish an
empirical relationship between DH parameters, pressure, and
temperature. By integrating this empirical formula with the
HKF model, the activity coefficient of the solution can be
swiftly calculated. The aim of this study is to address the issue
of slow DH parameter calculation, enhance the calculation
speed of activity coefficients in numerical simulations, and
significantly improve the overall numerical simulation speed
for CO2 sequestration in saline water layers.

Figure 1. Machine learning modeling flowchart.
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2. MACHINE LEARNING MODEL PROCESS
This study employs machine learning algorithms to train
models for predicting DH parameters and utilizes the HKF
model to calculate the activity coefficient of the solution. The
entire process can be divided into four main parts, as illustrated
in Figure 1.
(1) Data preparation. Due to the large amount of data

required by machine learning methods, the data are calculated
using IAPWS-95 and then organized into a suitable data set,
which is evenly divided into three data sets: training,
validation, and testing. The training set is used to train the
internal logical relationships of the model, the validation set is
used for model optimization and parameter adjustment, and
the test set is used only to verify the effectiveness of the model.
(2) Model establishment and optimization. Different machine
learning algorithms are used to process the samples, and the K-
means clustering algorithm, polynomial regression algorithm,
and K-NearestNeighbor (KNN) regression algorithm are
applied to perform regression calculations. Hyperparameters
refer to parameters manually set based on experience before
training the model. These parameters are important adjustable
parameters for controlling the calculations of machine learning
models. Grid search techniques are used to optimize the
performance of machine learning models on the validation data
set. (3) Evaluation of the models. This study uses support
vector machine, neural network, and K-means-KNN to
compare and analyze the established model. Additionally,
This study uses the mean square error (ηMSE), root-mean-
square error (ηRMSE), absolute average relative deviation
(ηAARD), and coefficient of determination (R2) as model
evaluation indicators and selects the DH parameter prediction
model with the best indicators. (4) Model application. After
determining the optimal prediction model, it is combined with
the HKF model, the temperature and pressure are used as
input data, and then the activity coefficient of the solution is
calculated. The calculated values are compared with the
experimental values.

3. TRAINING MODEL
3.1. Data Set Preparation. The data set for this study

consists of a total of 600000 data points, all of which were
obtained using the geochemical thermodynamics Python

program developed by Awolayo.32 The program used the
water state equation IAPWS-9532 to calculate the DH
coefficient of water. However, due to the complexity and
time-consuming nature of this method, it is not suitable as the
method for solving DH coefficients in this paper. Nevertheless,
this method can calculate a large number of theoretical DH
coefficient values, which are mainly used in this study. The
experimental data includes pressure, temperature, and DH
parameters, some of which are shown in Table 1. The range of
data usage is from 0 to 300 °C for temperature and from 0 to
200 MPa for pressure. The statistical analysis of all
experimental data is shown in Table 2, where the maximum
temperature in the data is 300 °C, the minimum temperature is
1 °C, and the average temperature is 150.5 °C. The maximum
pressure range is 2000 bar, the minimum pressure is 1.0132
bar, and the average pressure is 1000.5 bar. the data calculated
by the IAPWS-95 are divided into three parts, namely, the
training set, validation set, and test set. The training set and
validation set are used for model training and parameter
tuning, which is the process of establishing the relationships
among the DH parameters, temperature, and pressure
functions. The data in the test set do not participate in the
training of the model throughout the process. Its function is to
evaluate the model’s generalization ability (the model’s
adaptability to unknown data) after the model is established.
It is calculated only once throughout the entire process,
eliminating human interference. The prediction results in the
test set can be used to verify the authenticity and applicability
of the model.
3.2. Correlation Analysis of Data. There is a relationship

between DH parameters with temperature and pressure. Next,
the Pearson correlation coefficient33−36 will be used to study
the correlation coefficient between DH parameters with
temperature and pressure. Pearson correlation coefficient is a
linear correlation relationship used to reflect the degree of
linear correlation between two variables X and Y. According to
formula 1, calculate the correlation coefficient between
parameters as shown in Table 3.
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= =
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x x y y

x x y y
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2
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Table 1. Experimental Data (Partial)

Number of data P (bar) T (°C) Ar Br bNaCl bNa+,Cl−

1 1.0132 1 0.4944 0.3254 2.18 × 10−06 −0.11433
2 1.0132 2 0.495 0.3255 2.16 × 10−06 −0.11406
3 1.0132 3 0.4956 0.3257 2.15 × 10−06 −0.11377
4 1.0132 4 0.4962 0.3258 2.13 × 10−06 −0.11345
5 1.0132 5 0.4968 0.3259 2.12 × 10−06 −0.11311

··· ··· ··· ··· ··· ··· ···
600000 2000 300 0.84 0.3729 −8.35 × 10−07 0.1366

Table 2. Statistical Analysis of Data

Parameter Minimum value Maximum value Average value Standard deviation

P (bar) 1.0132 2000 1000.5 577.351
T (°C) 1 300 150.5 86.602
Ar 0.455 17.195 0.754 1.081
Br 0.0411 0.3925 0.349 0.0226
bNaCl −1.99 × 10−6 2.34 × 10−6 4.15 × 10−7 9.85 × 10−7

bNa+,Cl− −0.173 0.141 0.029 0.0751
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where r is Pearson’s correlation coefficient, x̅ and y̅ are the
mean values of the parameters, and xi and yi are the values of
the parameters corresponding to the ith sample.
The correlation coefficients between DH parameters are

presented in Table 3. In order to more intuitively display the
correlation between DH parameters, a heatmap of the
correlation coefficient was drawn, as shown in Figure 1. The
larger the absolute value of the Person correlation coefficient,
the closer it is to 1, indicating a stronger linear relationship
between the two variables. The closer it is to 0, the weaker the
linear relationship. Normally, we consider the Person
correlation coefficient to be within the range of [0.6, 1],
indicating strong correlation between two parameters, within
the range of [0.4, 0.6], indicating moderate correlation, within
the range of [0.2, 0.4], indicating weak correlation, and within
the range of [0, 0.2], indicating weak or no correlation between
two parameters. In addition, the positive and negative signs of
the correlation coefficient indicate the direction of correlation,
with positive numbers indicating positive correlation and
negative numbers indicating negative correlation.
Observing Figure 2, The correlation between DH parame-

ters and pressure is generally low. The correlation coefficient
between bNa+,Cl− and pressure is only −0.011, and the
correlation coefficient between Br and pressure is only 0.028.
There is basically no correlation between bNa+,Cl− and Br with P.
The correlation coefficient between Ar and pressure is −0.17,
indicating a weak negative correlation between these two

parameters. The correlation coefficient between bNaCl and p is
0.11, indicating a weak positive correlation between these two
parameters. The correlation between DH parameters and T is
high. The correlation coefficient between bNaCl and temper-
ature reached −0.99, indicating a super strong negative
correlation between these two parameters. The correlation
coefficient between bNa+,Cl− and temperature is 0.98, indicating
a very strong positive correlation between the two parameters.
The correlation coefficients between temperature with Br and
Ar are 0.65 and 0.23, respectively, indicating that both are
positively correlated with temperature. The correlation
between Br and temperature is strong positive, while the
correlation between Ar and temperature is weak positive.
3.3. Interpolation Algorithm. In the numerical simu-

lation of CO2 deep saline geological storage, the traditional
method is to use interpolation algorithm to calculate DH
parameters and obtain the activity coefficient of NaCl solution.
Interpolation algorithm37 is an algorithm that solves unknown
data points based on the relationships between known data
points using a certain function or mathematical model. The
specific implementation process of the interpolation algo-
rithm38−40 in this study is as follows:
Assuming the coordinates of a known point are (x0, y0) and

(x1, y1), to calculate the value of a position y on the line
connected to the known point within the interval [x0, x1], use
the following formula:

= × =
y y

x x

y y

x x

y y

x x

y y

x x
0

0

1 0

1 0

0

0

1 0

1 0 (2)

Since the value of x is known, the value of y can be obtained
according to formula 1 as follows:

= +

= +

y y x x
y y

x x

y
x x y x x y

x x

( )

( ) ( )

0 0
1 0

1 0

0
0 1 0 0

1 0 (3)

By using eqs 2 and 3, the DH parameter can be calculated.
Although interpolation algorithms are widely used in various
fields, they still face significant challenges. The computational
complexity of interpolation algorithms is usually high,
especially when there are a large number of data points or
the interpolation function is complex, which leads to longer
computation time in the numerical simulation process and
affects the efficiency of the model. The results of interpolation
algorithms are highly dependent on the accuracy and
distribution of known data points. If there are errors or
uneven distribution of data points, the interpolation results
may be significantly affected. Interpolation algorithms are
sensitive to noise, and if there is known noise or error in the
data points, the interpolation results may be significantly
affected. In response to the above challenges, this study
proposes a new method based on machine learning algorithms
to calculate DH parameters.
3.4. Machine Learning Models. After data set prepara-

tion, the training set data are processed using the K-means
clustering algorithm, polynomial regression algorithm, and K-
NearestNeighbor regression algorithm (KNN).
The K-means clustering algorithm is an unsupervised

machine learning algorithm based on distance measure-
ment.41,42 K-means clustering, as a preprocessing step in this
study, clusters the data and applies different classifiers to each

Table 3. Correlation Coefficients between Logging
Parameters

Parameter P (bar) T (°C) Ar Br bNaCl bNa+,Cl−

P (bar) 1
T (°C) 2.7 × 10−14 1
Ar −0.17 −0.23 1
Br 0.028 −0.65 −0.37 1
bNaCl 0.11 −0.99 −0.27 −0.63 1
bNa+,Cl− −0.011 −0.98 0.22 0.64 −0.98 1

Figure 2. Heatmap of correlations between parameters.
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cluster. For large-scale data sets, the K-means algorithm usually
has high computational efficiency and can identify similarities
and differences in the data, thereby revealing the inherent
features of the data and improving the algorithm’s predictive
performance.
First, the initial number of clusters k and the corresponding

initial cluster center C need to be randomly specified from the
training set. Then, the Euclidean distance method is used to
calculate the distance from the initial cluster center to other
data objects. This distance can divide the training set into k
clusters, thereby achieving high similarity of data within the
clusters. Finally, the model is tuned and retrained using the
validation set data to achieve optimal performance. The
formula is

=
=

d X C X C( , ) ( )i
j

m

j ij
1

2

(4)

In eq 4, X is the data object, Ci is the i-th cluster center, m is
the dimension of the data object, and Xj and Ci are the
attribute values of the j-th dimension of the data object X and
cluster center C.
The polynomial regression algorithm is a special linear

regression model,43,44 mainly aimed at adding new features to
the model, which are the result of combining the original data
features. Polynomial regression can fit data distributions of
various shapes, especially nonlinear relationships. Unlike linear
regression, polynomial regression can capture nonlinear trends
in data by introducing higher powers of variables, providing
more accurate predictions and explanations. Polynomial
regression has a high degree of flexibility and can adapt to
different levels of complexity by adjusting the order of the
polynomial. This makes it suitable for various forms of data,
including continuous and discrete data. Polynomial regression
can also be combined with other techniques such as
regularization, feature selection, cross validation, etc. to further
improve the performance and generalization ability of the
model.
First, the training set is trained into a bivariate polynomial

consisting of constant and independent variables P and T that
undergo finite degree multiplication and addition operations.
The bivariate polynomial is transformed into a multivariate
polynomial through variable substitution, and this method is
used to train the original DH parameter regression model.
Then, the validation set is used to optimize the polynomial
coefficients of the model so that the model approximates the
optimal model. The calculated value of the optimal model is
used as the prediction result. The steps are as follows:
Assuming that X(t) is the n-th degree polynomial

combination of the data characteristic pressure P and
temperature T, the algebraic polynomial X(t) can be used:

= + + + +Y W X W X W X W XLt
t t t

n n
t

0 0
( )

1 1
( )

2 2
( ) ( ) (5)

Equation 5 describes a multivariate linear mathematical model,
which can be expressed in its matrix form as

=Y WX (6)

where, in eq 6, Y = (Y0, Y1, Y2, ..., Yn)T, W = (W0, W1, W2, ...,
Wn)T, and
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Solved by the least-squares method

=W X X X Y( )T T1 (7)

By substituting eq 7 back into multiple linear regression eq 6,
the predicted values at a certain temperature and pressure can
be calculated using eq 6.
The KNN45−47 is an algorithm that infers the target point

through the features of the k-nearest neighboring points. This
method does not require assumptions about the distribution of
data, nor does it require a complex model training process,
making it easy to understand and implement. Unlike many
other regression methods that require building complex
mathematical models, KNN regression does not require
explicit construction of regression equations. KNN regression
can handle various types of data, including numerical,
categorical, and mixed data, and does not have strict
requirements for the distribution and shape of the data. It
can directly use the actual values in the training data for
prediction, which makes KNN regression advantageous in
dealing with complex nonlinear relationships.
First, KNN identifies k adjacent points of a sample and then

assigns different weights to the impact of points at different
distances. The weighted average method is used in data
regression, in which the weighted average of these k adjacent
points is used as the prediction result. The steps are as follows:
The selected training set is Xi = (X1, X2, ..., Xn), where each

training sample can be represented as Xi = (xi1, xi2, ..., xid, yi), i
∈ n, and the Euclidean distance D between the training sample
Xi and the test sample Xt = (xt1, xt 2, ..., xtd, yt) can be expressed
as

=
=

D X X x x( , ) ( )i t
m

d

im tm
1

2

(8)

In the formula, xim and xtm are the m-th dimensions of the data
object.
According to eq 8, the Euclidean distance between all

training samples and test samples is calculated, and the
Euclidean distances of their training samples are sorted from
smallest to largest. The first k sample points Xj = (xj1, xj2, ..., xjn,
yj) are removed, where j ∈ k. Then, the weight Wj of Xj on the
predicted value y is defined as

=
=

W
D X X

D X X

1/ ( , )

1/ ( , )
j

j t

j
k

j t1 (9)

The weights of k samples are calculated via eq 9, and the
predicted value yt of the test sample Xt is subsequently
calculated. The calculation method is as follows:

=
=

y W yt
j

k

j j
1 (10)

3.5. Model Evaluation Indicators. By using various
machine learning algorithms to train the training data set, the
K-means algorithm, polynomial regression algorithm, and
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KNN regression algorithm were ultimately determined to be
optimal for the data set. However, the method for determining
the predictive performance of the model was to use four
evaluation indicators, namely, the mean square error (ηMSE),
root-mean-square error (ηRMSE), absolute average relative
deviation (ηAARD), and coefficient of determination (R2).

ηMSE and ηRMSE48,49 are commonly used indicators to
measure the predictive ability of a model. ηMSE is the mean
of the sum of the squared differences between the predicted
and true values of the model. The square root of ηMSE is equal
to ηRMSE. In regression models, smaller ηMSE and ηRMSE
indicators are more accurate. Its expression is

=
=n

y y1
( )

i

n

i iMSE
1

2
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ηAARD50 is the expected value of the relative error loss, which
is the percentage of the absolute error to the true value. In
machine learning model prediction, the smaller the ηAARD value
is, the better the accuracy of the model. Its expression is

= ×
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100%
i

n
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i
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R2 51,52 is used to measure the proportion of changes in the
dependent variable that can be determined by the independent
variable. When evaluating the model, R2 is used to reflect the
goodness of fit of the model to the data. The closer R2 is to 1,
the more reliable the model is, the higher the prediction
accuracy, and the better the prediction effect. In contrast, as R2
approaches 0, it indicates poor prediction performance. Its
expression is
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In eqs 11−14, n is the number of samples, yi is the true
value, ŷi is the predicted value, and y̅i is the average value.
3.6. Activity Coefficient Calculation. Assuming that the

main cation in the solution is sodium and the main anion is
chlorine, after reasonably evaluating the DH parameter model,
the empirical formula obtained from machine learning
algorithms is substituted into the HKF53−55 equation. The
HKF equation is

= + + *

[ + | | ]+
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j j

2 0.5

NaCl Na ,Cl (15)

= + B I1 å 1/2
(16)

=
z

rj
j

e j

2
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In eqs 15−17, the subscript j refers to each ion, γ is the
activity coefficient of the ion, the DH parameters are Aγ, Bγ,
bNaCl and bNa+,Cl−, z is the ion electric charge, I is taken as the
true ionic strength of the solution, ω is the Born coefficient, η
is a constant equal to 1.66027, where re, j is the effective ionic
radius, and eqs 18 and 19 are the calculation methods for the
parameter a.̊

= + | | | | +r z zCation: å 2( 1.91 )/( 1)j e j j j, (18)

= + | | | | +r z zAnion: å 2( 1.81 )/( 1)j e j j j, (19)

By using machine learning algorithms, DH parameters are
regressed into functions related to temperature and pressure.
The effective ion radius re,j in the TOUGHREACT database is
used to calculate the value of a,̊ while the values of re, Na

+ and
re,Cl

− are inputted from the TOUGHREACT database and can
be modified as needed. The activity coefficients of NaCl
solutions under various conditions can be calculated using the
method of this study and then compared with the measured
values in the experiment.

4. RESULTS AND DISCUSSION
4.1. Comparison of Different Models. This study

establishes a model using machine learning algorithms. The
prediction accuracy of BP neural network (BPNN),56,57

support vector machine (SVM),58 and K-means-KNN models
were compared on the data set used in this study. Conduct a
comprehensive analysis based on the fitting effect diagrams of
different models in the following figure. Observing subgraph a
in Figure 3, most of the orange points in the SVM model are
close to the blue standard line, indicating a small deviation and
error range between the predicted and actual values. However,
there are a few orange point data points that deviate
significantly from the blue standard line and have significant
differences, indicating that the SVM model has weak
generalization ability and poor performance on this data set.

Figure 3. Fitting effect diagrams of different models. (Subfigure a presents the fitting effect on Aγ. Subfigure b presents the fitting effect of Bγ.)
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Observing subgraph a in Figure 3, most of the green points in
the BPNN model deviate significantly from the blue standard
line, but there are a few green points that deviate significantly
and are concentrated near the blue standard line. The model as
a whole has a large error and poor performance, and the
BPNN model is prone to getting stuck in local optima to some
extent. It can be concluded that these two models have
significant problems in training DH parameters.
Based on various performance indicators and statistical

analysis results, it can be concluded that the BP neural network
model and support vector machine model have significant
shortcomings in fitting the DH parameters in the studied
system. Their prediction accuracy and generalization ability are
relatively average, and they have not achieved the expected
high-level performance. This result suggests that under the
current data set and problem framework, these two models
may not be the optimal models. In view of this, in future
research work, this paper will explore and adopt another more
suitable model for fitting and predicting DH parameters, in
order to obtain more accurate results.

4.2. Debye−Hückel Parameter: Empirical Formula.
First, K-means clustering was used to classify Aγ, Bγ, bNaCl and
bNa+,Cl− parameters under different conditions, with training
data accounting for 70%, validation data accounting for 10%,
and testing data accounting for 20%. Using temperature and
pressure as inputs and DH parameters as outputs, DH
parameter models are established based on machine learning
algorithms.
Because water will transition from liquid to gas at a specific

pressure and temperature, the DH parameters can be further
divided using the saturated vapor pressure. The empirical
formula for saturated vapor pressure is as follows:

= [

+ × + ×
+ × ×
+ × ×
+ × ×
+ × ] < < °

P T

T T
T T
T T

T T
T T C

0.00615394701324938 0.00042755840439552

1.60536507427174 10 1.84080329702414 10
5.06015372631522 10 9.98348006346218 10
3.59517436346361 10 1.87782950940769 10
4.9464266829949 10 7.20104409044382 10
4.809295186264 10 0 300

sat
5 2 7 3

9 4 12 5

13 6 15 7

18 8 21 9

24 10 (20)

Table 4. DH Parameters: Aγ Polynomial Coefficient Table

P < Psat Psat < P < 220.6 bar P > Psat 700 < P < 1350 bar 1350 < P < 2000 bar

Coefficient 0 < T < 300 °C 0 < T < 300 °C 0 < T < 300 °C 0 < T < 300 °C 0 < T < 300 °C
W0 8.15753657 0.49443726 0.49306613 0.49191262 0.48388707
W1 0 0 0 0 0
W2 4.49455454 −1.33 × 10−05 −2.87 × 10−05 −2.75 × 10−05 −2.92 × 10−05

W3 −7.37 × 10−02 4.54 × 10−04 6.34 × 10−04 6.88 × 10−04 1.08 × 10−03

W4 −3.89 × 10−02 1.26 × 10−07 1.15 × 10−08 9.95 × 10−09 7.78 × 10−09

W5 −3.65 × 10−02 −1.02 × 10−06 −7.16 × 10−08 −1.17 × 10−07 −2.44 × 10−07

W6 5.91 × 10−04 8.94 × 10−06 4.90 × 10−06 4.03 × 10−06 2.33 × 10−06

W7 2.42 × 10−04 −1.12 × 10−09 −9.57 × 10−12 −5.59 × 10−12 0
W8 1.30 × 10−04 7.13 × 10−10 −2.14 × 10−10 1.47 × 10−10 0
W9 1.22 × 10−04 1.01 × 10−08 1.55 × 10−09 −1.88 × 10−09 0
W10 −2.19 × 10−06 −3.91 × 10−08 −1.15 × 10−08 2.59 × 10−09 0
W11 −9.17 × 10−07 2.53 × 10−12 2.20 × 10−14 0 0
W12 −2.01 × 10−07 1.08 × 10−13 −3.69 × 10−13 0 0
W13 −1.61 × 10−07 −1.23 × 10−12 3.87 × 10−12 0 0
W14 −1.44 × 10−07 −3.93 × 10−11 −2.08 × 10−11 0 0
W15 2.80 × 10−09 1.06 × 10−10 5.09 × 10−11 0 0

Table 5. DH Parameters: Bγ Polynomial Coefficient Table

P < Psat Psat < P < 220.6 bar P > Psat 700 < P < 1350 bar 1350 < P < 2000 bar

Coefficient 0 < T < 300 °C 0 < T < 300 °C 0 < T < 300 °C 0 < T < 300 °C 0 < T < 300 °C
W0 0.06267438 0.32488912 0.324238567 0.324163605 0.324360463
W1 0 0 0 0 0
W2 4.77 × 10−02 2.26 × 10−06 −1.65 × 10−07 −1.03 × 10−06 −1.17 × 10−06

W3 −5.92 × 10−04 1.47 × 10−04 1.66 × 10−04 1.78 × 10−04 1.81 × 10−04

W4 −3.13 × 10−03 −4.78 × 10−09 1.79 × 10−09 8.09 × 10−10 4.44 × 10−10

W5 −3.69 × 10−04 −4.22 × 10−08 −3.85 × 10−08 −2.44 × 10−08 −1.73 × 10−08

W6 6.55 × 10−06 2.48 × 10−07 1.76 × 10−07 1.05 × 10−07 6.60 × 10−08

W7 3.53 × 10−06 0 0 0 0
W8 4.28 × 10−07 0 0 0 0
W9 1.27 × 10−06 0 0 0 0
W10 −2.62 × 10−08 0 0 0 0
W11 −1.31 × 10−08 0 0 0 0
W12 −2.87 × 10−09 0 0 0 0
W13 −2.39 × 10−10 0 0 0 0
W14 −1.56 × 10−09 0 0 0 0
W15 3.43 × 10−11 0 0 0 0
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In eq 20, Psat is the saturated vapor pressure of water, bar. T
is the temperature, °C. The temperature T can be substituted
into eq 20 to calculate the saturated vapor pressure Psat of
water.
The training data for Aγ and Bγ are fed into the polynomial

regression algorithm by using Python. The coefficient matrix of
the polynomial is obtained through multiple sets of
polynomials, and the coefficients Aγ and Bγ are obtained
through the algorithm. The coefficients of the polynomial
regression model are shown in Tables 4 and 5. Then, the
validation data are used to optimize the initial models of Aγ
and Bγ. The prediction results of the optimized polynomial
regression model are shown in Figure 4.
By using the KNN regression algorithm to model the

training data of bNaCl and bNa+,Cl− separately, due to the large
model error established by the default parameter KNN
regression algorithm, the initial models of bNaCl and bNa+,Cl−
were optimized using the validation data. During the parameter
optimization process, the model with the best evaluation index
was found. The prediction results of the optimized KNN
regression model are shown in Figure 5, and the optimized
KNN model parameter results are shown in Table 6.
The results of bNaCl and bNa+,Cl− predicted by the KNN model

are fed into the polynomial regression algorithm, and then the
polynomial empirical formulas of bNaCl and bNa+,Cl− are obtained

through the predicted values of the KNN model. The model
coefficients are shown in Table 7.
4.3. Model Evaluation. The hardware device used in this

study is a laptop equipped with an i7 CPU-12490F, RTX2060s
GPU, and 16GB of memory. This computer runs on the
Windows 11 operating system and is configured with Python
3.6 and Anaconda environment. This study utilizes PyCharm
as a compiler for writing and debugging algorithmic Python
code. The data set was processed using machine learning
algorithms and interpolation algorithms, and their processing
times were compared. The efficiency graph is shown in Figure
6. Under the same device testing conditions, as the number of
operations increases, the difference in computation time
between the two algorithms gradually increases. The use of
machine learning models requires less computation time, as
shown in Table 8. The average computation speed of using
machine learning models is 48% greater than that of
interpolation algorithms (i.e., traditional calculation methods),
significantly improving the computation speed of the DH
parameters.

Figure 4. Aγ and Bγ prediction effect diagram established by the polynomial regression algorithm. (Subfigure a presents the fitting effect on Aγ.
Subfigure b presents the fitting effect of Bγ.)

Figure 5. Prediction effect of bNaCl and bNa+,Cl− established by the KNN regression algorithm. (Subfigure a presents the fitting effect on bNaCl.
Subfigure b presents the fitting effect of bNa+,Cl−.)

Table 6. KNN Model Parameters Table

Algorithm
K-
value Weight

Computing
method Metric function

KNN 4 Distance Kd_tree Euclidean distance
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Separate Aγ, Bγ and bNaCl, bNa+,Cl− test sets were input into the
optimized polynomial regression model and KNN regression
model, and the predicted and experimental values were
evaluated. The evaluation results are shown in Table 9. The
ηMSE values of the experimental and predicted values in the test
set are less than 0.1, the ηRMSE values are less than 0.1, and the
ηAARD values are mostly less than 1%. The model has excellent
prediction accuracy, R2 is relatively large, and the value is close
to 1, making it suitable for predicting DH parameters.
4.4. Solving for the Activity Coefficient of the NaCl

Solution. Then, machine learning models are used to calculate
the DH parameter predicted values. The predicted values were
substituted into the HKF equation to calculate the activity
coefficients of the NaCl solutions at 25 and 110 °C. The
accuracy of the machine learning model was verified by
comparison with the experimental values of the activity
coefficients of NaCl solutions.59,60 The relative error results
were calculated using the predicted and experimental values, as
shown in Table 10. The fitting effect of the model’s predicted
and experimental values is shown in Figure 7.
Table 10 shows that when calculating the activity

coefficients of NaCl solutions at 25 and 110 °C, the average
R2 of the model is 0.9463, indicating high accuracy of the fitted
experimental values. The maximum relative error of the activity
coefficient model value of the NaCl solution at 25 °C is 3.44%,
the minimum relative error is 0.22%, and the average relative
error is 1.98%. The maximum relative error of the activity
coefficient model value of the NaCl solution at 110 °C is
5.06%, the minimum relative error is 0.96%, and the average

Table 7. DH Parameters: bNaCl and bNa+,Cl− Polynomial Coefficient Table

bNaCl coefficient bNa+,Cl− coefficient

1 < P < 700 bar 700 < P < 1350 bar 1350 < P < 2000 bar 1 < P < 700 bar 700 < P < 1350 bar 1350 < P < 2000 bar

Coefficient 0 < T < 300 °C 0 < T < 300 °C 0 < T < 300 °C 0 < T < 300 °C 0 < T < 300 °C 0 < T < 300 °C
W0 2.132 × 10−06 1.95 × 10−06 2.22 × 10−06 −0.12457 −0.12263 −0.13261
W1 0 0 0 0 0 0
W2 −5.06 × 10−11 4.88 × 10−10 1.69 × 10−11 −6.34 × 10−06 −1.53 × 10−05 −3.51 × 10−06

W3 −1.28 × 10−08 −1.41 × 10−08 −1.44 × 10−08 1.43 × 10−03 1.46 × 10−03 1.43 × 10−03

W4 −6.29 × 10−17 −2.52 × 10−13 −1.8 × 10−16 −1.08 × 10−17 6.95 × 10−09 −4.68 × 10−17

W5 2.14 × 10−12 1.37 × 10−12 6.1 × 10−13 1.78 × 10−08 −2.64 × 10−10 −1.82 × 10−08

W6 −6.13 × 10−13 5.68 × 10−12 9.72 × 10−12 −1.95 × 10−06 −1.99 × 10−06 −1.83 × 10−06

Figure 6. Efficiency diagram of the machine learning algorithm and
interpolation algorithm.

Table 8. Operation Schedule of Machine Learning and
Interpolation Algorithms

Calculation times
(Ten thousand)

Machine
learning
(Second)

Interpolation
algorithms
(Second)

Speed
improvement
rate (%)

10 0.319 0.6009 46.91
20 0.62 1.17 47
30 0.92 1.7684 47.98
40 1.2255 2.3901 48.73
50 1.5367 3.0019 48.81
60 1.8673 3.607 48.23

Table 9. DH Parameter Model Evaluation Indicators

Coefficient 0 < T < 300 °C ηMSE ηRMSE ηAARD R2

Aγ 1 < P < 700 bar, P < Psat 0.0179826 0.134099 11.276292 0.9985567
1 < P < 700 bar, Psat < P < 220.6 bar 2.05 × 10−06 0.0014327 0.3070689 0.999937
1 < P < 700 bar, P > Psat 6.76 × 10−07 0.0008224 0.3064672 0.9999756
700 < P < 1350 bar 1.01 × 10−06 0.001004 0.3429198 0.9999467
1350 < P < 2000 bar 1.66 × 10−06 0.0012881 0.37269 0.9998841

Bγ 1 < P < 700 bar, P < Psat 9.93 × 10−07 0.0009965 0.7971206 0.9998352
1 < P < 700 bar, Psat < P < 220.6 bar 7.37 × 10−08 0.0002714 0.6476086 0.9997761
1 < P < 700 bar, P > Psat 5.19 × 10−08 0.0002278 0.6472493 0.9998337
700 < P < 1350 bar 6.42 × 10−08 0.0002533 0.6497079 0.9997523
1350 < P < 2000 bar 9.98 × 10−08 0.0003159 0.6514961 0.9995496

bNaCl 1 < P < 700 bar 1.40 × 10−17 3.74 × 10−09 0.724137 0.9999878
700 < P < 1350 bar 7.71 × 10−18 2.78 × 10−09 0.716769 0.9999915
1350 < P < 2000 bar 6.22 × 10−18 2.49 × 10−09 0.695731 0.9999924

bNa+,Cl− 1 < P < 700 bar 1.18 × 10−08 0.0001085 0.9671937 0.9999979
700 < P < 1350 bar 6.56 × 10−09 8.10 × 10−05 0.971269 0.9999988
1350 < P < 2000 bar 5.91 × 10−09 7.68 × 10−05 0.969411 0.9999989
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relative error is 2.59%. Table 7, Figure 6 show that the activity
coefficients calculated by the model are highly similar to the
experimental values, and the data trends are consistent. They
can be applied to the calculation of the geochemical reaction
equilibrium model, indicating that the model trained by
machine learning is reasonable and accurate.
Figure 8 shows a comparison of the fitting effect between the

predicted values and actual values of different models. The
comparison of fitting effects in Figure 8 can provide a more

intuitive observation of the fluctuations and errors between the
model prediction results. The figure uses dots of different
colors and shapes to represent the predicted values of the
machine learning model and traditional calculation methods.
The two light blue dashed lines in the figure represent the 5%
error line, while the dark solid line represents the true value of
the activity coefficient of NaCl solution, located between the
two light blue lines. It can be intuitively observed that the
prediction results of the machine learning model represented
by the red dots are almost entirely between the two light green
5% error lines, and are closer to the deep blue solid line.
However, there is a noticeable dispersion phenomenon
between the yellow dots and the red dots. The fitting effect
between the predicted and actual values of the two methods
indicates that the machine learning model has better accuracy
and speed in calculating the activity coefficient of NaCl
solution than traditional calculation methods.
Figure 9 shows the residual plot between the predicted

results of the two models and the true values. Residual analysis
is an effective method for determining the accuracy of model
predictions, which can help determine whether the established
model is suitable. The residual plots within two dashed
rectangular boxes represent the machine learning model and
the traditional computational method model from left to right.
Observing Figure 9, it can be seen that the residuals of different
models are randomly distributed without obvious patterns,
indicating that all models have a certain predictive ability for
the activity coefficient of NaCl solution. However, it can be
observed that the residual values predicted by traditional
calculation methods are relatively large, indicating that the

Table 10. Comparison of NaCl Activity Coefficients and Errors in Solutions

Temperature (°C) NaCl concentration (mol/kg) Experimental value Predicted value R2 Relative error (%)

25 0.1 0.7775 0.7664 0.9716 1.48
25 1 0.6581 0.6583 0.22
25 2 0.6684 0.6867 2.73
25 3 0.7147 0.7393 3.44
25 4 0.7832 0.8081 3.19
25 5 0.8747 0.893 2.09
25 6 0.9853 0.9786 0.68
110 0.1 0.8285 0.8085 0.9209 2.41
110 1 0.712 0.676 5.06
110 2 0.722 0.691 4.29
110 3 0.759 0.748 1.45
110 4 0.84 0.8248 1.81
110 5 0.938 0.918 2.13
110 6 1.04 1.03 0.96

Figure 7. Fitting effect of the NaCl activity coefficients. (Subfigure a is at 25 °C. Subfigure b is at 110 °C.)

Figure 8. Comparison of the fitting effect between predicted values
and actual values using machine learning algorithm models and
interpolation methods.
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accuracy of their prediction results is low. It is evident that the
residual values of machine learning models are significantly
higher than those of traditional calculation methods. It can be
applied to the calculation of the geochemical reaction
equilibrium model, indicating that the model trained by
machine learning is reasonable and accurate.

5. MAIN LIMITATIONS AND FUTURE WORKS
The machine learning algorithm proposed in this study
significantly enhances the calculation speed and accuracy of
activity coefficients. However, its applicability is limited to a
temperature range of 0 to 300 °C and a pressure range of 0 to
200 MPa. For geological storage conditions exceeding these
limits, the accuracy and applicability of this method remain
unverified, suggesting the need for further model expansion
and optimization in practical applications. During the training
of machine learning models, temperature and pressure are
utilized as input features to predict DH parameters, with a
focus solely on improving their calculation speed and accuracy.
Yet, the calculation of activity coefficients may also be
influenced by various other factors, such as the concentration,
ion type, and ion charge of NaCl solutions, which may
necessitate the use of additional relevant databases. This could
potentially introduce bias in the model’s calculation results
under specific conditions.
The primary objective of this study is to improve the

calculation speed and accuracy of activity coefficients through
the application of machine learning algorithms, indirectly
enhancing the computational speed of numerical simulations
for CO2 deep saltwater storage. While the numerical
simulation of CO2 deep saltwater storage is not the focus of
this study, it is noteworthy that computational efficiency may
become a limiting factor in such simulations due to the
complexity of multiple seepage coupling operations, varying
geological conditions, and diverse chemical reaction types.
Therefore, future research must further optimize the algorithm
and consider the model’s influencing factors from multiple
perspectives to improve its computational efficiency and
quality.
In summary, this study has made significant progress in

using machine learning algorithms to accelerate the calculation
of activity coefficients in the numerical simulation of CO2
geological storage, but there are still some limitations. In order
to overcome these limitations, future research needs to further

explore the applicability of the model, selection of input
features, validation of experimental data, interpretability of the
model, optimization of computational efficiency, and numerical
simulation applications.

6. CONCLUSIONS

(1) Traditionally, the HKF equation is used to calculate the
activity coefficient of NaCl solution in numerical
simulations of CO2 deep salt water geological storage.
The calculation of the HKF equation requires obtaining
DH parameters, while traditional methods calculate DH
parameters through interpolation algorithms, which
results in longer computation time during numerical
simulation. This study used machine learning algorithms
to calculate DH parameters, which increased the
calculation speed by 48% compared to interpolation
algorithms. At the same time, machine learning
algorithms can avoid many conditions and assumptions,
and can only quickly calculate DH parameters based on
the characteristics of the data set itself.

(2) This study combines K-means clustering, polynomial
regression, and KNN regression with the HKF equation
to jointly train DH parameters obtained from the
IAPWS-95 method, and constructs activity coefficient
calculation formulas related to temperature and pressure.
The activity coefficients obtained by this method have
relatively small deviations from experimental values. The
research results show that the average coefficient of
determination between the activity coefficients calcu-
lated using machine learning algorithms and exper-
imental values is 0.9463, with an average relative error of
2.28%.

(3) This research method simplifies the calculation process
of DH parameters and can quickly calculate the activity
coefficient of solutions within the temperature and
pressure range of 0 to 300 °C and 0 to 200 MPa, with a
wide range of applications. The method proposed in this
study greatly improves the efficiency of numerical
simulation of CO2 geological storage. Due to its high
accuracy and ease of use, this method is of great
significance for numerical simulation of geochemical
reactions, providing new computational methods and
ideas for research in related fields.
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