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ABSTRACT: Accurately assessing and managing risks associated with inorganic pollutants in groundwater is imperative. Historic
water quality databases are often sparse due to rationale or financial budgets for sample collection and analysis, posing challenges in
evaluating exposure or water treatment effectiveness. We utilized and compared two advanced multiple data imputation techniques,
AMELIA and MICE algorithms, to fill gaps in sparse groundwater quality data sets. AMELIA outperformed MICE in handling
missing values, as MICE tended to overestimate certain values, resulting in more outliers. Field data sets revealed that 75% to 80% of
samples exhibited no co-occurring regulated pollutants surpassing MCL values, whereas imputed values showed only 15% to 55% of
the samples posed no health risks. Imputed data unveiled a significant increase, ranging from 2 to 5 times, in the number of sampling
locations predicted to potentially exceed health-based limits and identified samples where 2 to 6 co-occurring chemicals may occur
and surpass health-based levels. Linking imputed data to sampling locations can pinpoint potential hotspots of elevated chemical
levels and guide optimal resource allocation for additional field sampling and chemical analysis. With this approach, further analysis
of complete data sets allows state agencies authorized to conduct groundwater monitoring, often with limited financial resources, to
prioritize sampling locations and chemicals to be tested. Given existing data and time constraints, it is crucial to identify the most
strategic use of the available resources to address data gaps effectively. This work establishes a framework to enhance the beneficial
impact of funding groundwater data collection by reducing uncertainty in prioritizing future sampling locations and chemical
analyses.
KEYWORDS: drinking water, pollutants, chemicals, contaminants, statistics

1. INTRODUCTION
Ingesting metals weathered from natural geological formations,
fertilizer residuals, or other pollutants through drinking water is
known to increase both carcinogenic and noncarcinogenic risks
and is a global issue.1−4 For example, inorganic arsenic (As),
fluoride (F), hexavalent chromium (Cr(VI)), nitrate ion
(NO3

−), selenium (Se), uranium (U), and vanadium (V)
commonly occur in groundwater, which supplies drinking
water to more than 100 million people in the United States
(U.S.) through municipal water supplies and private wells.3,5−7

Smaller municipal groundwater systems often violate regu-
latory standards because of these pollutants.5,8 Human health
risks are typically evaluated on a pollutant-by-pollutant basis.
However, emerging scientific findings indicate that when
pollutants co-occur, there may be additive or even antagonistic

hazards.9−12 Despite this, reports on pollutant co-occurrence
are rare compared to studies focusing on individual pollutants.
Furthermore, co-occurrence of two hazardous pollutants (e.g.,
arsenic and fluoride, manganese and antimony) may require
uniquely different treatment processes (e.g., ion exchange, iron
precipitation, activated alumina adsorption). Understanding
pollutant co-occurrence is crucial for two primary reasons:
gaining a deeper comprehension of exposure risks and making
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informed decisions regarding the selection of water treatment
technologies to mitigate human exposure to pollutants in
drinking water.

A significant obstacle to comprehensive analyses of pollutant
co-occurrence has been the scarcity and incompleteness (i.e.,
sparseness) of data sets from historical sampling campaigns.
Various factors contribute to the sparseness of water quality
data, including the cost of analyzing additional analytes, the
primary objectives of sampling events, fluctuations in analytical
detection limits, prioritization of regulated chemicals over
nonregulated ones, and the lack of recognition regarding the
health impacts of certain pollutants at the time of sampling.
Given the existing issues in data sets and limited resources for
assembling complete data sets, it is crucial to strategically use
these resources to address data gaps effectively. Establishing a
framework to prioritize sampling efforts based on specific
chemicals and locations where data are most needed is
essential. Utilizing a machine learning approach shows promise
in overcoming data limitations. For example, a recent study
identified 27 U.S. drinking water investigations conducted
between 2012 and 2022 that employed machine learning
algorithms to forecast drinking water quality.13 This study
revealed that key predictors are consistent across various
contaminants. However, challenges arise due to the absence of
a standardized approach for imputation and preprocessing, and
variations in data availability across geographic regions. While
many studies demonstrate effective model performance in
predicting whether drinking water quality surpasses specific
thresholds (i.e., binary prediction), they often struggle to
accurately forecast absolute contamination levels (i.e.,
continuous prediction). Continuous prediction is often

necessary for time series cross-sectional data. Machine
learning-based multiple imputation methods (e.g., AMELIA,
MICE, etc.) have shown promising performance in other
disciplines.14

One approach to filling gaps in sparse data sets involves data
imputation methods using statistical and/or machine learning
(ML) approaches.15 Data imputation methods can be applied
to analyze sparse data sets, predict missing values, and increase
viable data sets for further data mining. These methods have
been applied to better understand the occurrence of arsenic in
well water, water quality in mining regions, and water network
databases.16−20 While many methodologies exist,16 in this
study, we focused on filling data gaps using two advanced data
imputation techniques: AMELIA21 with expectation-max-
imization with bootstrapping and Multiple Imputation by
Chained Equations (MICE).22 AMELIA uses a multivariable
data distribution, while MICE imputes using a one-by-one
basis.23 Each method has pros and cons in helping to
understand the significance of the predicted data.19,23,24

These two methods were used independently, and their
performance was accessed to identify possible usage scenarios
and to address potential concerns with overimputation. Both
methods rely on multiple imputations and are designed to
minimize bias related to missing data by generating several
(multiple) complete data sets and integrating the out-
comes.19,23 This approach explicitly considers the uncertainty
surrounding missing values, resulting in more robust and less
biased estimates compared to single imputation methods. This
may be especially important for public health data like drinking
water quality data, where choosing an appropriate data source
and filtering out irrelevant search results is labor-intensive.25,26

Table 1. Inorganic Chemical Categories Considered in the Studya

category chemical USEPA regulated level other health-based level

Metals of health concern (n = 8) Antimony (Sb) MCL = 0.006 mg/L MCLG = 0.006 mg/L
Arsenic (As) MCL = 0.010 mg/L MCLG = 0
Cadmium (Cd) MCL = 0.005 mg/L MCLG = 0.005 mg/L
Copper (Cu) Action level* = 1.3

mg/L
MCLG = 1.3 mg/LSMCLa,b = 1.0 mg/L

Chromium (Cr) MCL = 0.1 mg/L MCLG = 0.1 mg/L; Some State health-based limit for
Cr(VI) = 0.01 mg/L

Lead (Pb) Action level* = 0.015
mg/L

MCLG = 0

Manganese (Mn) − States regulate at 0.007 mg/LSMCLa,b = 0.05 mg/L
Vanadium (V) − States regulate at 0.050 mg/L

Anions of health concern (n = 3) Fluoride (F−) MCL = 4.0 mg/L MCLG = 4.0 mg/LSMCLd = 2.0 mg/L
Nitrate (NO3

−) MCL = 10 mgNO3-
N/L

MCLG = 10 mgNO3-N/L

Nitrite (NO2
−) MCL = 1 mgNO2-N/L MCLG = 1 mgNO2-N/L

Chemicals & parameters influencing water
treatment (n = 9)

Bicarbonate (HCO3
−) Not of known health

risks
−

Chloride (Cl−) SMCLa = 250 mg/L
Iron (Fe) SMCLa,b = 0.3 mg/L
pH SMCL = 6.5 to 8.5
Phosphate (PO4

3−) −
Silica (SiO2) −
Sulfate (SO4

2−) SMCLa = 250 mg/L
Total dissolved solids
(TDS)

SMCLa,c = 500 mg/L

Total Hardness −
aRegulatory enforceable Maximum Contaminant Levels (MCL), non-regulated maximum contaminant level goal (MCLG) for carcinogens, or non-
health based Secondary Maximum Contaminant Levels (SMCLs for tastea, stainingb, scale formationc, or tooth discolorationd) are provided for
those considered by the US Environmental Protection Agency (USEPA). The third category includes inorganic chemicals that potentially impact
the performance of water treatment processes.
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The aim of this paper is to assess and analyze actual and
potential co-occurrence of inorganic pollutant mixtures and
competing ions influencing treatment selection in groundwater
by subsidizing the sparse and incomplete historical data with
predictions from the ML-based data imputation techniques.
The intended use of the results is to assist state agencies
responsible for monitoring, assessing, and regulating ground-
water by reducing the uncertainty in prioritizing specific
locations. This will help allocate limited financial resources
more effectively for future groundwater sampling and chemical
analysis. We concentrated on two geographically distinct states
in the United States, Arizona and North Carolina, each
characterized by unique geologies and climates that could
influence groundwater quality. Specifically, we focused on co-
occurrence (Table 1) of six regulated metals (arsenic,
antimony, cadmium, copper, lead, chromium), two unregu-
lated metals of emerging health concern (manganese and
vanadium), three anions of health concern (fluoride, nitrate,
nitrite), and eight water quality parameters (silica, bicarbonate,
phosphate, iron, total dissolved solids, total hardness, and pH)
that affect water treatment processes performance. The
comprehensive predicted data set enabled a better under-
standing of the pollutant co-occurrence in groundwater, the
associated impacts on human exposure, and the treatment
processes capable of effectively removing pollutants.

2. DATA SOURCES AND METHODOLOGIES
2.1. Data Collection and Preprocessing. Given that

most violations of USEPA regulations occur in groundwater
systems and considering that most private home water sources
rely on well water, this study specifically centered on improving
assessment of co-occurring inorganic chemicals in ground-
waters. The co-occurrence of pollutant mixtures and
competing ions in groundwater was examined using data
from two states with contrasting hydrogeological character-
istics: Arizona (AZ) and North Carolina (NC). Arizona,
characterized by its arid climate and landlocked geography,
receives less than 25 cm of annual rainfall and has diverse
geological formations that include limestone, sandstone, and
shale layers as well as recent volcanic deposits, which
differentially impact groundwater quality. In contrast, North
Carolina, with over 100 cm of annual precipitation, stretches
from the Atlantic Ocean inland and includes schist, phyllite,
marble, metavolcanic rock, quartzite, and gneiss.

Groundwater data for both states were obtained from the
National Water Quality Monitoring Council’s Water Quality
Portal (WQP),4,27 which aggregates field-sampled water data
from multiple databases, including the USGS National Water
Information System (NWIS), USEPA Storage and Retrieval
(STORET), USGS Bio-Data, and the U.S. Department of
Agriculture (STEWARDS). The data sets cover a time frame
from 1875 to 2021 and includes over 20 million data points for
up to 248 water quality parameters. Our data curation process
ensured consistency in concentration units and eliminated
irrelevant parameters, highly correlated water quality metrics,
and categorical data sets. Further information on data curation
can be found in the Supporting Information. Following
curation, the data set included 54 water quality parameters
for North Carolina and 72 for Arizona (Figures S1−S5).

The data set completeness for each water quality parameter
was not consistent. For example, in North Carolina, more than
80% of samples included pH, yet fewer than 10% contained
information on antimony. To address these inconsistencies and

identify gaps in the data set, we employed data fingerprints that
were generated for every water quality parameter based on two
key criteria: sampling date and location. Each fingerprint
comprises all the groundwater parameters available in the data
set for that specific time and place. When multiple measure-
ments for a particular water quality parameter existed for the
same time and location, we calculated the median of those
values to represent that parameter in the fingerprint.

2.2. Data Imputation Model Development. The most
common approach to handling missing values in a data set is
listwise deletion, which involves removing any rows that
contain any missing column. This method is widely accepted
primarily due to its convenience. However, it restricts the
potential for comprehensive analysis of the data set because
many rows may be removed in the process. For example, using
the listwise deletion method to simultaneously analyze more
than 10 co-occurring water quality parameters would remove
over 95% of the available data in this study. Additionally, if the
missing data points are not missing completely at random
(MCAR), this method can introduce biases into statistical
estimates of means, correlations, and regression coefficients.28

Data imputation algorithms operate under the assumption
that the available data are sufficient to statistically correct for
the impact of the missing data, providing a more nuanced and
robust way to handle incomplete data sets.29 Selecting a
practical imputation algorithm depends on the computational
capabilities and the suitability of the underlying regression
algorithm for the data set being examined. In this study, we
employed two imputation methods�AMELIA21 and
MICE22�to generate multiple imputed data sets. These
methods were chosen based on accuracy, performance on
large data sets, robustness, and the ability to perform
imputation using both Bayesian and frequentist methods.
The data imputation process was organized into three distinct
stages: preprocessing, imputation, and validation.

During the preprocessing stage, we eliminated parameters/
columns with fewer than 100 fingerprints because an
insufficient number of data points would compromise the
performance of any machine learning model. After preprocess-
ing, multiple imputations using the two different methods were
performed, generating 10 complete data sets each. In line with
approaches from previous literature on multiple imputation
methods, we performed multiple (N = 10) iterations, a practice
known to be effective in handling high levels of missingness.
During the imputation process, we set minimum and
maximum values for each column to serve as boundary values.
This ensures that the imputation algorithm will not produce
values outside the observed range, preventing unrealistic
results like negative concentration or high positive values for
parameters. Below, we outline the specific setup and steps for
each imputation algorithm.

The AMELIA II package (version 1.8.0) implemented in R
4.1.021 was one method used to perform data imputation for
groundwater data sets. Because AMELIA is a Bayesian
imputation method, multicollinearity due to a strong
correlation between two parameters could cause the algorithm
to fail. To avoid this drawback, only one parameter from each
pair that exhibits a strong linear correlation (Pearson R > 0.92)
was selected for subsequent imputation. To calculate the
Pearson R we used the most complete data set for each specific
pair of parameters. We chose pairwise deletion to minimize
data loss instead of listwise deletion, which would have
required removing the entire row. The parameter with the
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greater number of available values was selected for imputation,
and the missing values for the disregarded parameter were
predicted in the post imputation step using a Kernel Ridge
Regression algorithm based on the imputed values of the
selected parameter. The expectation-maximization (EM) chain
length was set with a minimum value of 100 and a maximum
value equal to 3 times the number of fingerprints in the data
set. Most chains converged before reaching this upper limit.
The AMELIA algorithm performed multiple single imputations
and generated 10 imputed data sets that were separately
analyzed in the subsequent steps. For a graphical representa-
tion of the data imputation results, we identified key elements
and parameters and combined them into a single “big” data set
for further analysis.

The other method used to impute missing values in our
groundwater quality data set was the “IterativeImputer”
module in the Scikit-learn package (version 0.24) for Python
3.7.3,30 which is based on the MICE method. A simple mean
imputation was performed as a starting step and was followed
by iterative imputations using Bayesian Ridge Regression.
Parameters were imputed sequentially, beginning with those
having the fewest missing values and progressing to those with
the most. Like AMELIA, this algorithm generated 10 imputed
data sets. These data sets were then merged into a single
comprehensive file, which included the identified parameters
and elements of interest.

The validity of multiple imputed data sets can be assessed by
measuring the uncertainty of the imputed values. One effective
method for this evaluation is the two sample Kolmogorov−
Smirnov (KS) test,31 a nonparametric test of equality that
checks whether two univariate sample sets have a common
underlying distribution. The test calculates a statistic known as
the KS-distance, which quantifies the cumulative probability of
the distance between the distributions of the two sample sets.
This test statistic follows the properties of the KS distribution,
allowing quantification of both the uncertainty and statistical
significance. In the context of multiple imputation, the KS-
distance for a specific parameter in one generated data set can
be compared against the values of the same parameter in
another generated data set. This comparison provides a
quantitative measure of the uncertainty associated with the
imputed values for that parameter. To ensure a comprehensive
evaluation, we conducted analyses using both methods to
assess their comparative performance and effectiveness in
addressing missing data. This dual-method approach provides
valuable insights into the strengths and limitations of each
algorithm and enhances the reliability of the imputation results.

3. RESULTS AND DISCUSSION
3.1. Field Data Availability and Variability. The total

number of field observations for most groundwater metal and
nonmetal parameters in North Carolina ranges from 193 for
vanadium to 2,171 for iron. In the Arizona data set, there were
more observations, ranging from 1,955 for phosphorus to
12,017 for fluoride (Table S1). Figure 1 illustrates the
completeness, or lack thereof, of the water quality data for
NC and AZ. Percentage completeness is the quantitative
frequency with which each specific water quality parameter
exists in the database. Despite thousands of measurements for
individual constituents in the groundwater of these two states,
Figure 1 reveals sparse data across the full parameter spectrum
of water chemistry parameters. NC had a higher average
completeness (50%) compared to AZ (28%). This lack of data

density was the impetus for our study, which aims to evaluate
methodologies that can predict the missing segments of the
data set.

3.2. Data Imputation and Validation. 3.2.1. Imputation
Statistics. In addition to the limited completeness of our data
sets (Figure 1), there was also variability in the combination
(i.e., co-occurrence) of parameters measured. Consequently,
data imputation techniques could take advantage of the
existing co-occurring data sets with little concern for sampling
bias. Figure 1 summarizes the imputation percentage for each
of the water quality parameters; Table S1 summarizes the exact
numbers of data points. For AZ, there were 13,363 field
sampling locations with 91,765 total chemical measurements,
rising to 401,760 chemical values after data imputation. For
NC, there were 2,948 field sampling locations with 20,924 total
chemical measurements, rising to 52,845 values after data
imputation. Antimony required the most imputation, with 94%
of its values imputed in the NC data set and 93% in the AZ
data set. Conversely, pH had the lowest imputation percentage
in NC (13%), while fluoride had the lowest imputation
percentage in AZ (58%). The sparser data set for AZ resulted
in a higher proportion of its values being imputed.

3.2.2. Distribution Comparison with Field Data Set. To
evaluate the plausibility of the imputed data, we employed a
combination of graphical and numerical assessments. Figure 2
compares the values for each water quality parameter between
the original field (incomplete) data set with the corresponding
values imputed by AMELIA; Figure S6 shows the companion
plot for MICE. In Figure 2 we see that the median values from
the field data and those imputed were comparable, both often
falling within the same order of magnitude. For example, with
arsenic, the field data and imputed values were equivalent (9.0
ppb) in AZ and very similar in NC (4.5 versus 3.2 ppb,
respectively). Despite discrepancies in nitrate, 26 mgNO3-N/L
in the field data versus 16 mgNO3−N/L in the imputed values
for AZ, and 6.7 mgNO3-N/L versus 7.4 mgNO3-N/L for NC,
imputed values remain significant because they are below the
USEPA’s MCL of 10 mgNO3-N/L, demonstrating the imputed
data’s accuracy and environmental relevance. Furthermore, to
evaluate the imputation performance of AMELIA for
“extremely sparse” sample sizes (i.e., data sets with >90%
missing data for Sb or V, as shown in Figure 1), we included
diagnostic test32 results in the Supporting Information (Figures
S9 and S10).

To assess and compare the imputation results of AMELIA
and MICE (Figures 2 and S4), the error was computed by
subtracting the median of the historic data from the median of

Figure 1. Data completeness percentage for groundwater parameters
from the field data set for NC (maroon bars) and AZ (yellow bars).
White bars (secondary y-axis) show the percentage of imputed data.
Table S1 summarizes the specific values.
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the imputed data for each parameter in each state (Table S2).
Overall, when applied to our historic groundwater database,
AMELIA demonstrated lower average and maximum errors
than MICE. We used the Kolmogorov−Smirnov (KS) test to
evaluate whether the distribution of 10 iterations of imputed
data sets varies significantly. Here, the two-sample KS-distance

method was used to check if the 10 iterations in the imputation
process were producing significantly different variances in the
imputed data set. We calculated the KS test statistics using the
paired combination of 10 imputed data sets, resulting in a total
of 10C2 = 45 pairwise KS-distance values for each ground-
water parameter.33 Figure 3 shows the mean and standard
deviation of KS statistics for both states and imputation
methods.

Notably, both the AMELIA and MICE models faced
difficulties when imputing vanadium in North Carolina due
to multicollinearity and a high percentage of missingness.
However, the AMELIA-imputed data sets consistently showed
lower KS distances for all 16 parameters, regardless of the
original field data being absent in Arizona. The differences in
confidence levels between AMELIA and MICE were attributed
to algorithmic variations and the level of missing data.
AMELIA uses a multivariable data distribution,21 whereas
MICE imputes using a one-by-one basis.20 A smaller KS-
distance value signifies that the underlying distribution of a
parameter in all 10 data sets is consistent, indicating low
uncertainty in the imputed data. Additionally, the confidence
intervals indicated some variation between the imputed 10 data
sets. In the AZ data set, AMELIA showed a slightly lower
average KS distance for the imputed parameters compared to
MICE. These values remained within a 10% significance level.
The lower KS distances observed with AMELIA could suggest
overconfidence in its imputations. However, they could also
indicate that AMELIA has an enhanced capacity to more
accurately capture the distribution of missing data in specific
data sets with a high volume of training data points.
Additionally, parameters with a greater number of missing
values tend to exhibit a higher mean KS-distance and larger
confidence intervals (Figure 3), indicating that the algorithm
has a higher uncertainty in cases with fewer available data
points. While the lower KS-distances observed with MICE

Figure 2. Distribution and variability between incomplete field data
and AMELIA imputed data set. Solid bars represent data from
measurements of field samples, while hashed-filled bars represent
imputed data sets. The bar and whisker plot shows median values with
a vertical line within the bar; ends of the bar represent 25th and 75th
percentiles, and gray data points are outside those percentiles.
Companion plots for MICE are provided as Figure S4.

Figure 3. Mean and confidence intervals of Kolmogorov−Smirnov distances of 16 parameters (Table S1) from the NC and AZ data sets after
performing 10 imputations using the AMELIA (left) and MICE (right) methods.
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might suggest an overconfidence in its imputations, they could
alternatively indicate MICE’s enhanced capacity to more
accurately capture the distribution of missing data in our
specific data set.

The imputed parameters obtained from both AMELIA and
MICE showed accuracy within the 5% to 10% significance level
for the computed KS distance. Notably, the lower KS distances
observed with AMELIA may indicate potential overconfidence
in the imputed data sets, possibly influenced by the high
volume of data points in Arizona. Overall, the multiple
imputed data sets by AMELIA suggested reasonable
confidence in the generated data sets, while MICE showed
slight overestimations based on the boxplot distribution.

3.3. Co-occurrence and Geospatial Occurrence of
Groundwater Pollutants of Health Concern. Imputed
data aid in understanding the probable distribution of
chemicals in water (Figure 2) plus their co-occurrence and
potential geospatial hot-spots. Sparse data for various health-
related chemicals in each field sample necessitated data
imputation to uncover potential co-occurrences, offering
valuable insights for targeted field sampling to validate and
mitigate associated risks. Figure 4 shows the percentage of
sampling sites exceeding the health-based concentration of
concern for individual chemicals, based both on sparse field
data and after data imputation. The field data set indicated that
75% to 80% of field sampling locations had no co-occurrence
with pollutants that exceeded their respective MCLs.
Antimony, arsenic, cadmium, chromium, copper, and lead
were the most common metals exceeding health-based levels in
both field and imputed data sets. However, interpretation of
AMELIA and MICE imputed values suggests that only 15% to
55% of sampling locations may have no health risks (i.e., zero
samples above health-based limits). Imputed data suggested
more frequent co-occurrence of regulated pollutants. Specifi-
cally, in all cases, imputed data reveal 2 to 5 times greater
number of sampling locations with a predicted potential to
surpass health-based limits, ranging from 1 to 6 co-occurring
chemicals above health-based levels, as represented on the x-
axis scale in Figure 4.

Figure 4 illustrates the frequency of co-occurrence using
field data alone compared to the improvements in risk
identification through data imputation. The field data
summarized in Figure 4 revealed that approximately three-
quarters of the samples exhibited no chemicals above the
threshold of potential health concern. Moreover, the likelihood
of observing multiple (n ≥ 2) co-occurring chemicals above
potential health concern levels was higher in Arizona than in
North Carolina. Individual parameter correlation matrices
were developed (Figures S7 and S8). While a few chemicals
showed modest correlations (r > 0.5), the lack of exact 1:1
chemical correlation supported the need for the fingerprinting
machine learning for both AMELIA and MICE. Overall, using
data imputation techniques on sparse field data (Figure 1)
provided a more comprehensive understanding of potential
health risks associated with groundwater (Figure 4). This
enhanced understanding is crucial, particularly when consid-
ering emerging approaches that consider antagonistic health
effects from mixtures of pollutants.12

Imputed data maintained geospatial locational information.
Maps for Arizona and North Carolina in Figures S9 and S10
depict field and imputed data for various inorganic chemicals.
Each map highlights areas of the states where missing field data
exist. For example, Figure S9a and S10a show where the 10%
of field samples (from Figure 1) that have measured antimony
concentrations are geospatially located along with locations of
the additional 90% of the sites with imputed antimony values.
Approximately 25% of the imputed data were above the MCL
of 0.006 mg/L for antimony, and Figures S9a and S10a
geospatially locate these hotspots. Antimony does not seem to
co-occur with arsenic, but instead with Cd, Cu, or Pb (Figure
S7). Overall, imputed occurrence data could provide insights
and aid in strategically allocating potentially limited financial
resources to collect and measure pollutant concentrations in
additional field samples in regions with sparse data availability
within the states.

Data imputation should be considered only as the first step
in identifying occurrence hotspots. For example, over 90% of
the antimony occurrence data needed to be imputed (Figure

Figure 4. Number of co-occurring chemicals and their percentage of groundwater sample locations that exceed the health based limits for the
pollutants listed in Table 1.
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1). Figure 2 shows that the imputed antimony data were an
order of magnitude greater than the field data in NC, although
field and imputed antimony concentrations had similar median
and 25th to 75th percentile distributions in AZ, but much
higher outliers beyond these distributions. Several factors may
contribute to the overprediction in NC, most notably a much
smaller number of samples in NC (339) versus AZ (2,918). To
quantitatively assess the deviation or biases present in certain
parameters within the comprehensive water quality matrix, the
Mean Absolute Error (MAE) was calculated (Table S2). Data
imputation in such cases should be viewed as useful
identification of potential hotspots of elevated pollutant
concentrations. Subsequently, as a second step, a state, city,
or other agency can use data imputation to strategically

prioritize locations and allocate financial resources for future
sampling and analyses. As a final step, data from the informed
field sampling campaigns can then be used to repeat the
imputation process, reducing uncertainty in the distribution of
imputed pollutant concentrations. Similar iterative approaches
to prioritize sampling and refine data imputation would be
worthwhile for other parameters with high levels of data
imputation and/or when occurrence distributions differ
significantly between field and imputed concentrations (e.g.,
Mn, NO3

−, V).
Data imputation techniques provide valuable insights into

water quality issues, but limitations must be acknowledged.
The AMELIA and MICE methods can be challenged in
predicting extreme values or infrequent events in sparse data

Figure 5. Treatability of groundwater samples with adsorption and chemical precipitation. (a) All field data points plotted in four treatment
category quadrants (I, II, III, IV), (b) AMELIA imputed data points that have silica >20 ppm, (c) AMELIA imputed points that do not fall under
any of the following criteria (silica >20 ppm and phosphate > arsenic, vanadium > arsenic, vanadium plus phosphate > arsenic), (d) AMELIA
imputed data points having phosphate > arsenic, (e) AMELIA imputed data points where vanadium > arsenic, (f) AMELIA imputed data points
that have vanadium plus phosphate > arsenic concentrations.
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sets. AMELIA’s assumption of a Gaussian distribution may
overlook complex patterns in real-world data, leading to the
loss of crucial information. The Kolmogorov−Smirnov (KS)
distance used only addresses variances among imputed data set
pairs, without calculating bias that would require real-world
data for comprehensive assessment. Our approach of setting
nondetects as half of the detection limit values, despite
implemented training data constraints, may have introduced
high extreme values. Furthermore, the evaluation of model
performance based on interquartile range visualization and
standard error calculation may not be a sufficiently robust
predictor without validation against real-world data. Using the
Kolmogorov−Smirnov (KS) distance addresses variances but
not bias, and setting nondetects to half the detection limit may
introduce high extreme values. Model performance evaluations
based on interquartile ranges and standard errors lack
robustness without real-world validation.

3.4. Water Treatment Implications. Water chemistry
plays a significant role in determining and assessing the
appropriate technologies for treating water pollutants that are
of health concerns. Some nonregulated water chemistry
parameters, even those with minimal health risks (Table 1),
can profoundly impact the technical and economic aspects of
treating health-related pollutants. To illustrate this impact, we
provide a few examples related to the treatment of arsenic,
nitrate, or hardness.

The co-occurrence of arsenic with iron in water significantly
influences the treatment process selection from technologies
such as packed-bed adsorption, oxidation-filtration, or
coagulation-filtration. Each quadrant in Figure 5 represents a
different treatment process. Iron concentrations are relevant
because to remove arsenic in coagulation-filtration processes
requires sufficient iron be present to exceed its solubility and
facilitate precipitation of iron hydroxide floc that adsorbs
arsenate.34 As annotated in Figure 5a, Quadrant I samples do
not require arsenic treatment to meet the current drinking
water regulation (i.e., arsenic concentration is below 10 μg/L
MCL). Quadrant II samples have high arsenic concentrations
and low iron concentrations, so using ambient iron in the
water to produce floc (usually after oxidation with chlorine)
would be insufficient to reduce treated water arsenic below the
MCL. Therefore, packed bed adsorption or ion exchange
would be the targeted treatment process.35,36 Quadrant III
samples have co-occurring arsenic with elevated iron sufficient
to remove arsenic to below the MCL. Quadrant IV samples
have some iron but would require additional iron coagulant to
form sufficient floc surfaces to remove arsenic from treated
water.

We focus our discussion on arsenic occurrence data for AZ
(yellow symbols in Figure 5) because NC had far fewer
samples with arsenic above the MCL (maroon symbols). Table
2 summarizes the percentage distribution and total number of
samples within each “treatment” related quadrant. Figure 5a
considers only the sparse field sampling data, whereas Figure
5b−f include data after AMELIA imputation. Whereas 74% of
the field samples were below the arsenic MCL (quadrant I),
the imputed data set revealed more potential samples likely to
exceed 10 μg/L (i.e., only 57% below the MCL). Most of the
newly identified samples fell into quadrant II, which indicated
fairly low iron levels and would consequently require
adsorbent-based arsenic treatment systems.

Silica adsorbs to iron-based adsorbents commonly used for
arsenic treatment, and 40% of the imputed data co-occurs with

silica above 20 ppm (Figure 5b)�levels that would result in
significant fouling and shorten the expected operational life of
iron packed bed adsorbent treatment processes. The similar
chemical structure of vanadate and phosphate compared with
arsenate results in competition for adsorption sites on metal
(hydr)oxide adsorbents or flocs, thus decreasing the
effectiveness of these arsenic treatment technologies. Com-
petition for co-occurring oxoanions was considered to occur
when their molar concentrations exceeded the molar
concentration of arsenic. Figure 5c shows that very few
samples had low co-occurrence of competing species. Imputed
data revealed that phosphate (Figure 5d) and vanadate (Figure
5e) co-occurred with arsenic in 30% to 35% of the samples in
quadrant II (Table 2), where adsorbent-based packed bed
arsenic treatment technologies would likely be used. Figure 5f
illustrates samples where the co-occurring molar concen-
trations of phosphate plus vanadate exceeded the arsenic
concentration present in the water and would again exert
competition for adsorbent binding sites. While most of the
samples contained arsenic below the current MCL of 10 μg/L,
it is noteworthy that this MCL was based on analytical
detection capabilities in the year 2001 and is associated with a
much lower excess cancer health-based limit of 1:10,000 rather
than the typical 1:1,000,000 applied for most carcinogens.
Trends illustrated in Figure 5b−f illustrate the potential for co-
occurrence of nonregulated inorganic chemicals (silica,
phosphate, vanadate) to have significant adverse impacts on
arsenic removal should a lower MCL be promulgated or for
homeowners installing point of use (POU) arsenic treatment
systems.

Ion exchange water treatment is commonly applied to
remove nitrate from water. However, other anions present in

Table 2. Water Treatability Statistics Are Associated with
Figure 5a

arsenic treatment quadrant
associated with co-occurrence

of iron (from Figure 5)

co-occurrence
scenario

data
source I II III IV

total #
samples

All Data Field AZ 74% 24% 1% 1% 5,405
Imputed
AZ

57% 38% 3% 1% 26,784

Field NC 86% 3% 10% 0% 1,167
Imputed
NC

95% 1% 4% 0% 3,523

Si > 20 ppm Imputed
AZ

55% 40% 4% 1% 24,713

Imputed
NC

89% 2% 8% 0% 1,291

P > As Imputed
AZ

61% 35% 4% 1% 24,816

Imputed
NC

95% 1% 4% 0% 3,495

V > As Imputed
AZ

66% 30% 3% 1% 20,899

Imputed
NC

95% 1% 4% 0% 2,012

P > As Imputed
AZ

68% 28% 3% 0% 20,070

and V > As Imputed
NC

95% 1% 4% 0% 2,009

aValues under each column show the number of groundwater samples
in each water treatment method. Only field and AMELIA imputed
data are shown below.
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water (SO4
2−, Cl−, and HCO3

−) increase treatment costs
because they compete for resin exchange sites as nitrate ions
(NO3

−). Evaluating this competition requires comparing
equivalent charge (mequiv/L) rather than mass (mgNO3-N/
L) or molar concentrations. Figure 6 shows the sparse field and

imputed data for nitrate co-occurrence with competing
anions�shown as the sum of their equivalent concentrations.
AZ has many more samples than NC where nitrate exceeded
the MCL of 10 mgNO3-N/L, as well as having at least an order
of magnitude higher level (mequiv/L) of competing anions.
Contrasting Figure 6a versus b for Arizona clearly revealed the
benefits of using data imputation to fill-in sparse co-occurrence
data for competing anions. The imputed data (Figure 6b)
showed much higher cumulative concentrations of co-
occurring competing anions than the field data (Figure 6a).
The concentrations of co-occurring anions are >10 times
higher than nitrate and thus would significantly increase the
frequency of ion exchange regeneration�which would
consume more regenerant salts and increase brine disposal
costs. It is noteworthy that emerging health effects studies
show that lowering the nitrate MCL from 10 to 5 mgNO3-N/L
may be appropriate to reduce unwanted cancer risks.5,37,38

Imputed data not only improved assessment for potential
impacts of lowering nitrate regulatory limits but also, by
considering the co-occurrence of competing anions, informs
potential treatment costs associated with regulatory changes.

Hardness is one of the major reasons homeowners install
POU water treatment devices because the presence of calcium
and magnesium, which comprise hardness, causes aesthetic
issues (taste, detergent/soap foaming) and scale-formation that
impacts the lifespan of heating and plumbing devices.
Hardness is a component of total dissolved solids (TDS),
which is also noticeable to consumers in drinking water (Table
1). Roughly half of the field samples reported hardness or TDS
(Figure 1). Imputed data for TDS and hardness have median
concentrations comparable to those of field samples (Figure
2). Tables S4 and S5 summarize these ranges using

terminology that consumers often understand (e.g., hard
versus soft water). Identifying locations with higher hardness
and TDS may allow communities and regulators to better
understand public perceptions regarding their drinking water,
how or if the public may be installing POU systems to address
these aesthetic issues, and the potential where more centralized
treatment could have significant benefits for communities.

4. ENVIRONMENTAL IMPLICATIONS
Groundwater quality data for the United States were
downloaded from the Water Quality Data Portal and
preprocessed to analyze the co-occurrence of important
inorganic pollutants of health concern and chemicals that
impact the removal of the pollutants by different treatment
processes. These data sets were often collected for differing
reasons, over decades, and did not always measure all the
sample chemical parameters. These sampling discrepancies
resulted in sparse data sets where identifying co-occurrence of
chemicals was hampered by incomplete data sets. Here, the
approach of using multiple imputation techniques is proposed
to inform this prioritization process rather than replace the
need for real-world data. We were able to show how data
imputation using two different techniques (AMELIA and
MICE) made the data sets more complete (Figure 1). Imputed
data had median concentrations comparable to those of the
field data (Figure 2) for most chemicals. While differences
existed between the two machine learning techniques (Figure
3), both enabled interpretation of critical insights after the
sparse incomplete fields in the data set were addressed.

Imputed data provided a better understanding of the
potential number of water sources that potentially had one
or more regulated pollutants present above the regulatory
levels (Figure 4). The field data set indicated that 75% to 80%
of field sampling locations had no co-occurrence with
pollutants that exceeded their respective MCLs. However,
interpretation of AMELIA and MICE imputed values suggests
that only 15% to 55% of sampling locations may have no
health risks (i.e., zero samples above health-based limits).
Imputed data suggested more frequent co-occurrence of
regulated pollutants.

Transitioning to less-sparse data sets presents significant
opportunities to mitigate people’s exposure to chemicals of
concern in drinking water sources. First, by applying data
imputation to specific sampling locations, the imputed data
become geospatially available, enabling the identification of
regions where drinking water may pose higher risks (Figures
S9 and S10). This approach allows for the targeted deployment
of limited field sampling resources to collect and analyze new
samples from these potentially “high-risk” locations.

Second, new hazard and exposure analyses or advancements
in chemical detection sensitivity occasionally warrant justifica-
tion for reducing MCLs. For instance, the arsenic MCL was
lowered from 50 to 10 μg/L in 2001. Emerging evidence
suggests that reducing the nitrate MCL from 10 to <5 mgNO3-
N/L could mitigate adverse health outcomes. Machine
learning can aid regulatory determinations by assessing the
likely impact of such changes because imputed data provide
concentration data, not solely compliance or lack thereof with
existing MCLs.

Third, treatment process selection and costs are crucial
aspects of any new drinking water regulatory determination.
Machine learning mitigates the sparsity of nonregulated
chemical concentrations, which often co-occur with pollutants

Figure 6. Co-occurrence of nitrate and competing inorganic ions
associated with ion exchange treatment. The nitrate MCL is 10
mgNO3-N/L. Nitrate concentrations (mgNO3-N/L) can be con-
verted to milli-equivalents per liter (meq/L) by dividing by 14
mequiv/mgNO3-N. Treatability corresponds to bicarbonate + sulfate
+ chloride concentration based on the field and imputed data set.
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exceeding MCLs, thus offering a broader data set to estimate
treatment methods and associated costs for compliance with
drinking water regulations. Moreover, including nonregulatory
chemical concentrations provides a basis for offering grant
funding to help municipalities construct water treatment
infrastructure. Less sparse data sets, particularly in rural
communities that rely on private wells, can help identify
regions where POU in-home treatment devices could
significantly reduce exposure risks to chemical pollutants.

The proposed four-step iterative approach has the potential
to reduce uncertainty and provide a framework for prioritizing
sampling locations and chemical parameters for state agencies
with limited financial resources, making it nearly impossible to
sample all groundwater, all of the time, for all chemicals. First,
performing machine learning on existing water quality data
helps identify potential “hot spots” for prioritizing future
sampling campaigns to collect additional groundwater
chemistry data. State agencies will also consider other factors
in prioritizing future sampling efforts, such as populations
potentially exposed to chemicals in groundwater, local
industrial activities, and regulatory requirements. Second,
collecting new groundwater chemistry data enhances the
completeness of data sets. Third, updated data sets can be used
to validate machine learning predictions. Fourth, providing less
sparse data sets helps improve data imputation. This approach
holds significant promise in advancing efforts targeted at the in
situ remediation of both geogenic and anthropogenic ground-
water contamination.

By utilizing data imputation to identify the entire water
matrix associated with the co-occurrence of elevated pollutant
levels, the imputed water chemistry can potentially “finger-
print” common geological sources (e.g., arsenic from shale
formations) or common land uses (e.g., nitrate co-occurrence
with high TDS may indicate evaporated water used for
agricultural irrigation). Similarly, the co-occurrence of lower
pH and high copper can indicate acid-mine drainage impacting
groundwater in regions like Arizona. Data imputation is
especially valuable in data-sparse sampling scenarios, such as
when samples are collected from household wells or under-
resourced communities. In fact, a key motivation for this work
was to identify poor water quality used as drinking water in
colonias along the US-Mexico border, where many of these
unincorporated communities are not part of public drinking
water systems, and limited water quality data sets exist to
identify where water was withdrawn or hauled.39−42 This
review explores only a few of the occurrence and treatment
insights gained through the evaluation of imputed data, and
future work will delve into additional environmental impacts.

There were notable disparities in the number of chemical
analyses conducted and the completeness of databases and
concentrations of inorganic chemicals between the two states
examined (AZ and NC). Despite these data input limitations,
we successfully applied the same workflow and data imputation
approaches to mitigate the sparse nature of the data sets. In the
future, based on the success observed in these two states, we
plan to extend this machine learning approach to all states. We
aim to leverage the findings to gain a deeper understanding of
the co-occurrence of inorganic chemicals in groundwaters used
as municipal public drinking water or private-home water
supplies.

Beyond the benefits stated above for state regulatory
agencies, future research could prioritize field validation in
areas with high data gaps and potential hotspots. Enhancing

imputation algorithms to handle extreme values and
integrating additional data sources, such as geological or land
use information, could improve accuracy. Expanding these
methods across diverse regions would help to assess general-
izability and identify region-specific challenges. Emphasizing
high-missing-parameter sampling and interdisciplinary collab-
oration will be essential for refining models and enhancing
their reliability, ultimately informing better environmental
management and policy decisions.
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Walker, W. S.; Westerhoff, P. MAD water: Integrating modular,
adaptive, and decentralized approaches for water security in the
climate change era. WIREs Water 2023, 10 (6), e1680.
(42) Thomson, P.; Stoler, J.; Wutich, A.; Westerhoff, P. MAD water

(modular, adaptive, decentralized) systems: New approaches for
overcoming challenges to global water security. Water Security 2024,
21, 100166.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.4c05203
Environ. Sci. Technol. 2024, 58, 20513−20524

20524

https://doi.org/10.2166/aqua.2005.0048
https://doi.org/10.5942/jawwa.2017.109.0045
https://doi.org/10.5942/jawwa.2017.109.0045
https://doi.org/10.5942/jawwa.2017.109.0045
https://doi.org/10.2166/aqua.2021.148
https://doi.org/10.2166/aqua.2021.148
https://doi.org/10.2166/aqua.2021.148
https://doi.org/10.1080/09603123.2020.1815664
https://doi.org/10.1080/09603123.2020.1815664
https://doi.org/10.1016/j.envres.2019.04.009
https://doi.org/10.1016/j.envres.2019.04.009
https://doi.org/10.1016/j.envres.2019.04.009
https://doi.org/10.1002/wat2.1595
https://doi.org/10.1002/wat2.1595
https://doi.org/10.1016/j.compenvurbsys.2023.101969
https://doi.org/10.1016/j.compenvurbsys.2023.101969
https://doi.org/10.1002/wat2.1680
https://doi.org/10.1002/wat2.1680
https://doi.org/10.1002/wat2.1680
https://doi.org/10.1016/j.wasec.2024.100166
https://doi.org/10.1016/j.wasec.2024.100166
https://doi.org/10.1016/j.wasec.2024.100166
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.4c05203?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

