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ABSTRACT: Nontarget analysis (NTA) by liquid chromatog-
raphy coupled to high-resolution mass spectrometry improves the
capacity to comprehend the molecular composition of complex
mixtures compared to targeted analysis techniques. However, the
detection of unknown compounds means that quantification in
NTA is challenging. This study proposes a new semi-quantitative
methodology for use in the NTA of organic aerosol. Quantification
of unknowns is achieved using the average ionization efficiency of
multiple quantification standards which elute within the same
retention time window as the unknown analytes. In total, 110 authentic standards constructed 25 retention time windows for the
quantification of oxygenated (CHO) and organonitrogen (CHON) species. The method was validated on extracts of biomass
burning organic aerosol (BBOA) and compared to quantification with authentic standards and had an average prediction error of
1.52 times. Furthermore, 70% of concentrations were estimated within a factor of 2 (prediction errors between 0.5 and 2 times) from
the authentic standard quantification. The semi-quantification method also showed good agreement for the quantification of CHO
compounds compared to predictive ionization efficiency-based methods, whereas for CHON species, the prediction error of the
semi-quantification method (1.63) was significantly lower than the predictive ionization efficiency approach (14.94). Application to
BBOA for the derivation of relative abundances of CHO and CHON species showed that using peak area underestimated the
relative abundance of CHO by 19% and overestimated that of CHON by 11% compared to the semi-quantification method. These
differences could lead to significant misinterpretations of source apportionment in complex samples, highlighting the need to
account for ionization differences in NTA approaches.

■ INTRODUCTION
The ability to probe molecular composition has been
revolutionized by liquid chromatography coupled to electro-
spray ionization (ESI) high-resolution mass spectrometry (LC-
HRMS). LC-HRMS coupled with nontarget analysis (NTA)
allows the detection of thousands of compounds present
within complex sample matrices compared to a relatively small
number of compounds (<100) in targeted analyses. For
instance, in a targeted analysis of ambient particulate matter,
Pereira et al.1 identified only 20 compounds which equated to
less than 1.1% of the total mass, highlighting the significant
advantages of using NTA. NTA approaches using LC-HRMS
have previously been applied to detect emerging contaminants
and hazardous substances in a range of complex samples such
as environmental matrices and the food and drink industry.1−4

However, the quantification of unknown compounds remains
challenging as traditional methods of calibration with authentic
standards are not possible due to the lack of commercial
availability and the sheer numbers of detected compounds.

For this reason, many prior NTA studies of complex samples
use metrics such as peak area and the number of molecular
formulas to convey the relative abundance of different

compounds.1,2,5−9 However, the variability in the relationship
between instrument signal and compound concentration
means that this approach does not lead to accurate
quantification.10 This phenomenon is a result of ionization
efficiency, which is a measure of the ability of a species to
ionize within the ESI source. Ionization efficiency is highly
structurally specific and can vary by multiple orders of
magnitude between different compounds including structural
isomers.10,11 Additionally, the choice of ESI source, mobile
phase, pH, and the percentage of organic modifier content
across a gradient elution program could further affect the
ionization efficiency.12−15 However, Kruve12 observed that
generally ionization efficiency values were well correlated
between methanol and acetonitrile mobile phases.
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Recent efforts to quantify unidentified compounds have
utilized machine learning to build predictive models of
ionization efficiencies using physicochemical properties of
analytes such as pKa, polarity, and the mobile phase
composition.11,12,16,17 Alternatively, a second class of models
predict relative ionization efficiencies (RIE), i.e., how well a
species ionizes relative to a reference compound.18−21 Despite
differences in the reference compound, the predictive RIE
models developed by Bryant et al.,18 Mayhew et al.,19 and
Liigand et al.20 perform similarly with R2 and the root-mean-
square error (RMSE) ranging from 0.62 to 0.66 and 0.35 to
0.59, respectively. Furthermore, the model developed by
Liigand et al.20 was constructed using data from a range of
chromatographic conditions; however, little effect was
observed on the model prediction accuracy. Application of
the Liigand et al.20 model to quantify myotoxins and pesticides
in cereals yielded a quantification error of 5.4, which is defined
as the ratio between predicted concentration and the true
concentration certified via an authentic standard. However, the
main drawback of these models is the need to know the
structure for quantification. In an NTA workflow, the number
of structurally assigned compounds is usually low compared to
the total number of detected compounds,1 which can be
further impacted by the instrumental workflow and data quality
across multiple samples. For instance, the use of data-
dependent fragmentation mass spectrometry (ddMS2) will
fragment the topmost abundant ions per scan. A more recent
approach used fragmentation mass spectra (MS2) to obtain
molecular descriptors for the prediction of ionization
efficiency, allowing nonstructurally identified compounds to
be quantified with an average prediction error, the ratio of
predicted:true concentration, of 4.22 However, in data-
dependent analysis used in 60% of NTA studies for
environmental matrices,23 not all compounds will reach the
threshold for subsequent fragmentation. Therefore, if relying
on MS2 spectra for quantification, there can be a loss of
compositional information. For example, Wang et al.24

observed in a typical nontarget workflow using data-dependent
acquisition that only 39% of detected compounds have MS2

spectra, meaning the majority of data was discarded from
compositional analysis. Using data-independent acquisition
(DIA) can provide improved MS2 spectral coverage,25 and
recent advances in DIA strategies such as SWATH-MS provide
high quality, quantitation accuracy, and reproducibility.26

However, the data processing to deconvolute the DIA spectral
output can be more challenging and time-consuming.25

Complete characterization of the molecular composition
requires all compounds with and without MS2 spectra to be
quantified. The analysis presented here uses a quantification
methodology known as semi-quantification, where multiple
proxy standards are used for quantification via surrogate
calibration curves. In many semi-quantification studies to date,
typically a singular structurally similar proxy standard is
used.27−36 However, the selection of an appropriate surrogate
is essential to reduce quantification errors.37 Reported semi-
quantification errors, defined as the ratio of predicted:true
concentration, can be as high as 10.27,36,38,39 The study of
organosulfates in organic aerosol which are commonly used as
tracers for secondary organic aerosol (SOA) has widely applied
semi-quantification methods.28−31,33−35,40 For example, Li et
al.28 suggested using camphorsulfonic acid as a surrogate
standard for nitroxy organosulfates due to its similar structure.
For C2−C3 organosulfates, multiple studies use glycolic acid

sulfate as a proxy.29−31 However, this incorrectly assumes that
all compounds of the same chemical class, in this case,
organosulfates, ionize equally to that of a singular quantifica-
tion marker. In reality, ionization in an ESI source is
structurally specific, can increase with retention time,41 and
can be affected by gradient elution due to changes in the
mobile phase.40 Therefore, improved semi-quantification
methods adopt closely eluting surrogate standards to the
target compound,32−34,38,42,43 with reported prediction errors
of 1.74−3.20 compared to quantification with authentic
standards. However, the majority of semi-quantification studies
using structurally similar surrogate standards were applied only
to quantify a small subset of compounds (<10) and were
quantified using a singular marker.27−29,31,42 In this study, we
present a new semi-quantification method using 110 authentic
standards and a series of retention time windows to derive
scaling factors and uncertainty estimates from multiple proxy
standards with a range of ionization efficiencies in each
window. We then apply the method within an NTA of
laboratory-generated biomass burning organic aerosol (BBOA)
containing up to 2357 detected organic compounds in a single
extract.

■ EXPERIMENTAL SECTION
Sample Collection. The newly developed semi-quantita-

tive NTA methodology was used for detailed compositional
analysis of BBOA from wood burning . The samples were
taken from a series of wood burning experiments conducted at
the Manchester Aerosol Chamber (MAC). The design and
characterization of the MAC has previously been described in
detail in Shao et al.44 In brief, the wood burning experiments
aimed to investigate the impact of the burn phase, i.e., flaming
and smoldering conditions, on the physical and chemical
characteristics of the emitted aerosol. Particulate matter was
sampled onto filters either at the flue of the wood burner for 5
min at 2 L/min or after an aging period under dark or light
conditions inside the MAC at a flow rate of 3 m3/min for 4
min. Under dark conditions, no further oxidants were added to
the chamber; therefore, it does not reproduce the chemistry of
a nitrate radical (NO3) or ozone (O3) oxidation observed in
the atmosphere at night. Instead, changes in the aerosol
composition are likely driven by evaporation and in-particle
chemistry. We define these 3 sample types per burn phase as
fresh flue, dark aged, and light aged.

Quartz filters (Whatman QMA, 47 mm) were individually
wrapped in foil and prebaked at 500 °C for 5 h prior to use.
After collection, the filters were wrapped in the prebaked foil
and then stored and transported at −20 °C for offline
ultrahigh-performance liquid chromatography coupled to high-
resolution mass spectrometry (UHPLC-HRMS) analysis at the
University of York. Filters were extracted using methanol, and
the full methodology for the filter extraction is provided in the
Supporting Information.

Instrument and Data Analysis. Filter sample extracts and
authentic standard solutions were analyzed using an Ultimate
3000 UHPLC (Thermo Scientific, USA) coupled to a Q
Exactive Orbitrap MS (Thermo Fisher Scientific, USA) with
heated electrospray ionization (HESI) in negative mode.
Authentic standard solutions, using compounds in Table S1,
were prepared in mixtures of 50:50 MeOH:H2O with no
overlapping of retention time between standards across the
concentration range: 5, 2.5, 1, 0.5, 0.25, 0.125, and 0.0625
ppm. The wood burning samples were analyzed once by
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UHPLC-HRMS alongside solvent blanks and chamber blanks,
taken from a clean chamber. The UHPLC-HRMS method-
ology is based on a well-characterized method developed by
Bryant et al.45 and Pereira et al.1 for the exploratory
compositional analysis of organic aerosol. Compound separa-
tion was achieved using a reversed-phase C18 2.6 μm × 2.1 mm
× 10 mm Accucore column and a mobile phase consisting of
0.1% (v/v %) formic acid (Acros Organics) in water (A, LC-
MS Optima grade) and methanol (B, LC-MS Optima grade).
These conditions enable the separation of a wide range of polar
and nonpolar compounds,46 and the more acidic mobile phase
can improve chromatographic retention and resolution as well
as increase sensitivity.47−49 Full details of the UHPLC-HRMS
method can be found in the Supporting Information. Spectra
were acquired using XCalibur 4.3 (Thermo Scientific, USA)
and analyzed using a nontargeted workflow developed in
MZmine 2.53 and MZmine 3.9.0 software. Detailed NTA
workflows are given in Tables S2 and S3. MZmine 2.53
software assigned molecular formulas to detected features, and
MZmine 3.9.0 software enabled the identification of species via
an in-house-built spectral library of authentic standards. The
workflows were then merged for the remainder of the analysis.
Post-processing of the MZmine output was achieved by (i)
choosing the best formula predicted by MZmine 2.53, (ii)
performing a blank subtraction, and (iii) removing duplicated
data. Formula predictions were allocated providing the
following criteria were met: 0.5 < H/C < 3.0, 0.05 < O/C <
2.0, N/C < 1.0, S/C < 0.5, and Cl/C < 0.2. The formula with
the lowest mass tolerance in ppm was then selected as the
“best” formula. The accuracy of the formula prediction is
essential for the successful application of the semi-quantifica-
tion methodology. In a previous study, the algorithm for
formula prediction in the MZmine 2 framework was tested
across 48 chemicals with the observation that 79% of
compounds were predicted correctly as the highest-ranking
candidate, i.e., the lowest difference in ppm.50 In this study,
12066 features were identified in total across the wood burning
extracts, with the highest ranking candidate accepted as the
“best” formula for 97.6% of features. Furthermore, the
possibility that a CHO species could be mistakenly predicted
as a CHON compound was minimal given the odd mass of
odd nitrogen species and the isotope fitting applied in the
MZmine workflow. However, in the 443 cases where a CHO
species had a CHON compound as the second ranking
candidate which occurred exclusively for CxHyO5 compounds,
the second candidate was a CxHyN4O compound. This is a
highly unlikely combination of heteroatoms to be observed in
organic aerosol; therefore, formula misidentifications were
considered to be minimal in this work. Blank subtraction
involved three steps: (1) common species detected in the
sample and filter blank or chamber blank were removed if the
sample-to-filter-blank signal was <10 or the sample-to-
chamber-blank signal ratio was <10 to ensure removal of all
false positive peaks; (2) the 20 most abundant surfactants and
chlorinated organonitrate compounds in the chamber back-
ground, not removed in the first step due to large signals, were
also removed from the sample owing to poor chromatography;
and (3) only species with a signal-to-noise ratio >3 were
accepted. In the final step (iii), species which also ionized in
positive mode were retained only in negative mode analysis if
better ionization, i.e., a larger peak area, was achieved. This
step, although not crucial for this work as the semi-
quantification method was developed in negative mode,

enables positive and negative mode to be merged in a future
analysis where ideally NTA covers both compositional spaces.
This workflow was applied to the wood burning aerosol
extracts in order to evaluate its performance compared to
traditional peak area methods frequently used in organic
aerosol analysis. A total of 389−2357 features were detected by
the NTA across the different samples, where variation in the
feature detection is largely due to variability in filter mass
concentration.

Evaluation of Matrix Effects and Recovery. While the
standard solutions used to construct the methodology were
analyzed in pure solvent, matrix effects can arise when in the
wood burning sample matrix51,52 leading to the enhancement
or suppression of the peak signal. This can result in over- or
under-estimations of species concentration. Twenty-seven
species were structurally identified to Schymanski Level 153

in the wood burning samples; therefore, the matrix effect was
evaluated for these compounds with a linear standard addition
calibration curve (R2 ≥ 0.8) (Table S4). The experimental
procedure for the determination of matrix effects is explained
in detail in the Supporting Information. The matrix effect is
expressed as the ratio of the internal standard to the external
standard calibration gradient for each compound. On average,
we report a relatively low gradient matrix effect of 0.864 ±
0.442 which is likely accounted for within the uncertainty of
the semi-quantification method. The ratios of the externally
calibrated concentrations to the standard addition calibration
were also calculated with a mean average of 0.925 ± 0.475.
Using the classification adopted for quality control and method
validation for pesticide analysis as there is yet a universal
quality assurance and control framework to exist for organic
aerosol,54 the calculated matrix effects are within the accepted
range of ±20% suppression or enhancement55−58 and
comparable to a previous organic aerosol study.59 Nonetheless,
in a nontarget analysis where the majority of compounds are
unknown it is impossible to quantify an exact matrix effect for
each compound, and using a surrogate internal standard
cannot fully compensate for the analytical variation.60

Furthermore, the extraction recovery of an analyte from
organic aerosol collected on a filter can be challenging to
exactly replicate in a laboratory, as this involves the recovery
from a matrix adsorbed onto a second matrix. Instead, the
recovery of the 27 identified compounds was approximated
from spiking standards at known concentration onto a blank
filter resulting in an average recovery of 88.5 ± 3.9% (Table
S4). The relative standard deviation of the individual
recoveries in Table S4 were less than 20% and therefore are
considered satisfactory.61

■ RESULTS AND DISCUSSION
Development of the Semi-Quantitative Approach. To

overcome differences in ionization efficiencies, calibration
using authentic standards is required. However, in a complex
sample containing thousands of unknown species the lack of
commercially available authentic standards means that
accounting for ionization efficiency is practically impossible.
Instead, a semi-quantification approach can be used wherein
calibration gradients from proxy standards are applied to
unknown species. Calibration gradients for oxygenated
(CHO), organonitrate (CHON), and organosulfate (CHOS)
species were obtained across a 7 point calibration curve for
each analytical standard as described in Instrument and Data
Analysis. Concentrations were analyzed in triplicate, and the
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linear fit was not forced through 0. A total of 110 standards
were used in total: 90 predominantly organoacids and alcohols
for the CHO class, 19 nitroaromatic standards for the CHON
compounds, and the use of camphorsulfonic acid for CHOS
species. Due to the operation of the ESI source in negative
mode, the chosen standards were expected to ionize favorably
under these conditions. The standards and their corresponding
gradients are presented in Table S1; however, for the purpose
of this study, y-axis intercepts were ignored.

The acquired chromatogram from the UHPLC-HRMS
method was split into retention time windows, assigning
each authentic standard to a retention time window, as shown
in Table S1. For CHO, the number of standards allowed
retention time windows of 1 min from 0−14 min and windows
of 2 min from 16−20 min, resulting in 17 retention time
windows. For CHON, retention time windows range between
2 and 3 min due to the lower number of available standards,
resulting in 8 retention time windows (Table S1). A scaling
factor was obtained for each retention time window by
calculating the median calibration gradient across the authentic
standards within each retention time window. To allow for
estimates of uncertainty, the lower quartile, upper quartile, and
minimum and maximum calibration gradients were also
computed per retention time window. For those compounds
identified by the spectral library to Schymanski Level 1,53

scaling is achieved using the authentic standard calibration
gradient. For unidentified compounds, the chromatogram is
split into the retention time windows described above and
scaled with the corresponding averaged retention time window
calibration gradient to enable the semi-quantification of all
CHO and CHON species (see Table S5) detected by the
NTA. The overview of this strategy is presented in Figure S1.

Validation of the Semi-Quantification Method. The
semi-quantification method was applied to a series of different
biomass burning aerosol extracts. In order to determine the
performance of the semi-quantification method, the semi-
quantified concentrations of structurally identified compounds
were compared to quantification using authentic standards.
Quantification errors were determined from averaging (here
we use the median), the ratio of a species concentration
estimated via the semi-quantification method to the concen-
tration determined with an authentic standard (eq 1) and
therefore are represented as an error of n times compared to
the concentration determined using an authentic standard. The
concentrations used in eq 1 were not subject to logarithmic
transformations, and ratios greater than and less than 1 were
included in this calculation. Of the 27 structurally identified
species detected in the wood burning samples, 70% of the
concentrations determined by the semi-quantification method
were within a factor of 2 of the authentic standard derived
concentration, and these compounds are shown in gray in
Figure 1, suggesting that the majority of compound
concentrations are accurately estimated by the semi-
quantification method. The compounds outside of this error
range are shown in color in Figure 1. It is important to note
that due to the use of the median gradient for each retention
time window some of the identified compounds may be scaled
with their own authentic standard gradient, more likely for the
CHON species due to the smaller number of surrogate
standards, and therefore sit on the 1:1 line in Figure 1.

Error
concentration

concentrationprediction
semiquantification

authentic
=

[ ]
[ ] (1)

McCord et al.27 similarly demonstrated a low prediction bias
(<48%) for the quantification of emerging perfluoroethercar-

Figure 1. Comparison of the semi-quantification method (y axis) with authentic standard quantification (x axis) for the estimated concentration
(μg m−3) of identified compounds present within the different wood burning aerosol samples (markers). The 1:1 line is presented as a dashed line,
and the 1:2 and 2:1 lines are indicated by the solid lines. Compounds within this prediction range (factor of 2) are shown as gray markers with the
outlying compounds presented in colors. Different wood burning samples are indicated by the marker symbol.
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boxylic acids (PFECAs) in drinking water using 4 different
surrogate PFECAs standards which eluted within a 4 min
retention time window of the unknown PFECAs. However, the
method validation for the semi-quantification was applied only
to a single known compound; therefore, McCord et al.27

estimated prediction errors of up to 10-fold for the unknown
emerging PFECAs. Prediction errors of 1.74 times and 3.20
times compared to quantification by authentic standards were
observed by Pieke et al.42 and Kruve et al.,38 respectively, for
the quantification of unknown compounds in food and
groundwater analysis using closely eluting markers, typically
±2 min. Comparatively, the semi-quantification method
developed in this work had a median prediction error of
1.52 and a mean prediction error of 3.14 times across 27
structurally identified compounds showing improved predic-
tion accuracy when using more than a single proxy standard for
quantification. The prediction error is lower for CHON species
(1.32) than for CHO compounds (1.52). This is in contrast to
the quantification error observed in the predictive ionization
efficiency model developed by Sepman et al.22 with larger
prediction errors in CHON quantification ranging up to a
factor of 10. However, the model was developed for positive
mode ESI; therefore, the analyzed compounds likely possess
different functionality from the CHON species presented in
this work.

For the species predicted outside of the factor of 2 error
range, the uncertainty in concentration, calculated using the
interquartile range of calibration gradients in each retention
time window was compared to quantification by an authentic
standard (Figure S2). This showed improvements in 3 outlying
species: sebacic acid, 4-phenylbutyric acid, and 3-(4-
hydroxyphenyl)propionic acid. The remaining outliers typically
have gradients at the extremities of their corresponding
retention time window. The outliers were not correlated
with retention time and therefore were assumed to be little
affected by the increasing organic modifier content of the
mobile phase. Furthermore, outliers were present at multiple
retention times throughout the chromatography runtime,
indicating that species polarity is also not a determining
factor. Instead, they could result from other structural
properties affecting ionization efficiency, including the pKa
and molecular weight of a species.11,13 This influences the
interactions of the analytes with the solvent droplet and the
ease of deprotonation in negative mode ESI. In Figure 1,
overprediction resulted from scaling with a lower gradient
compared to the authentic slope, whereas underprediction
occurred from scaling using larger gradients than the authentic
slope. pKa, which governs the ability to deprotonate, may affect
the overprediction of 2,6-dihydroxybenzoic acid concentra-
tions. For instance, 2,6-dihydroxybenzoic acid possessed the
highest ionization efficiency of the compounds within its
retention time window while simultaneously having the lowest
pKa, predicted by ChemDraw 21.0.0 software, which suggests a
greater deprotonation ability compared to other species within
the same window. On the other hand, multiple ionization sites
as in suberic acid, a dicarboxylic acid, could increase the
ionization efficiency compared to the monocarboxylic acids
within the same retention time window. In addition to pKa and
the number of deprotonation sites, stabilization of the
deprotonated ion further affects the ionization efficiency. For
instance, despite ionization at a higher pKa alcohol group, the
deprotonated 4-hydroxybenzaldehyde ion could exhibit charge
stabilization effects, thereby increasing its ionization efficiency

compared to the other compounds within the same window.
However, further work is needed to investigate these effects
and if they can be accounted for.

Due to the nature of NTA, the chemical functionality
present within a sample can be difficult to predict; therefore, a
wide range of standards of different chain length, aromaticity,
and functionality were used in this study (Table S1). As such,
retention time windows can have large variations in calibration
gradients between the different surrogate standards owing to
the molecular properties previously discussed. For instance, the
retention time window which overpredicted 2,6-dihydroxy-
benzoic acid concentrations had the maximum observed
difference of 4 orders of magnitude between the maximum
(2,6-dihydroxybenzoic acid) and minimum (butyric acid)
gradient. Removing the butyric acid gradient from this window
decreased the difference in gradients to 3 orders of magnitude,
and the overprediction of 2,6-dihydroxybenzoic acid was
reduced from 11 times to 6 times compared to quantification
by authentic standard. Therefore, prior chemical knowledge of
the sample could improve quantification through the selection
of targeted standards which better reflect the sample
composition. However, due to the lack of commercially
available authentic standards, this approach is not always
possible.

Comparison to an Existing Machine Learning
Predictive Model. In a number of previous studies, ionization
efficiency has been predicted from machine learning models,
based on either physicochemical properties, structural
descriptors, or chemical fingerprints.17−22,62 Bryant et al.18

built a model based on chemical structural fingerprints
obtained from the ChemDes platform63 to predict RIEs of
89 CHO and CHON compounds using cis-pinonic acid as the
reference compound for the quantification of biogenic SOA
markers. It is worth noting that this method required prior
knowledge of the structure in order to predict the RIE and
therefore is not applicable to unknown compounds. More
recently, molecular descriptors from MS2 have been used to
predict the ionization efficiency, which could yield further
improvements in quantification for structurally unidentified
compounds.22 However, for species without MS2, quantifica-
tion remains a challenge. RIE predictions were taken from
Bryant et al.18 and applied to the wood burning samples to
determine the concentration of 18 structurally identified
compounds that were quantifiable by both methods. Figure
S3 shows the comparison of the concentration predicted by the
semi-quantification approach developed here with the RIE
predictions from Bryant et al.18 for estimating the concen-
trations of structurally identified compounds within the wood
burning extracts. Comparisons to other existing predictive
models are difficult due to the use of different LC
methodologies which could induce additional ionization effects
from the solvent system as well as the use of different reference
compounds for calculating RIE.18−20 However, future work
should aim to include interlaboratory comparisons when
applying the same methodology to ensure that the perform-
ance is consistent as recently demonstrated by Malm et al.64

across 37 laboratories. Of the 18 common compounds
quantified by both methods, a third were semi-quantified to
within a factor of 2 compared to quantification with Bryant et
al.18 RIE predictions including sebacic acid, azelaic acid, 3-
methyl adipic acid, adipic acid, glutaric acid, and succinic acid.
A further 6 organoacid species could be semi-quantified to
within a factor of 2 of the RIE method by applying the semi-
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quantification method’s uncertainty range, calculated from the
interquartile range of concentration. Overall, this indicated
good agreement between the methods for the quantification of
CHO compounds but greater discrepancy for the quantifica-
tion of CHON which was further away from the factor of 2
prediction errors lines in Figure S3.

Compared to quantification by authentic standards, the
predicted RIEs from Bryant et al.18 tended to overpredict the
species concentration compared to using the semi-quantifica-
tion methodology (Figure 2) as a result of underpredicting the
RIE. The compounds in gray in Figure 2 represent a low
prediction error, i.e., less than a factor of 2, in both methods
compared to quantification with authentic standards and were
mostly compounds with good agreement between the methods
(Figure S3). The majority of the compound concentrations
estimated by the semi-quantification method in Figure 2 were
more closely situated to within a factor of 2 of the
concentration determined using authentic standards, which
demonstrated improved prediction errors compared to the RIE
methodology. However, significant exceptions exist for suberic
acid and 4-phenylbutyric acid with prediction errors compared
to quantification by an authentic standard of 34.72 and 0.01
(or 100 times lower), respectively, using semi-quantification
compared to 2.52 and 0.80 (or 1.25 times lower), respectively,
using RIE predictions. Overall, the CHO compounds had a
median prediction error of 1.52 and 2.05 for the semi-
quantification and RIE predictive model approaches, respec-
tively, showing similar performance between the methods for
estimating concentration compared to using authentic stand-
ards. The estimation of nitroaromatic compound concen-
trations was less certain using the RIE approach with median

prediction errors of 14.94 times compared to quantification by
authentic standard; however, the RIE model developed by
Bryant et al.18 underrepresents nitroaromatic compounds in
the training data, leading to an underprediction of their RIE.
The semi-quantification method used a similar number of
nitroaromatic compounds to create the retention time
windows and had a lower prediction error of 1.63 times for
the same compounds compared to quantification by authentic
standard. Furthermore, in the interlaboratory study by Malm et
al.64 they observed that semi-quantification using singular close
eluting standards performed worse compared to RIE model
approaches. Therefore, the semi-quantification approach
developed here using multiple close eluting standards shows
that choosing suitable retention time windows even with a
relatively small number of standards can be a more effective
method to improve quantification, yielding similar or more
accurate concentrations than RIE predictive model approaches.

Application of Nontarget Analysis to Biomass
Burning Aerosol Samples. This semi-quantitative nontarget
methodology was designed for use in highly chemically
complex samples such as that found in an atmospheric organic
aerosol derived from biomass burning, owing to the sheer
number and functionality of compounds present, meaning that
quantification is challenging. However, the general method-
ology framework of using multiple retention time windows
with numerous chemically relevant standards can be applied to
other chemically complex environmental and biological
matrices. The chemical composition of BBOA is highly
dependent on fuel type, burning conditions, and atmospheric
aging, resulting in a large variation and degree of complex-
ity.65−67 Application of the semi-quantification method

Figure 2. Comparison of semi-quantification (triangle markers) and RIE predictive model (circle markers) methodologies (y axis) with authentic
standards (x axis) for the quantification of identified compounds, shown as average concentrations (μg m−3), within the wood burning aerosol
samples. The 1:1 line is presented as a dashed line, and the 1:2 and 2:1 lines are indicated by the solid lines. Compounds within a factor of 2 from
the authentic standard concentration in both methods are shown as gray markers. Compounds which do not meet this condition are presented in
color.
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enabled distinct differences in the bulk composition, through
the relative ratio of CHO:CHON contributions, to be
observed between different burn phases and aging processes
(Figure 3). In Figure 3, the relative abundance was derived

from the quantification of each compound using the median,
lower quartile, upper quartile, maximum, and minimum
calibration gradient for their corresponding retention time
window. The uncertainty of the method for estimating the
relative abundance was then derived from the interquartile
range of abundance shown in Figure 3. Across the BBOA
samples, the average uncertainties in relative abundance,
determined from the interquartile range in Figure 3, were
12.8% and 10.2% for CHO and CHON species, respectively.
Depending on the metric used to estimate abundance in NTA,
the overall compositional contributions can vary, leading to
differences in source apportionment. For instance, as shown in
Figure 3, on average CHO compounds contribute 88.1 (±
7.1)% to the total mass using the semi-quantification method
or 68.8 (± 16.2)% of the total peak area. Therefore, using peak
area to determine abundance underestimated the contribution
of CHO species to the total BBOA mass by 19 (± 10)%. The
compounds in the CHON group contribute 8.2 (± 5.2)% or
19.3 (± 11.5)% using semi-quantification and peak area,
respectively, resulting in an overprediction of 11 (± 8)% on
average. Furthermore, the difference between the methods for
estimating abundance can reach 31% depending on the sample
(see Table S6).

CHON species from biomass burning have largely been
assigned as nitroaromatic compounds and are widely used as
tracers for biomass burning in ambient aerosol due to their
conceived high abundance6,9 and important implications for
atmospheric brown carbon (BrC).6,68,69 However, this study
determined the average relative abundance of CHON to be

8.2%, which is lower than that estimated if using peak area,
suggesting that peak area can significantly overestimate the
contribution of CHON to BBOA. Instead, the semi-
quantification method found a significant contribution of
CHO (>85%) to BBOA, indicating that CHO species could be
important tracers of biomass burning. Furthermore, these
differences in the estimation of the relative abundance of each
compound when using semi-quantification or peak area can be
propagated into metrics commonly used to characterize
organic aerosol composition and atmospheric oxidation such
as the average molecular formula and oxygen:carbon ratios
(Table S7).

■ CONCLUSIONS
A semi-quantitative approach to estimate concentrations of
unidentified compounds was developed for use within NTA
workflows of complex samples, such as organic aerosol,
analyzed by UHPLC-HRMS. The method used retention
time windows to derive unique scaling factors from multiple
authentic standards for each defined window. The total
quantification of chemical space is improved compared to
existing predictive ionization efficiency models due to the lack
of a requirement to know the structure or have access to
fragmentation mass spectra. The method was validated against
27 structurally identified species, quantified using authentic
standards, in a range of BBOA extracts from wood burning
with an overall average prediction error, defined as the ratio of
concentrations determined with the semi-quantification
method to that using an authentic standard, of 1.52. This
improved upon previous semi-quantification methods using
closely eluting quantification markers which yield errors of up
to one order of magnitude. Compared to a predictive
ionization efficiency model, the semi-quantification method
demonstrated improved performance for the quantification of
nitroaromatic species despite using a similar number of
authentic standards. Comparison of the semi-quantification
method to widely used peak area approaches in NTA
highlighted the inadequacy of using peak area to calculate
relative abundance in complex sample analysis, with differences
in abundance reaching 31% among the different methods. This
represents a significant potential to misinterpret source
apportionment contributions. Future work is needed to fully
comprehend matrix effects in highly complex samples and
apply the method to positive mode ionization for complete
quantification. Overall, we highlight the need to standardize
nontarget quantification metrics and suggest utilizing the semi-
quantification method independently or in combination with
existing predictive ionization efficiency models to create a
robust NTA workflow of all (MS1 and MS2) detected features
for application in complex sample analysis.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.4c00819.

Standards and retention time windows used and all
detected features for quantification (XLSX)
Description of filter extraction method; UHPLC-HRMS
parameters; matrix effects and extraction recovery
results; semi-quantification workflow; MZmine parame-
ters; uncertainty of semi-quantified concentrations with
authentic standards; method comparison with a

Figure 3. Percentage contribution of CHO and CHON compounds
to the total mass concentration within laboratory-generated wood
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maximum calibration gradients for each compound in each retention
time window. The points represent the relative abundance derived
using peak area.
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279, 20−29.

(58) Economou, A.; Botitsi, H.; Antoniou, S.; Tsipi, D. J.
Chromatogr. A 2009, 1216, 5856−5867.

(59) Amarandei, C.; Olariu, R. I.; Arsene, C. Proceedings 2020, 55, 6.
(60) Parshintsev, J.; Hyötyläinen, T.; Parshintsev, R. J. Z.;

Hyötyläinen, T. Anal. Bioanal. Chem. 2015, 407, 5877−5897.
(61) Marín, J. M.; Gracia-Lor, E.; Sancho, J. V.; López, F. J.;

Hernández, F. J.Chromatogr. A 2009, 1216, 1410−1420.
(62) Abrahamsson, D. P.; Park, J. S.; Singh, R. R.; Sirota, M.;

Woodruff, T. J. J. Chem. Inf. Model. 2020, 60, 2718−2727.
(63) Dong, J.; Cao, D. S.; Miao, H. Y.; Liu, S.; Deng, B. C.; Yun, Y.

H.; Wang, N. N.; Lu, A. P.; Zeng, W. B.; Chen, A. F. J. Cheminf. 2015,
7, 60.

(64) Malm, L.; Liigand, J.; Aalizadeh, R.; Alygizakis, N.; Ng, K.;
Frokjær, E. E.; Nanusha, M. Y.; Hansen, M.; Plassmann, M.; Bieber,
S.; Letzel, T.; Balest, L.; Abis, P. P.; Mazzetti, M.; Kasprzyk-Hordern,
B.; Ceolotto, N.; Kumari, S.; Hann, S.; Kochmann, S.; Steininger-
Mairinger, T.; Soulier, C.; Mascolo, G.; Murgolo, S.; Garcia-Vara, M.;
de Alda, M. L.; Hollender, J.; Arturi, K.; Coppola, G.; Peruzzo, M.;
Joerss, H.; van der Neut-Marchand, C.; Pieke, E. N.; Gago-Ferrero, P.;
Gil-Solsona, R.; Licul-Kucera, V.; Roscioli, C.; Valsecchi, S.; Luckute,
A.; Christensen, J. H.; Tisler, S.; Vughs, D.; Meekel, N.; Anduj́ar, T.;
Aurich, D.; Schymanski, E. L.; Frigerio, G.; Macherius, A.; Kunkel, U.;
Bader, T.; Rostkowski, P.; Gundersen, H.; Valdecanas, B.; Davis, W.
C.; Schulze, B.; Kaserzon, S.; Pijnappels, M.; Esperanza, M.; Fildier,
A.; Vulliet, E.; Wiest, L.; Covaci, A.; Schönleben, A. M.; Belova, L.;
Celma, A.; Bijlsma, L.; Caupos, E.; Mebold, E.; Roux, J. L.; Troia, E.;
de Rijke, E.; Helmus, R.; Leroy, G.; Haelewyck, N.; Chrastina, D.;
Verwoert, M.; Thomaidis, N. S.; Kruve, A. Anal. Chem. 2024, 96,
16215−16226.

(65) Weimer, S.; Alfarra, M. R.; Schreiber, D.; Mohr, M.; Prévôt, A.
S.; Baltensperger, U. J. Geophys. Res. 2008, 113, 10304.

(66) Stefenelli, G.; Jiang, J.; Bertrand, A.; Bruns, E. A.; Pieber, S. M.;
Baltensperger, U.; Marchand, N.; Aksoyoglu, S.; Prévôt, A. S. H.;

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.4c00819
Anal. Chem. 2024, 96, 18349−18358

18357

https://doi.org/10.1021/acsomega.0c00732?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c00732?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41598-020-62573-z
https://doi.org/10.1021/jasms.1c00032?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jasms.1c00032?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.3c01744?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.trac.2023.116966
https://doi.org/10.1016/j.trac.2023.116966
https://doi.org/10.1016/j.scitotenv.2021.151507
https://doi.org/10.1016/j.scitotenv.2021.151507
https://doi.org/10.1021/acs.analchem.9b05135?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.trac.2018.10.014
https://doi.org/10.1016/j.trac.2018.10.014
https://doi.org/10.1016/j.chroma.2018.03.047
https://doi.org/10.1016/j.chroma.2018.03.047
https://doi.org/10.1039/D2AY00460G
https://doi.org/10.1039/D2AY00460G
https://doi.org/10.1016/j.scitotenv.2023.166851
https://doi.org/10.1016/j.scitotenv.2023.166851
https://doi.org/10.1016/j.scitotenv.2021.151275
https://doi.org/10.5194/acp-16-4897-2016
https://doi.org/10.5194/acp-19-3191-2019
https://doi.org/10.1021/acsearthspacechem.1c00102?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsearthspacechem.1c00102?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.5194/acp-17-11025-2017
https://doi.org/10.5194/acp-17-11025-2017
https://doi.org/10.1016/j.chemosphere.2022.134103
https://doi.org/10.1021/acs.estlett.2c00788?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.envint.2021.107011
https://doi.org/10.1016/j.envint.2021.107011
https://doi.org/10.1007/s00216-020-03109-2
https://doi.org/10.1007/s00216-020-03109-2
https://doi.org/10.1021/acs.est.1c06905?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.5194/acp-17-1343-2017
https://doi.org/10.1021/ac0006019?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac0006019?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.aca.2017.03.054
https://doi.org/10.1016/j.aca.2017.03.054
https://doi.org/10.1039/D2EM00349J
https://doi.org/10.5194/amt-15-539-2022
https://doi.org/10.5194/amt-15-539-2022
https://doi.org/10.5194/acp-20-7531-2020
https://doi.org/10.1021/cr5003485?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr5003485?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C2AN36022E
https://doi.org/10.1002/jms.231
https://doi.org/10.1002/jms.231
https://doi.org/10.1016/j.chroma.2008.08.095
https://doi.org/10.1016/j.chroma.2008.08.095
https://doi.org/10.1021/ac3000418?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac3000418?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac020361s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/mas.20298
https://doi.org/10.1002/mas.20298
https://doi.org/10.1007/s00216-015-8681-7
https://doi.org/10.1007/s00216-015-8681-7
https://doi.org/10.1016/j.trac.2020.116063
https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=727
https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=727
https://doi.org/10.1016/j.foodchem.2022.134678
https://doi.org/10.1016/j.foodchem.2018.11.130
https://doi.org/10.1016/j.foodchem.2018.11.130
https://doi.org/10.1016/j.chroma.2009.06.031
https://doi.org/10.1016/j.chroma.2009.06.031
https://doi.org/10.3390/proceedings2020055006
https://doi.org/10.1007/s00216-014-8394-3
https://doi.org/10.1016/j.chroma.2008.12.094
https://doi.org/10.1021/acs.jcim.9b01096?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/s13321-015-0109-z
https://doi.org/10.1186/s13321-015-0109-z
https://doi.org/10.1021/acs.analchem.4c02902?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.4c02902?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1029/2007JD009309
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.4c00819?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Slowik, J. G.; Haddad, I. E. Atmos. Chem. Phys. 2019, 19, 11461−
11484.

(67) Li, S.; Liu, D.; Hu, D.; Kong, S.; Wu, Y.; Ding, S.; Cheng, Y.;
Qiu, H.; Zheng, S.; Yan, Q.; Zheng, H.; Hu, K.; Zhang, J.; Zhao, D.;
Liu, Q.; Sheng, J.; Ye, J.; He, H.; Ding, D. J. Geophys. Res. 2021, 126,
No. e2021JD03453.

(68) Lin, P.; Bluvshtein, N.; Rudich, Y.; Nizkorodov, S. A.; Laskin, J.;
Laskin, A. Environ. Sci. Technol. 2017, 51, 11561−11570.

(69) Fleming, L. T.; Lin, P.; Roberts, J. M.; Selimovic, V.; Yokelson,
R.; Laskin, J.; Laskin, A.; Nizkorodov, S. A. Atmos. Chem. Phys. 2020,
20, 1105−1129.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.4c00819
Anal. Chem. 2024, 96, 18349−18358

18358

https://doi.org/10.5194/acp-19-11461-2019
https://doi.org/10.5194/acp-19-11461-2019
https://doi.org/10.1029/2021JD034534
https://doi.org/10.1029/2021JD034534
https://doi.org/10.1021/acs.est.7b02276?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.5194/acp-20-1105-2020
https://doi.org/10.5194/acp-20-1105-2020
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.4c00819?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

