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Abstract 

Introduction The delineation of organs-at-risk and lymph node areas is a crucial step in radiotherapy, but it is time-
consuming and associated with substantial user-dependent variability in contouring. Artificial intelligence (AI) 
appears to be the solution to facilitate and standardize this work. The objective of this study is to compare eight avail-
able AI software programs in terms of technical aspects and accuracy for contouring organs-at-risk and lymph node 
areas with current international contouring recommendations.

Material and methods From January–July 2023, we performed a blinded study of the contour scoring 
of the organs-at-risk and lymph node areas by eight self-contouring AI programs by 20 radiation oncologists. It 
was a single-center study conducted in radiation department at the Lorraine Cancer Institute. A qualitative analysis 
of technical characteristics of the different AI programs was also performed. Three adults (two women and one man) 
and three children (one girl and two boys) provided six whole-body anonymized CT scans, along with two other 
adult brain MRI scans. Using a scoring scale from 1 to 3 (best score), radiation oncologists blindly assessed the qual-
ity of contouring of organs-at-risk and lymph node areas of all scans and MRI data by the eight AI programs. We have 
chosen to define the threshold of an average score equal to or greater than 2 to characterize a high-performing AI 
software, meaning an AI with minimal to moderate corrections but usable in clinical routine.

Results For adults CT scans: There were two AI programs for which the overall average quality score (that is, all areas 
tested for OARs and lymph nodes) was higher than 2.0: Limbus (overall average score = 2.03 (0.16)) and MVision 
(overall average score = 2.13 (0.19)). If we only consider OARs for adults, only Limbus, Therapanacea, MVision and Rad-
formation have an average score above 2. For children CT scan, MVision was the only program to have a average score 
higher than 2 with overall average score = 2.07 (0.19). If we only consider OARs for children, only Limbus and MVision 
have an average score above 2. For brain MRIs: TheraPanacea was the only program with an average score over 2, 
for both brain delineation (2.75 (0.35)) and OARs (2.09 (0.19)). The comparative analysis of the technical aspects high-
lights the similarities and differences between the software. There is no difference in between senior radiation oncolo-
gist and residents for OARs contouring.
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Conclusion For adult CT-scan, two AI programs on the market, MVision and Limbus, delineate most OARs and lymph 
nodes areas that are useful in clinical routine. For children CT-scan, only one IA, MVision, program is efficient. For adult 
brain MRI, Therapancea,only one AI program is efficient.

Trial registration: CNIL-MR0004 Number HDH434.

Introduction
The delineation of organs-at-risk (OARs) and lymph 
node areas is an important aspect of radiotherapy treat-
ment. This step is crucial to define the healthy tissue 
that will be spared. Although there are many contouring 
guidelines for OARs and lymph node areas that we use 
in our department to standardize practices [1–6], there 
is still great intra- and inter-user variability [7–9]. Some 
radiotherapy teams have partially or totally delegated 
the preparation to the contouring of the OARs to radio-
therapy therapists (RTTs), dosimetrists or residents with 
a final medical validation made by the senior radiation 
oncologist, which is time-consuming but mandatory in 
clinical practice. Single-atlas, multiple-atlas and model-
based solutions were developed to simplify, speed up and 
improve manual contouring [10]. However, there are still 
limitations, and these technological advances were also 
limited by the availability of segmented data and com-
puter power [11]. Artificial intelligence (AI) encompasses 
a set of programs capable of simulating human intelli-
gence, and machine learning, deep learning and convo-
lutional neural networks (CNNs) are used for automated 
contouring [12, 13]. Artificial intelligence (AI) refers to 
computer models designed to solve complex problems 
that lack a clear mathematical solution or a defined set 
of rules, much like how the human brain tackles real-
world challenges. Machine learning (ML), a subset of AI, 
focuses on developing models that can recognize patterns 
in high-dimensional data and make predictions based 
on new information. The goal of ML is to enable com-
puters to learn how to achieve specific objectives with-
out being explicitly programmed with the steps to reach 
those objectives (Meyer et al.). Within ML, deep learning 
(DL) models are based on neural networks—multi-lay-
ered, interconnected networks capable of adapting their 
pathways to integrate new data and identify patterns. A 
specialized type of DL model is the convolutional neural 
network (CNN), which is specifically designed for image 
recognition and computer vision tasks.

Many studies have recently been published on the 
emergence of AI in the field of auto-contouring in radio-
therapy (the first published by Ibragimov in 2017, using 
CNNs for delineation of head and neck OARs [14]). 
These studies have shown the efficacy and efficiency of 

auto-contouring compared to a gold standard (manual 
delineation by an expert radiation oncologist) or com-
pared with techniques based on atlases. However, they 
are often limited to a single locations, such as head and 
neck cancer [15–17], lung cancer [18–20], prostate can-
cer [21–23], rectal cancer [24, 25] or breast cancer [26] 
and there are few studies comparing multiple anatomi-
cal regions among themselves [27, 28]. Moreover, there 
are currently only a few studies that compare so many 
self-contouring AI systems with each other (for example, 
Doolan et al. compared 5 solutions [27] and Heilemann 
et al. compared 3 solutions [28]).

Today there are several auto-contouring programs 
available on the European market with strong competi-
tion and regular developmental updates. Therefore, the 
goal of this study is to compare eight AI programs avail-
able in terms of technical aspects and accuracy for con-
touring OARs and lymph node areas compared.

Methods
Study design
First, we compared in a table the technical characteristics 
for the eight different AI auto-contouring programs for 
OARs and lymph nodes. Second, 20 radiation oncolo-
gists (12 seniors and 8 juniors) performed a single-center 
blinded analysis of the contour scoring of the OARs 
and lymph node areas carried out by AI. All evaluators 
assessed the contours independently and had not previ-
ously outlined them. This analysis was carried out by the 
radiation oncology team at the Lorraine Cancer Institute 
from January–July 2023. CT scans of selected patients 
were sent to radiotherapy centers in France that had the 
different AI programs or to the software manufacturer. 
They performed the auto-contouring with their soft-
ware and the completed scans with delineated OARs and 
lymph node areas then we imported all the contours into 
our contouring software RayStation.

Patient data
We chose three patients scheduled for total body irradia-
tion with a whole-body anonymized scan (two women 
aged 28 and 36 with acute lymphoid leukemia (ALL) 
and aplastic anemia and a 67-year-old man with ALL) 
and two other patients scheduled for brain irradiation 
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with anonymized centering MRI. To test the software on 
scans of children, we also chose three anonymized scans 
of whole-body irradiation of children (a 15-year-old 
girl with ALL and two boys aged 7 and 15 with medul-
loblastoma and ALL). Simulation contrast CT data were 
acquired on a Brilliance CT Big Bore (Philips Health-
care, Best, the Netherlands) system set on helical scan 
mode without contrast enhancement. CT images were 
reconstructed using a matrix size of 512 × 512 and thick-
ness of 1  mm for stereotactic irradiation or 2  mm for 
other irradiations. All patients were supine with usual 
immobilization system. MRI scans of cerebral localiza-
tions were acquired to compare MRI self-contouring for 
software with this functionality (Mvison, Limbus and 
TheraPanacea).

Intervention: automatic contouring/contour content
We analyzed all the OARs and all lymph node areas used 
in clinical practice, divided into four subgroups: 1. Head 
and neck; 2. thorax and breast; 3. abdomen and pelvis; 4. 
central nervous system on MRI. The evaluated software 
were: Raystation version 12A by Reasearch laboratories, 
MVision version 1.2.3, Limbus version 1.7.0, TheraPana-
cea version 1.11.2, MIRADA version 1.8.6.44363, Rad-
formation version 2.0.19, Mim version 7.2.7 and Varian/
Siemens version A50 (pre-release version).

Measures
The quality of OAR and lymph node area contouring of 
all scans and MRI data of the eight AI programs were 
blinded, checked and scored by 20 radiation oncologists 
in various locations in accordance with international 
contouring recommendations [1–6]. 5 seniors and 3 jun-
iors evaluated the head and neck region, 6 seniors and 4 
juniors evaluated the thoraco-abdominopelvic region, 
and 1 senior and 1 junior conducted the comprehensive 
analysis. No contour corrections were made. The scoring 
criteria were as follows: 3 points (no correction, major 
time saving); 2 points (moderate corrections, moderate 
correction on 1 or a few cuts taking a few seconds, mod-
erate time saving); 1 point (major corrections; no time 
saving, it’s easier for the radiation oncologist to com-
pletely manually redo the OAR) or NR (not perform by 
IA software). A figure has been added in supplementary 
data to illustrate the scoring criteria (Appendix 1).

Statistics
The average score per observer was described as mean 
for each AI. Then overall average score was described 
by calculating mean of all observers score and standard 
deviation. We have chosen to define the threshold of an 
average score equal to or greater than 2 to character-
ize a high-performing AI software, meaning an AI with 

minimal to moderate corrections but usable in clini-
cal routine. Scores equal to or greater than 2 were com-
pared using a one-tailed paired-sample Student’s t-test. 
All analysis were performed using Microsoft Excel 2016 
(Microsoft corporation, Redmond, Washington, USA).

Human ethics approval and consent to participation
This study was approved by ethics and conducted in 
accordance with the ethical standards of the Declaration 
of Helsinki (as revised in 2013). This study was approved 
by Ethics committee named the French National Com-
mission of Informatics and Liberty (CNIL) (CNIL-
MR0004 Number HDH434). The present study has been 
approved by the French Health Data Institute (Health 
DataHub) as the number HDH301. All methods were 
carried out in accordance with relevant guidelines and 
regulations. All participants have signed informed con-
sent to the use of their data for research purposes.

Results
Technical considerations
Table 1 summarizes the technical aspects of the different 
AI programs currently available.

All the AI programs used deep learning, including six 
with automatic contouring via Tag Dicom. All the AI pro-
grams are based on theoretical guidelines to train their 
model, and the automatic contouring time is less than 
15 min for all the programs, depending on the number of 
OARs and lymph node areas contoured. All the AI pro-
grams can create templates with empty structures except 
TheraPanacea. Most AI programs include a “double ver-
sion”; that is, a version with Cloud and data anonymiza-
tion and a version with local installation on a server or 
a local PC etc. Six AI programs are accessible by Cloud, 
seven have local accessibility, and five have both. Limbus 
and Raysearch, for example, do not have Cloud versions, 
whereas Radformation is not installed locally. Accord-
ing to the contracts, all software can be used on several 
sites with, in general, several updates per year, from a 
minimum of one update per year and up to 4 per year for 
Limbus; the exception Mirada, which does not receive 
updates because this software is no longer commercially 
available. A list of all the OARs and lymph node areas 
produced by each software can be found in Appendices 
2–6.

OARs and lymph node contouring by AI
OARs and lymph node contouring by AI in adults
There were two AI programs for which the overall aver-
age quality score (that is, all areas tested for OARs and 
lymph nodes) was higher than 2.0: Limbus (overall aver-
age score = 2.03 (0.16)) and MVision (overall average 
score = 2.13 (0.19)). If we only consider OARs for adults, 
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Table 1 Comparative table of the different technical aspects between the 8 artificial intelligence systems

a Version A50 teamplay Organs RT (pre-release version);  bEN/FR/DE/E: English/French/German/Español; cPersonal Computer; dGraphics Processing Unit; eGigabytes; 
fRandom Access Memory; gHard Disk Drive/Solid State Srive; hCentral Processing Unit; iInformation Technology

Limbus Thera-panacea Mvision Mirada Rad-formation Raysearch Varian 
siemens

MIM

Functionality

Algorithm type Deep learning Deep learning Deep learning Deep learning Deep learning Deep learning Deep learning Deep learning

Version 1.7.0 1.11.2 1.2.3 1.8.6.44363 2.0.19 12A A50a 7.2.7

Automatic 
contouring (via 
Dicom tag)

Yes Yes Yes No Yes Yes Yes Yes

Based 
on international 
contouring 
guidelines

Yes Yes Yes Yes Yes Yes Yes Yes

Contouring 
time(min)

1–3 1–2 (up to 10) 1–10 15 0.30 1–2 1–2  < 1–10

Settings

Changes 
the name, 
color and order 
of structures

Yes Yes Yes Yes Yes Yes Yes Yes

Contouring 1 
cut/2

Yes No Yes Yes Next version No No Yes

Segmentation 
of prostheses

Next version No Yes No No No No No

Generation 
of templates 
with empty 
structures

Yes No Yes Yes Yes Yes Yes Yes

Generation 
of structures 
with margins/
Boolean opera-
tion

Next version Yes Yes Yes Yes Yes Yes Yes

Software 
language

EN/FR/DE/Eb EN/FRb EN/FRb ENb ENb ENb 7 languages   
including EN/
FR/DEb

EN/FRb

Hardware

Cloud version No Yes Yes Yes Yes No Yes Yes

Data anonymi-
zation

No Yes Yes Yes Yes No Yes Yes

Locally installed Yes Yes Yes Yes No Yes Yes Yes

Hardware 
requirements

Works 
on a local  PCc

 Windows 10
 No  GPUd card 
needed
Can be installed 
on a computer 
virtual machine

Server Intel/AMD × 86 
processor
2  GBe  RAMf

Hard disk 32 
 GBe HDD/SSDg

Server (with 
remote access, 
with citrix 
access, 
with thin 
or thick clients)

CPU⁸-based
Google Cloud 
server

Server Multi-software 
physical server 
or virtualized 
server
Windows 
environment

Server

Technical needs

Can be used 
on several sites

Yes Yes Yes Yes Yes Yes Yes Yes

Update 4 per year 2–3 per year 2 per year No 2–3 per year 1 per year 1–2 per year 2–3 per year

Installation
Formation
Technical sup-
port

Online or onsite 
training
24h technical 
support

User training
Response in 6 
working hrs
Online techni-
cal support

User training
Hotline 
in France

Onsite or video 
training
Technical sup-
port via email 
and hotline

Video training
Hotline
European tech-
nical support 
by email

-On-site train-
ing
- On-site instal-
lation with local 
 ITa⁰ team

Support by  IT11 
technical team
Large hotline
Online training

On-site training 
in French
Technical sup-
port available 
and responsive
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only Limbus, Therapanacea, MVision and Radforma-
tion have an average score above 2. MVision had the best 
overall average quality score for OARs and lymph node 
areas, but Limbus had a better score for the delineation 
of OARs alone (average score = 2.42 (0.20)) (p = 0.01). For 
head and neck localization, MVision had a better over-
all average score of 2.21(0.20), than Limbus (2.03(0.14) 
(p < 0.001); particularly in the delineation of lymph 
node areas with an average score of 2.15 (0.33), versus 
1.80 (0.24) for Limbus (p < 0.001). For thorax and breast 
localization, Limbus scored higher than MVision for the 
delineation of OARs with average score of 2.42 (0.30) 
(p < 0.001), but MVision has a higher score for lymph 
node areas with average score of 1.65 (0.40) (p < 0.001) 
For the abdomen and pelvis localization, Limbus scored 
higher than MVision again for the delineation of OARs 
(average score = 1.99 (0.26)) (p < 0.001) and not statis-
tically different from MVision for lymph node areas 
(average score = 1.66 (0.45)) versus 1.70 (0.36) (p = 0.4) 
(Table 2).

OARs and lymph node contouring by AI in children
For children, MVision was the only program to have 
a average score higher than 2 with overall average 
score = 2.07 (0.19). If we only consider OARs for children, 
only Limbus and MVision have an average score above 2. 
Limbus overall average score was slightly below 2 (over-
all average score = 1.93 (0.13), and statistically lower 

than MVision score (p = 0.001), but Limbus scored bet-
ter for OARs delineation alone, with an average score of 
2.28(0.17) (p = 0.03) (Table 3).

OARs contouring of brain MRIs
TheraPanacea was the only program with an average 
score over 2, for both brain delineation (2.75 (0.35)) and 
OARs (2.09 (0.19)). (Table  4). Figure  1 summarizes the 
results of this section. Note that we did not compare 
the contouring quality differences between CT and MRI 
when an OAR could be generated interchangeably from 
either a CT scan or an MRI.

Comparison between senior radiation oncologist 
and residents
Overall (OARs and LNs) for senior physicians, the mean 
is 1.63 and 1.66 for residents (p = 0.03). If we consider 
only OARs, the mean for senior physicians is 1.93 versus 
1.90 for residents (p = 0.12). If we consider only LNs, the 
mean is 1.37 for senior physicians and 1.43 for residents 
(p = 0.004).

Discussion
Four AI programs, MVision, Limbus, TheraPanacea and 
Radformation, successfully delineated most OARs and 
lymph nodes areas useful in clinical routine for the head 
and neck, thorax and breast, and abdomen and pelvis in 
adults and children, with a higher than average score. All 

Table 2 Table of average scoring for Organs-at-Risk (OARs) and lymph node areas assessments across 8 AI Systems by each location 
(head and neck, thorax and breast, abdomen and pelvis) in adult CT Scans

Data are presented as: average (± SD); a Organs at risk; b Not Realized

Adults Limbusa Therapanacea Mvision Mirada Radformation Raysearch Siemens MIM T test

OARs

Head and  necka (n = 750) 2.25 (0.13) 1.91 (0.10) 2.28 (0.10) 1.62 (0.1) 1.94 (0.14) 1.86 (0.11) 1.35 (0.18) 1.72 (0.15) p < 0.001

Thorax and  breasta (n = 456) 2.42 (0.30) 2.01 (0.23) 2.37 (0.24) 1.57 (0.14) 2.06 (0.20) 1.59 (0.08) 1.51 (0.36) 1.41 (0.09) p < 0.001

Abdomen and  pelvisa 
(n = 492)

2.33 (0.20) 2.04 (0.17) 2.07 (0.14) 1.72 (0.16) 1.92 (0.18) 1.64 (0.12) 1.87 (0.37) 1.26 (0.04) p < 0.001

TOTALSa (n = 1698) 2.42 (0.20) 2.00 (0.15) 2.28 (0.12) 1.71 (0.17) 2.02 (0.17) 1.80 (0.12) 1.54 (0.34) 1.56 (0.16) p < 0.01

LNs

Head and neck (n = 480) 1.80 (0.24) 1.69 (0.19) 2.15 (0.33) 1 (0)  NRb 1.69 (0.15) 1 (0)  NRb 1.45 (0.29) 1 (0)  NRb p < 0.01

Thorax and breast (n = 216) 1.25 (0.24) 1.40 (0.32) 1.65 (0.40) 1.03 (0.05) 1.36 (0.33) 1.54 (0.33) 1.31 (0.39) 1 (0)  NRb p < 0.001

Abdomen and pelvis (n = 180) 1.66 (0.45) 1.63 (0.32) 1.70 (0.36) 1 (0)  NRb 1.57 (0.31) 1 (0)  NRb 1.47 (0.54) 1 (0)  NRb p < 0.045

Totals (n = 876) 1.59 (0.29) 1.58 (0.24) 1.88 (0.38) 1.01 (0.02) 1.57 (0.27) 1.14 (0.17) 1.43 (0.37) 1 (0)  NRb p < 0.001

Totals = OARs + LNs by anatomical locations

Head and neck (n = 1230) 2.03 (0.14) 1.80 (0.13) 2.21 (0.20) 1.31 (0.05) 1.81 (0.10) 1.43 (0.05) 1.40 (0.22) 1.36 (0.07) p < 0.001

Thorax and breast (n = 672) 1.90 (0.20) 1.70 (0.26) 2.01 (0.27) 1.30 (0.09) 1.71 (0.25) 1.56 (0.20) 1.41 (0.36) 1.20 (0.02) p < 0.001

Abdomen and pelvis (n = 672) 1.99 (0.26) 1.84 (0.23) 1.88 (0.22) 1.36 (0.08) 1.74 (0.22) 1.32 (0.06) 1.67 (0.44) 1.13 (0.02) p < 0.013

Totals = OARs + LNs

Overall (n = 2574) 2.03 (0.16) 1.84 (0.16) 2.13 (0.19) 1.39 (0.12) 1.82 (0.14) 1.50 (0.10) 1.48 (0.32) 1.29 (0.08) p < 0.02
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AI programs required manual corrections from the radi-
ation oncologist.

Wong et al. [29] evaluated Limbus using 29 experts and 
found minor corrections were required for most head and 
neck OARs, with mean satisfaction score of 4.8 for lymph 
node areas (5 was the highest overall satisfaction score). 
This agrees with the results of our study whereby Limbus 
has a higher mean score for both OARs and lymph node 
areas than the overall averages. Grégoire et al. [30] stud-
ied TheraPanacea and scored 15 head and neck OARs by 
of 5 experts, finding 98% of the auto-contouring classi-
fied as relevant; we found TheraPanacea to be an accurate 
AI program for contouring OARs in the head and neck. 
In the thorax and breast, Almberg et  al. [31] evaluated 
deep learning and found either no correction or minor 
corrections were required for 14% and 71% of clinical 
target volumes, respectively, and 72% and 26% of OARs, 
respectively. Major corrections accounted for only 15% of 
clinical target volumes and 2% of OARs. In our study, for 
the OARs, Limbus, MVision, TheraPanacea and Radfor-
mation had higher mean scores than the overall average, 

suggesting these may be a good clinical choice. For the 
lymph node areas, in our study MVision, TheraPanacea, 
Radformation and Raysearch scored better than average. 
In the abdomen and pelvis localization, Azria et al. [32] 
showed that 79% of OARs and target volumes (prostate 
and seminal vesicles) contoured by TheraPanacea were 
acceptable versus 69% of contours produced by experts. 
In our study, TheraPanacea also scored highly in terms of 
contouring quality in OARs.

None of the AI programs studied here has a specific 
option for auto-contouring OARs and lymph node areas 
in children, but this is a greater challenge, in particular 
because of child growth. Bondiau et  al. [33] found that 
90.5% of the contours produced on brain MRI scans by 
TheraPanacea of 39 children aged 0–15  years are clini-
cally acceptable, although they also note that in younger 
children (0–5 years) there are fewer acceptable contours 
than in older children. In our study, we did not compare 
brain MRIs of children, but we also found a tendency for 
delineation in body scans of children to be worse than in 
adults, with more contouring errors, as demonstrated by 

Table 3 Table of average scoring for Organs-at-Risk (OARs) and lymph node areas assessments across 8 AI Systems by each location 
(head and neck, thorax and breast, abdomen and pelvis) in children CT Scans

Data are presented as: average (± SD); a Organs at risk; b Not realized. NA Not applicable

Children Limbus Therapanacea Mvision Mirada Radformation Raysearch Siemens MIM T test

OARs

Head and  necka (n = 750) 2.24 (0.19) 1.93 (0.17) 2.32 (0.12) 1.62 (0.18) 1.89 (0.24) 1.87 (0.12) 1.25 (0.16) 1.72 (0.14) p = 0.02

Thorax and  breasta (n = 444) 2.35 (0.18) 2.0 (0.20) 2.16 (0.12) 1.43 (0.06) 1.74 (0.19) 1.48 (0.08) 1.26 (0.20) 1.36 (0.09) P = 0.02

Abdomen and  pelvisa 
(n = 516)

1.92 (0.17) 1.88 (0.16) 1.62 (0.15) 1.35 (0.14) 1.61 (0.13) 1.44 (0.10) 1.34 (0.20) 1.28 (0.05) NA

TOTALSa (n = 1710) 2.28 (0.17) 1.98 (0.15) 2.15 (0.20) 1.57 (0.17) 1.83 (0.20) 1.72 (0.18) 1.29 (0.19) 1.54 (0.17) P = 0.03

LNs

Head and neck (n = 480) 1.71 (0.24) 1.62 (0.17) 2.10 (0.18) 1 (0)  NRb 1.40 (0.06) 1 (0)  NRb 1.26 (0.20) 1 (0)  NRb NA

Thorax and breast (n = 216) 1.07 (0.10) 1.20 (0.19) 1.95 (0.32) 1.07 (0.13) 1.12 (0.15) 1.61 (0.28) 1.18 (0.31) 1 (0)  NRb NA

Abdomen and pelvis (n = 180) 1.69 (0.36) 1.61 (0.42) 1.61 (0.32) 1 (0)  NRb 1.18 (0.14) 1 (0)  NRb 1.18 (0.22) 1 (0)  NRb NA

Totals (n = 876) 1.51 (0.26) 1.50 (0.25) 1.92 (0.27) 1.02 (0.05) 1.27 (0.17) 1.16 (0.18) 1.22 (0.24) 1 (0)  NRb P < 0.001

Totals = OARs + LNs by anatomical locations

Head and neck (n = 1230) 1.97 (0.15) 1.78 (0.15) 2.21 (0.12) 1.31 (0.09) 1.64 (0.13) 1.44 (0.06) 1.26 (0.18) 1.36 (0.07) NA

Thorax and breast (n = 660) 1.76 (0.11) 1.60 (0.18) 2.05 (0.21) 1.25 (0.09) 1.43 (0.16) 1.55 (0.18) 1.22 (0.23) 1.18 (0.04) NA

Abdomen and pelvis (n = 696) 1.80 (0.25) 1.75 (0.25) 1.61 (0.22) 1.17 (0.07) 1.39 (0.12) 1.22 (0.5) 1.26 (0.20) 1.14 (0.02) NA

Totals = OARs + LNs

Overall (n = 2586) 1.93 (0.13) 1.78 (0.15) 2.07 (0.19) 1.32 (0.10) 1.58 (0.14) 1.47 (0.10) 1.25 (0.19) 1.28 (0.08) NA

Table 4 Table of average scoring for Organs-at-Risk (OARs) delineations in cerebral MRI scans across the 8 AI systems

Data are presented as: average (± SD); a Organs at risk; b Not Realized

MRI Limbus Therapanacea Mvision Mirada Radformation Raysearch Siemens MIM

Brain 1.00 (0) 2.75 (0.35) 1.60 (0.61) NRb 1.00 (0) NRb NRb NRb

OARsa (n = 300) 1.54 (0.12) 2.09 (0.19) 1.45 (0.13) NRb 1.00 (0) NRb NRb NRb
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the lower scores in children versus adults for all delinea-
tions, especially in the abdominal and pelvic regions.

As far as cerebral MRI is concerned, in both delinea-
tion of the brain and for all the OARs, TheraPanacea 
scored highly. However, at the time of the study, the only 
programs with a specific brain MRI option were Limbus, 
MVision, Radformation and TheraPanacea; TheraPana-
cea has the largest number of OARs delineation options, 
as shown in Appendix 6. We have carried literature 
reviews of the localizations of interest for head and neck 
(Appendix 7), abdomen and pelvis (Appendix 8) and tho-
rax, breast and children (Appendix 9).

This robustness of the study was enhanced by the direct 
comparison of most AI software available on the market, 
by a substantial number of blinded evaluators, making it 
possible to remain fair and for the data to be reproducible 
in clinical practice. Thus, we were able to compare a large 
number of OARs and lymph node areas (80 OARs and 
lymph node areas) from full-body CT and MRI although 
the sample size may appear limited, it corresponds to a 
large amount of data, which ensures statistical signifi-
cance. We not only carried out a quantitative analysis, 
which is interesting in terms of clinical applicability, but 
also an analysis of the technical characteristics of each 

software in terms of implementation in the department 
[11, 34].

Within the limits of this study, we did not measure 
time-saving with AI contouring compared with manual 
contouring as we wanted to emphasize the applicability 
and practical nature of this study. Nevertheless, all the AI 
programs are fast, and the generation time of OARs no 
longer seems to be an issue for its use in clinical routine 
[34]. AI contouring programs are time-saving for not only 
radiation oncologists [35] but also for RTTs whose time 
can be redeployed on other activities. The workflow can 
be improved with automatic generation of OARs as soon 
as the CT scan is produced. In addition, there are other 
clinically important measurements that we have not 
determined here, such as a dosimetric study with con-
tour deviations [36–38]. Some, like Gooding et al. [39] or 
Sherer et al. [40], emphasize the significance of quantita-
tive, geometrical, dosimetric parameters, or time-related 
data to evaluate an AI system. However, in our study, we 
opted to conduct only a qualitative assessment due to 
the vast amount of data we have and for practical imple-
mentation purposes within the department. We used 
a 3-point scale because it seemed sufficiently discrimi-
nating, while remaining simple, pragmatic and easy to 
appropriate for all evaluators. It is based on the medical 

Fig. 1 Summary of quality scoring of AI contouring programs for adult CT scan, children CT scan and adult brain MRI. Footnotes: 1 Organs at risk; 2 
Lymph node area; 3 Artificial Intelligence
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time savings for the contouring of OARs. It is necessarily 
a little subjective. To date, there is no validated scale to 
evaluate the contouring of OARs by AI software. We are 
not the first to publish this type of study with a 3-point 
scale, even if other authors have indeed since proposed 
4- or 5-point scales. Unfortunately, we were unable to 
test self-contouring on pelvic MRI for technical reasons 
(data sending incompatibility). Comparing senior radia-
tion oncologists and residents, There is a statistically 
significant difference for LN contouring but it remains 
very small in absolute value. We do not consider these 
differences to be clinically relevant. On the other hand, 
there was no statistically significant difference for OAR 
contouring. The residents who participated in this study 
were advanced residents in their training curriculum for 
whom we already considered in practice that their level 
of skills was sufficient in clinical routine for the contour-
ing of OARs and LNs. It is for this reason that they were 
able to participate as evaluators in this study.

Owing to the fast evolution of AI, further studies will 
soon be required for the information to remain up to 
date; we also note that MIRADA software has stopped 
the development and marketing of its AI in auto-con-
touring. There is also the question of the validation of 
these tools in practice (especially when new versions 
are released) and the role of scientific societies to pro-
pose validation sets (Question of the Gold Standard for 
contouring).

We note that the AI can be affected by certain clinical 
situations: for example, in our study almost all the pro-
grams (except Raysearch) were disturbed by a bronchial 
syndrome for the delineation of the lungs. We also saw 
this for anatomical atypia such as kidney cysts or cath-
eters in vessels. We notice that in children, some OARs 
such as sexual organs or femoral heads are not well 
performed by the AI, which is probably owing to prod-
uct development being based on adults, and improve-
ments are still to be made. This could also be explained 
by an insufficient number of stress tests on the algorithm, 
although we did not address it in this study. It has already 
been demonstrated that a large number of training 
models leads to better contours [41]. Kanwar et al. [42], 
Kumar and al. [43] or Bibault et al. [44] also highlight the 
importance of diversity in datasets, particularly the inclu-
sion of pediatric data in training segmentation models to 
achieve robust systems. Delineation of some OARs are 
not available in these programs, even though they are 
essential in clinical practice such as the pulmonary artery, 
the constrictor muscle of the pharynx or the duodenum. 
And conversely, some available OARs are more a matter 
of research at this stage, for example spleen, pancreas and 

arytenoids. However, the automatic generation of OARs 
not performed in clinical routine will make it possible to 
optimize dosimetry on more OARs with a clinical benefit 
for the patient. It will also be possible to document the 
doses delivered to these OARs in a prospective manner 
for the purpose of research.

With the continuous improvement of AI software 
through increased use creating better data, there is 
potential for various future applications. One such pos-
sibility is the development of automated contouring of 
volumes in brachytherapy with applicators, optimizing 
volumes in dosimetry, volumes on MRI or PET scanners, 
and potentially even targeting volumes with tumors in 
place. This opens doors for the progress of adaptive radi-
otherapy and online replanning. By utilizing its pattern-
recognition capabilities, AI can identify details that may 
be imperceptible or unclear to the human eye, thereby 
surpassing human capabilities. Technical progress has 
often created mistrust in society, including the fear of the 
replacement of man by machines [45], but today it is still 
necessary to make a manual correction to automatic con-
touring. The emergence of AI therefore raises the ques-
tion of its use in training. Indeed, doctors could use AI 
to the extent they lose technical skills. For the training of 
residents in contouring of OARs and lymph node areas, 
over-reliance on AI could lead to lack development of 
manual contouring skills, and an inability to correct auto-
mated contouring.. In addition, some AI solutions, such 
as MVision, are developing applications for contouring 
training for residents to precisely compensate for lack of 
technical skill in manual contouring.

Radiation oncologists will have to refine their tech-
nique for verifying AI automated contouring, which 
involves a different intellectual approach from the deline-
ation of OARs by the radiation oncologists themselves.

Conclusion
Our qualitative analysis of the AI softwares is not enough 
for implementing any automatic segmentation method 
in routine practice. Geometric parameters (DSC…) were 
not measured. AI contouring programs are advanced 
enough today to be implemented in clinical routine. 
We found four AI programs to be particularly efficient, 
although it is still necessary to carry out manual cor-
rections in all cases and the radiation oncologist’s skill 
remains as necessary and relevant as ever. For a future 
study, it might be worthwhile to evaluate the dosimetric 
impact of the OARs defined by artificial intelligence ver-
sus those corrected manually, to quantify the clinical sig-
nificance of the correction.
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