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The outcome prediction of acute anterior circulation non-lacunar infarction (AACNLI) is important for the precise clinical treatment 
of this disease. However, the accuracy of prognosis prediction is still limited. This study aims to develop and compare machine learn
ing models based on MRI radiomics of multiple ischaemic-related areas for prognostic prediction in AACNLI. This retrospective mul
ticentre study consecutively included 372 AACNLI patients receiving MRI examinations and conventional therapy between October 
2020 and February 2023. These were grouped into training set, internal test set and external test set. MRI radiomics features were 
extracted from the mask diffusion-weighted imaging, mask apparent diffusion coefficient (ADC) and mask ADC620 by AACNLI seg
mentations. Grid search parameter tuning was performed on 12 feature selection and 9 machine learning algorithms, and algorithm 
combinations with the smallest rank-sum of area under the curve (AUC) was selected for model construction. The performances of all 
models were evaluated in the internal and external test sets. The AUC of radiomics model was larger than that of non-radiomics model 
with the same machine learning algorithm in the three mask types. The radiomics model using least absolute shrinkage and selection 
operator—random forest algorithm combination gained the smallest AUC rank-sum among all the algorithm combinations. The AUC 
of the model with ADC620 was 0.98 in the internal test set and 0.91 in the external test set, and the weighted average AUC in the three 
sets was 0.96, the largest among three mask types. The Shapley additive explanations values of the maximum of National Institute of 
Health Stroke Scale score within 7 days from onset (7-d NIHSSmax), stroke-associated pneumonia and admission Glasgow coma scale 
score ranked top three among the features in AACNLI outcome prediction. In conclusion, the random forest model with mask 
ADC620 can accurately predict the AACNLI outcome and reveal the risk factors leading to the poor prognosis.
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Graphical Abstract

Introduction
Acute ischaemic stroke (AIS) leads to hypoxic necrosis of 
brain tissue and neurological dysfunction worldwide.1 The 
incidence rate of non-lacunar infarction is 41.17% of all is
chaemic stroke,2 and the prognosis of non-lacunar infarction 
is worse than that of lacunar infarction. Moreover, anterior 
circulation stroke account for 80% of all ischaemic strokes.3

Therefore, this study focused on acute anterior circulation 
non-lacunar infarction (AACNLI) to identify key factors 
leading to poor outcome and to improve the prognosis.

MRI is the most sensitive imaging methods for detecting 
AIS, providing important information about lesions, respon
sible arteries and collateral circulation. Diffusion-weighted 
imaging (DWI) can reflect the movement of water molecules, 
sensitive to early cerebral infarction. Most studies regarded 
DWI high signal as the infarct region, but DWI high-signal 
reversal in AIS has been found in minor stroke.4 At present, 
the threshold of apparent diffusion coefficient (ADC) <  
620 × 10−6 mm²/s is adopted as the standard for ischaemic 
core.5 However, there still exists the region of ADC <  
620 × 10−6 mm²/s with DWI normal appearance adjacent 
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to ischaemic core. The correlation between features of is
chaemic core with its adjacent region and prognosis deserves 
further research. Therefore, this study explored three ischae
mic lesion segmentation methods (DWI high-signal method, 
ischaemic core method and ischaemic core with its adjacent 
region method) to select the optimal method for AACNLI 
outcome prediction.

Radiomics is an emerging technology used to extract 
much information from image data for predicting out
comes.6 At present, there are some studies extracting MRI 
radiomics features for AIS outcome prediction.7-9 Most stud
ies used least absolute shrinkage and selection operator 
(LASSO) as the radiomics feature selection (FS) method, 
without comparing multiple FS algorithms. Machine learn
ing (ML) algorithm is suitable for analysing rules from 
data and classifying unknown data.7,10 At present, most 
studies used only a few ML algorithms for model construc
tion, such as logistic regression, support vector machine 
and random forest (RF), without comparing other ML algo
rithms. Therefore, this study used more radiomics FS algo
rithms and ML algorithms to select the optimal algorithm 
combination for model construction, which can improve 
the accuracy of AACNLI outcome prediction.

The study aims to explore the combination of multiple FS 
and ML algorithms to build models to predict the clinical 
outcome of AACNLI by mining the radiomics, radiological 
and clinical features of different ischaemic regions, so as to 
find the high-risk factors leading to poor prognosis and pro
vide an important basis for clinical precision treatment of 
AACNLI.

Methods
Institutional review board statement
The study was conducted according to the guidelines of the 
Declaration of Helsinki and approved by the Institutional 
Review Board: Ethics Committee of Tongji Hospital (ap
proval number: K-2020-021; date of approval: 20 
November 2020).

Informed consent statement
The need for written informed consent was waived by Ethics 
Committee of Tongji Hospital.

Study population
This multicentre retrospective study consecutively collected 
clinical, imaging and follow-up data of AACNLI patients ad
mitted to Tongji Hospital, Xinhua Hospital, Shanghai 
General Hospital, Dongfang Hospital and Putuo Hospital 
from October 2020 to February 2023.

Inclusion criteria included the following: (i) MRI and 
clinical diagnosis of AIS in the anterior circulation; (ii) 
age ≥ 18 years old, no previous stroke or previous stroke 
without neurological impairment; (iii) MRI and computed 

tomography angiography completed within 72 h after onset; 
(iv) MRI showed AACNLI (maximum diameter ≥ 15 mm); 
(v) AIS patients received hospitalized antiplatelet treatment 
within 24 h after onset.11

Exclusion criteria included the following: (i) the interval 
between the last stroke and the current stroke < 6 months; 
(ii) recent myocardial infarction (<3 weeks), malignant 
tumours in vivo, brain tumours, brain trauma, moyamoya 
disease or history of brain surgery; (iii) clinical contraindica
tions to MRI; (iv) decreased image quality due to the motion 
or flow artefacts; (v) haemorrhagic cerebral infarction or 
anterior with posterior circulation infarction; (vi) patients 
received thrombolysis, thrombectomy or surgical treat
ments; (vii) patients with incomplete clinical and follow-up 
information.

We enrolled 247 AACNLI patients admitted to Tongji 
Hospital, Xinhua Hospital and Shanghai General 
Hospital from October 2020 to September 2022 and di
vided these patients’ data into training set (n = 172) and 
internal test set (n = 75) by stratifying random sampling 
in a 7:3 ratio. We also enrolled 125 AACNLI patients ad
mitted to Dongfang Hospital and Putuo Hospital from 
October 2022 to February 2023 as external test set 
(Supplementary Fig. 1). The data supporting the findings 
of this study are available from the corresponding author 
upon reasonable request.

Data collection
The clinical data were collected as follows: (i) gender and 
age; (ii) history of smoking, alcohol consumption, diabetes, 
myocardial infarction, coronary atherosclerosis, atrial fibril
lation, hypertension, stroke, heart failure, hyperlipidaemia 
and hyperhomocysteinaemia; (3) secondary cognitive im
pairment, epilepsy and stroke-associated pneumonia (SAP); 
(4) admission systolic blood pressure (SBP) and diastolic 
blood pressure; (5) admission National Institute of Health 
Stroke Scale (NIHSS) and Glasgow Coma Scale (GCS) 
scores; (6) the maximum of NIHSS score within 7 days 
from onset (7-d NIHSSmax); (7) admission laboratory exam
inations; (8) the Trial of Org10172 in Acute Stroke 
Treatment type and Oxfordshire Community Stroke 
Project (OCSP) type.

This study used 3.0 T MRI imaging equipment (Philips 
Medical Systems INGENIA, SIEMENS Verio, United 
Imaging uMR 770) and 8-channel head coil to collect brain 
signals. The scanning range was from the bottom of the pos
terior cranial fossa to the top of the skull (details in 
Supplementary Table 1). This study also used CT equipment 
(Philips Brilliance iCT, Toshiba Aquilion ONE, United 
Imaging uCT780) to collect head and neck computed tomog
raphy angiography images. Iodine contrast agent 50–60 ml 
and normal saline 30 ml were injected successively at the in
jection rate of 5 ml/s. The scanning range was from the aortic 
arch to the skull top. The scanning parameters were as fol
lows: 120 kV, 198–282 mAs, slice thickness = 0.75 mm, 
slice spacing = 0.7 mm, matrix = 512 × 512.
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The follow-up data were collected by querying the hos
pital outpatient medical record system or conducting tele
phone follow-up. Three-month modified Rankin Scale 
(mRS) score was performed to measure the neurological 
recovery after stroke, with 0–2 indicating good prognosis 
and 3–6 indicating poor prognosis.12

Image analysis and AIS lesion 
segmentation
The radiological features, including admission Fazekas 
score,13 DWI-Alberta Stroke Program Early CT Score,14

clot-based score,15 DWI fluid-attenuated inversion recovery 
(FLAIR) mismatch,16 FLAIR vascular hyperintensity 
score,17,18 DWI-FLAIR vascular hyperintensity mismatch19

and haemorrhage transformation were analysed by a radi
ologist with 10-year experience in neuroradiology (details 
in Supplementary Appendix 1).

The segmentation task was completed with ITK-SNAP 
software (version 3.8.0, http://www.itksnap.org) by two 
neuroradiologists (X.Z. and L.W. with 10 and 12 years 
of experience, respectively) independently. Another radi
ologist (Y.P.) with 26 years of experience in neuroradiol
ogy examined the segmentation results. As for the mask 
DWI, the AIS lesion was segmented along a high signal 
on DWI slice by slice. As for the mask ADC, the region 
with ADC threshold of (0–620) × 10−6 mm2/s in the 
mask DWI was segmented on the ADC map. As for 
the mask ADC620, mask ADC and its adjacent region 
with ADC threshold of (0–620) × 10−6 mm2/s was 
segmented on the ADC map, avoiding the normal 
basal ganglia nuclei and subcortical regions 
(Supplementary Fig. 2). The radiological features of masks 
were measured and calculated (details in Supplementary 
Appendix 2).

Radiomics feature extraction, 
selection and modelling
The N4 bias field correction and normalization were applied 
to process the MRI pixels’ greyscale, and the matrix of 
images was resampled to 256 × 256. DWI was selected as a 
reference to perform spatial position registration on 
T2-FLAIR fat-suppression images. ADC images were calcu
lated from DWI.

Pyradiomics software package was applied to extract 
radiomics features from the masks.20 One hundred and seven 
radiomics features were extracted from DWI, ADC maps and 
T2-FLAIR fat-suppression images, respectively, which funda
mentally met the Image Biomarker Standardization Initiative 
standard. After the removal of 28 repetitive and collinear radio
mics features, the remaining 293 radiomics features were 
screened by 12 FS algorithms.

Nine ML algorithms were used to construct the model 
with clinical + radiological features and clinical + radiological + 
radiomics features, respectively. Grid search and 5-fold cross- 
validation by using training data were performed on 108 

FS-ML algorithm combinations for parameter tuning.21

The AUC of algorithm combination of three mask types were 
calculated and ranked, respectively. However, the algorithm 
combination with the smallest rank-sum was selected. For the 
model with clinical + radiological features, the ML algorithm 
was the same as which was used in the model with clinical + 
radiological + radiomics features. The principal codes about 
radiomics feature extraction, FS and modelling are shown in 
Supplementary Appendix 3.

Model test and evaluation
Receiver operating characteristic curve was drawn, and the 
sensitivity, specificity, accuracy, AUC, precision and F1 
score were calculated to evaluate the performance of the 
model. The calibration curve was drawn to evaluate the 
consistency between the predicted and actual observed re
sults. The decision analysis curve was drawn to evaluate 
the clinical practicability of the model. A Shapley additive 
explanations (SHAP) diagram was plotted for model 
interpretation.21

Statistical analysis
SPSS 20.0 and MedCalc 20.019 statistical software was ap
plied to analyse the data. Student’s t-test, Mann–Whitney U 
test and Pearson χ2 test were applied to compare the vari
ables. Multicollinearity diagnosis was performed to elimin
ate highly correlated multiple independent variables. The 
diagnostic significance between the models was evaluated 
using the DeLong test. The difference was statistically signifi
cant at P ≤ 0.05. Heatmaps were plotted to show the AUC 
results of FS–ML algorithm combinations of three mask 
types. AUC > 0.75 indicates better prediction perform
ance.22 The Spearman correlation was performed to analyse 
the relationship between radiomics features and mRS score. 
The task of training and test of the model were performed by 
Python 3.7.

Results
Patient characteristics
Among the 247 AACNLI patients in the training set and 
internal test set, 132 patients had good prognosis and 115 
patients had poor prognosis. There existed no significant 
differences between the training set and internal test set in 
the clinical and radiological features (Supplementary Table 2). 
For the clinical features, there existed significant differ
ences between the two groups in gender, age, history of 
smoking, coronary atherosclerosis, atrial fibrillation, heart fail
ure, hyperlipidaemia, SAP, admission SBP, Trial of Org10172 
in Acute Stroke Treatment type, OCSP type, admission NIHSS 
score, admission GCS score, 7-d NIHSSmax, CRP, PT, D-dimer, 
serum troponin I, blood glucose and plasma BNP (Table 1). For 
the radiological features, there existed statistically significant 
differences between good and poor prognosis groups in clot- 
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based score, DWI-Alberta Stroke Program Early CT Score, 
mask DWI-related features (V1, V1max, P1, ADC1SD, 
ADC1CV, Grad1CV, rADC1), mask ADC620-related features 
(V2, V2max, P2, ADC2mean, ADC2SD, ADC2CV, Grad2SD, 
Grad2CV, rADC2) and mask ADC-related features (V3, 
V3max, P3, N3, ADC3mean, ADC3SD, ADC3CV, Grad3SD, 
Grad3CV, rADC3; Table 2).

Among the 125 AACNLI patients in the external test 
set, 80 patients had good prognosis and 45 patients had 

poor prognosis. The detailed clinical and radiological 
features are shown in Supplementary Tables 3 and 4.

Algorithm selection for AACNLI 
prognostic prediction model
Based on clinical + radiological + radiomics features of train
ing set, 12 FS algorithms and 9 ML algorithms were used to 
construct the model (Supplementary Tables 5 and 6). After 

Table 1 Clinical features of AACNLI patients with good and poor outcome (training set + internal test set)

Features Good Outcome (n = 132) Poor Outcome (n = 115) P-value

Demography
Female 46 (34.8%) 58 (50.4%) 0.013
Age 69 (62, 77) 76 (65, 85) 0.002

History
Smoking 73 (55.3%) 40 (34.8%) 0.001
Alcohol consumption 41 (31.1%) 25 (21.7%) 0.099
Diabetes 45 (34.1%) 35 (30.4%) 0.540
Myocardial infarction 1 (0.8%) 5 (4.3%) 0.068
Coronary atherosclerosis 17 (12.9%) 34 (29.6%) 0.001
Atrial fibrillation 21 (15.9%) 41 (35.7%) <0.001
Hypertension 90 (68.2%) 84 (73.0%) 0.404
Stroke 29 (22.0%) 37 (32.2%) 0.071
Heart failure 13 (9.8%) 30 (26.1%) 0.001
Hyperlipidaemia 21 (15.9%) 7 (6.1%) 0.015
Hyperhomocysteinaemia 1 (0.8%) 4 (3.5%) 0.288

Secondary disease
Cognitive impairment 2 (1.5%) 5 (4.3%) 0.340
Epilepsy 3 (2.3%) 3 (2.6%) >0.999
SAP 8 (6.1%) 62 (53.9%) <0.001

Blood pressure on admission
SBP (mmHg) 146.66 (20.93) 152.49 (21.90) 0.034
DBP (mmHg) 81.5 (77, 90) 80 (78, 90) 0.984

TOAST type <0.001
Large-artery atherosclerosis 95 (72.0%) 80 (69.6%)
Cardioembolism 17 (12.9%) 31 (27.0%)
Small-artery occlusion 17 (12.9%) 2 (1.7%)
Other determined aetiology 3 (2.3%) 2 (1.7%)

OCSP type <0.001
TACI 3 (2.3%) 41 (35.7%)
PACI 127 (96.2%) 72 (62.6%)
LACI 2 (1.5%) 2 (1.7%)

Neurological scale score
Admission NIHSS 4 (2, 6) 13 (8, 19) <0.001
Admission GCS 15 (15, 15) 13 (11, 15) <0.001
7d NIHSSmax 4 (2, 6) 15 (12, 19) <0.001

Laboratory test
CRP (mg/l) 3.05 (1.27, 6.80) 8.33 (2.50, 22.41) <0.001
PLT (×109/l) 200 (166, 243) 199 (156, 240) 0.680
PT (s) 11.1 (10.6, 11.7) 11.3 (10.8, 11.9) 0.021
Fibrinogen (g/l) 2.85 (2.44, 3.26) 2.95 (2.55, 3.70) 0.070
D-dimer (mg/l) 0.41 (0.27, 0.79) 0.86 (0.41, 1.79) <0.001
Serum troponin I (ng/ml) 0.010 (0.008, 0.012) 0.013 (0.010, 0.030) <0.001
Blood sugar (mmol/l) 6.28 (5.24, 7.96) 6.73 (5.88, 9.24) 0.009
Triglyceride (mmol/l) 1.22 (0.95, 1.65) 1.22 (0.94, 1.64) 0.094
Plasma BNP (pg/ml) 73.7 (38.25, 156.4) 133.0 (59.9, 356.7) <0.001

Follow-up
3-month mRS 1 (1, 2) 4 (3, 4) <0.001

All categorical variables are expressed as n (%) and continuous variables as median (IQR) or mean (SD). BNP, brain natriuretic peptide; CRP, C-reactive protein; DBP, diastolic blood 
pressure; GCS, Glasgow coma scale; IQR, interquartile range; LACI, lacunar infarction; mRS, modified Rankin Scale; NIHSS, National Institute of Health Stroke Scale; OCSP, 
Oxfordshire Community Stroke Project; PACI, partial anterior circulation infarction; PLT, platelet count; PT, prothrombin time; SAP, stroke-associated pneumonia; SBP, systolic blood 
pressure; SD, standard deviation; TACI, total anterior circulation infarction; TOAST, Trial of Org10172 in Acute Stroke Treatment.
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5-fold cross-validation by using training data, the AUC grid 
search results of algorithm combination are shown in 
Fig. 1A–C. The AUC results of the LASSO-RF algorithm com
bination were 0.98, 0.99 and 0.98 for mask DWI (rank third), 
mask ADC620 (rank first) and mask ADC (rank fourth), re
spectively. The rank-sum of LASSO-RF algorithm combin
ation was the smallest (rank-sum of 8) among all the 
algorithm combinations, indicating the best performance.

Based on the clinical + radiological features of training set, 
9 ML classification algorithms were used to construct the 
model, and the AUC results are shown in Fig. 1D. The 

AUC of radiomics model with the optimal FS-ML algorithm 
combination was larger than that of non-radiomics model 
with the same ML algorithm in the three mask types 
(Supplementary Table 7). Therefore, this study used clinical + 
radiological + radiomics features to construct the model.

Feature selection and model 
construction
Based on the sparsity hypothesis, LASSO regression elimi
nates continuous or discrete variables with a regression 

Table 2 Radiological features of AACNLI patients with good and poor outcome (training set + internal test set)

Features Good Outcome (n = 132) Poor Outcome (n = 115) P-value

Interval from onset to MRI (h) 35 (22, 50.5) 36 (21, 53) 0.975
CBS 10 (8, 10) 8 (6, 10) <0.001
HT 13 (9.8%) 21 (18.3%) 0.056
DWI-ASPECTS 7 (6, 8) 5 (3, 7) <0.001
Contralateral brain ADC (×10−6 mm2/s) 777 (50) 784 (53) 0.254
DWI-FLAIR mismatch 4 (3.0%) 7 (6.1%) 0.245
DWI-FVH mismatch 92 (69.7%) 69 (60.0%) 0.111
FVH score 2 (1, 4) 3 (1, 4) 0.357
Fazekas score 2 (2, 3) 3 (2, 4) 0.092
Mask DWI

V1 (ml) 10.29 (4.93, 23.57) 46.99 (15.05, 149.04) <0.001
V1max (ml) 8.84 (3.80, 19.06) 41.16 (13.08, 149.04) <0.001
P1 0.87 (0.68, 0.99) 0.99 (0.93, 1.00) <0.001
N1 6 (2, 11) 4 (2, 10) 0.095
ADC1mean (×10−6 mm2/s) 599 (537, 666) 565 (507, 640) 0.063
ADC1SD (×10−6 mm2/s) 177 (145, 221) 193 (162, 252) 0.013
ADC1CV 0.31 (0.25, 0.35) 0.34 (0.29, 0.41) <0.001
Grad1mean 8576 (6665, 11047) 8665 (7161, 10839) 0.659
Grad1SD 8112 (5486, 11109) 9144 (7100, 11424) 0.070
Grad1CV 0.92 (0.79, 1.06) 1.04 (0.89, 1.16) <0.001
rADC1 0.75 (0.68, 0.87) 0.72 (0.64, 0.83) 0.018

Mask ADC620
V2 (ml) 5.81 (3.31, 14.58) 34.68 (10.16, 115.82) <0.001
V2max (ml) 4.91 (2.25, 13.42) 34.60 (7.08, 114.78) <0.001
P2 0.90 (0.64, 0.98) 0.99 (0.88, 1.00) <0.001
N2 7 (3, 12) 9 (3, 16) 0.108
ADC2mean (×10−6 mm2/s) 496 (40) 477 (40) <0.001
ADC2SD (×10−6 mm2/s) 75 (61, 95) 89 (74, 100) 0.001
ADC2CV 0.15 (0.12, 0.20) 0.19 (0.15, 0.22) 0.001
Grad2mean 7336 (6017, 9726) 7856 (6648, 9301) 0.237
Grad2SD 6741 (4574, 9561) 8153 (6440, 10203) 0.003
Grad2CV 0.88 (0.74, 1.04) 1.06 (0.85, 1.15) <0.001
rADC2 0.64 (0.06) 0.61 (0.06) <0.001

Mask ADC
V3 (ml) 5.32 (2.87, 13.07) 31.76 (8.22, 110.61) <0.001
V3max (ml) 4.11 (1.79, 11.10) 30.61 (5.94, 109.46) <0.001
P3 0.88 (0.63, 0.99) 0.99 (0.86, 1.00) <0.001
N3 8 (4, 14) 10 (4, 21) 0.049
ADC3mean (×10−6 mm2/s) 499 (455, 526) 469 (446, 508) 0.003
ADC3SD (×10−6 mm2/s) 75 (62, 94) 90 (72, 99) 0.001
ADC3CV 0.15 (0.12, 0.21) 0.19 (0.15, 0.22) 0.001
Grad3mean 7336 (5986, 9529) 7707 (6481, 9069) 0.448
Grad3SD 6804 (4644, 9595) 8117 (6373, 10033) 0.007
Grad3CV 0.89 (0.74, 1.05) 1.07 (0.89, 1.19) <0.001
rADC3 0.63 (0.07) 0.60 (0.06) <0.001

All categorical variables are expressed as n (%) and continuous variables as median (IQR) or mean (SD). ADC, apparent diffusion coefficient; ASPECTS, Alberta Stroke Program Early 
CT Score; CBS, clot burden score; CV, coefficient of variation; DWI, diffusion-weighted imaging; FLAIR, fluid-attenuated inversion recovery; FVH, FLAIR vascular hyperintensity; Grad, 
gradient; HT, haemorrhage transformation; IQR, interquartile range; N, number of the lesions; P, proportion (Vmax/V); SD, standard deviation; V, total volume of the lesions; Vmax, 
volume of the largest lesion.
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coefficient of 0, controlling the degree of contraction con
straint by finding the coefficient α of the norm. The LASSO 
errors and paths of the three mask types are demonstrated 
in Supplementary Fig. 3.

For the mask DWI, 27 selected radiomics features 
(Supplementary Table 8), 12 selected clinical features (age, 
smoking history, history of hyperlipidaemia, SAP, SBP at 
the first diagnosis, OCSP type, admission GCS score, 7-d 
NIHSSmax, prothrombin time, D-dimer, serum troponin I, 
blood glucose) and 2 selected radiological features 
(ADC1CV, Grad1CV) were included in the model.

For the mask ADC620, 28 selected radiomics features 
(Supplementary Table 9), 12 selected clinical features (age, 

smoking history, history of hyperlipidaemia, SAP, SBP at 
the first diagnosis, Trial of Org10172 in Acute Stroke 
Treatment type, OCSP type, admission GCS score, 7-d 
NIHSSmax, D-dimer, serum troponin I, blood glucose) and 
two selected radiological features (Grad2CV, rADC2) were 
included in the model.

For the mask ADC, 27 selected radiomics features 
(Supplementary Table 10), 12 selected clinical features 
(age, smoking history, history of hyperlipidaemia, SAP, 
SBP at the first diagnosis, OCSP type, admission GCS score, 
7-d NIHSSmax, CRP, D-dimer, serum troponin I, blood glu
cose) and 2 selected radiological features (Grad3CV, clot- 
based score) were included in the model.

Figure 1 Hyperparameter grid search of the FS and ML algorithm combinations by using training data with 5-fold 
cross-validation. (A–C) The AUC results of FS and ML algorithm combinations based on clinical + radiological + radiomics variables with (A) 
mask DWI, (B) mask ADC620 and (C) mask ADC. (D) The AUC results of ML algorithm based on clinical + radiological variables with the above 
three types of masks. Adaboost, adaptive boosting; CIFE, common and individual feature extraction; CMIM, conditional mutual information 
maximization; DET, deep extremely randomized trees; DISR, dental image segmentation and retrieval; EXT, extremely randomized trees; Fast 
ICA, fast independent component analysis; ICAP, interaction capping; JMI, joint mutual information; KNN, K-nearest neighbour; MIM, mutual 
information maximization; MLP, multi-layer perceptron; NMF, non-negative matrix factorization; None, all features without any selection; PCA, 
principal component analysis; Truncated SVD, truncated singular value decomposition; Xgboost, extreme gradient boosting.
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Model interpretation
The SHAP diagram show the distribution of SHAP values for 
each feature over the total sample prediction. The detailed 
SHAP values of the most important features for good and 
poor outcome are illustrated in Fig. 2A and B. As for the 
RF model of mask DWI, the SHAP values of 7-d NIHSSmax 

(0.24), SAP (0.04) and admission GCS score (0.04) ranked 

top 3 among the features (Fig. 3A and B). As for the RF mod
el of mask ADC620, the SHAP values of 7-d NIHSSmax 

(0.25), SAP (0.03) and admission GCS score (0.03) ranked 
top 3 among the features (Fig. 4A and B). As for the RF mod
el of mask ADC, the SHAP values of 7-d NIHSSmax (0.22), 
SAP (0.04) and admission GCS score (0.04) ranked top 3 
among the features (Fig. 5A and B).

Figure 2 SHAP force plots of the AACNLI patients with good and poor outcome. (A) A 71-year-old male patient with 7-d NIHSSmax of 
5- and 3-month mRS score of 2 showed a patchy AIS in the left parietal lobe on DWI (arrow), with ADCmean of 523 × 10−6 mm2/s and high signal on 
FLAIR fat-suppression image. (B) A 68-year-old female patient with 7-d NIHSSmax of 17- and 3-month mRS score of 5 showed large AIS in the left 
temporal and occipital lobe on DWI (arrow), with ADCmean of 478 × 10−6 mm2/s and slightly high signal on FLAIR fat-suppression image. The 
SHAP force plots of both patients show that 7-d NIHSSmax, admission GCS score and SAP are weighted higher than other features influencing the 
prognosis. glszm, grey-level size zone matrix.

8 | BRAIN COMMUNICATIONS 2024, fcae393                                                                                                                       X. Zhou et al.



Model test and evaluation
In the internal test set, the RF model’s AUC (0.98) of mask 
ADC620 was the largest among the three mask types 
(Fig. 6A). The accuracy (0.91) and F1 value (0.92) of the 
model with mask ADC were the highest. In the external 
test set, the RF model’s AUC (0.92) of mask DWI was the lar
gest (Fig. 7A). The accuracy of model of mask DWI (0.84) 

and F1 value (0.79) were the highest. The calibration curves 
of internal test set (Fig. 6B) and external test set (Fig. 7B) 
showed good predictive accuracy between the actual prob
ability and predicted probability. The decision curves of in
ternal test set (Fig. 6C) and external test set (Fig. 7C) 
showed that intervention for high-risk patients with poor 
prognosis with a threshold probability of 0.2–0.9 will yield 
net benefit.

Figure 3 SHAP beeswarm charts and global bar plots of the prognostic prediction model based on mask DWI. (A) SHAP 
beeswarm chart of mask DWI shows SHAP values of each feature as scatter. (B) SHAP global bar plots of mask DWI shows the averaged SHAP 
values of each feature, which indicate the importance of each feature in the model. CRP, C-reactive protein; CV, coefficient of variation; glcm, 
grey-level cooccurrence matrix; gldm, grey-level difference matrix; glrlm, grey-level run-length matrix; glszm, grey-level size zone matrix; ngtdm, 
neighbourhood grey-tone difference matrix.
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AUC comparison of the three mask 
types
For the RF model of mask DWI, the AUCs of the training set 
(n = 172), internal test set (n = 75) and external test set (n =  
125) were 0.98, 0.97 and 0.92, respectively. The weighted average 
AUC based on the number of cases in the three sets was 0.958. 
For the RF model of mask ADC620, the AUCs of the three 
sets were 0.99, 0.98 and 0.91, respectively, and the weighted 

average AUC was 0.961. For the RF model of mask ADC, the 
AUCs of the three sets were 0.98, 0.97 and 0.88, respectively, 
and the weighted average AUC was 0.944 (Table 3). Above 
all, the RF model of mask ADC620 had the largest weighted 
average AUC, indicating the best performance for prognostic 
prediction. In the model of mask ADC620, 11 of 28 radiomics 
features were moderately correlated with the 3-month mRS 
score with Spearman rank-order correlation coefficient ︱r︱= 
0.4–0.6 (P<0.001; Supplementary Table 11).

Figure 4 SHAP beeswarm charts and global bar plots of the prognostic prediction model based on mask ADC620. (A) SHAP 
beeswarm charts of mask ADC620 shows SHAP values of each feature as scatter. (B) SHAP global bar plots of mask ADC620 shows the averaged 
SHAP values of each feature. CRP, C-reactive protein; CV, coefficient of variation; glcm, grey-level cooccurrence matrix; gldm, grey-level 
difference matrix; glrlm, grey-level run-length matrix; glszm, grey-level size zone matrix; grad, gradient; ngtdm, neighbourhood grey-tone 
difference matrix; rADC, relative apparent diffusion coefficient.
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Discussion
Radiomics features improve the 
prognosis prediction of AACNLI
The AIS outcome can be evaluated by clinical and imaging 
information. Previous studies showed that the biomarkers 
of DWI and T2-FLAIR can be used for AIS prognosis 
prediction.23-25 As an effective supplement to radiological 

information, radiomics has been applied to the prognosis 
prediction of AIS. Quan et al.8 extracted 753 radiomics fea
tures from FLAIR and ADC images of 190 AIS patients and 
found 6 strongest radiomics features associated with poor 
prognosis. Tang et al.26 extracted 456 radiomics features 
from ADC and cerebral blood flow maps of 168 AIS patients 
and found R score higher in patients with favourable out
come. We extracted 293 radiomics features from FLAIR, 
DWI and ADC images and found that the radiomics features 

Figure 5 SHAP beeswarm charts and global bar plots of the prognostic prediction model based on mask ADC. (A) SHAP 
beeswarm charts of mask ADC shows SHAP values of each feature as scatter. (B) SHAP global bar plots of mask ADC shows the averaged SHAP 
values of each feature. CRP, C-reactive protein; CV, coefficient of variation; glcm, grey-level cooccurrence matrix; gldm, grey-level difference 
matrix; glrlm, grey-level run-length matrix; glszm, grey-level size zone matrix; grad, gradient; ngtdm, neighbourhood grey-tone difference matrix.
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can improve the performance of predicting the AACNLI 
outcome.

The radiomics features can reflect subtle variations within 
the lesion not easily detected by the naked eye. We revealed 
moderately significant correlations between the prognosis 
and several histograms and texture features of AIS lesions 
on the MR images. In this study, high-order features were re
lated to lesion’s shape, and second-order features were re
lated to lesion’s heterogeneity. The first-order feature 
InterquartileRange_ADC reflected the severity of cytotoxic 
oedema.

AIS segmentation affect efficacy of 
AACNLI outcome prediction
As for segmentation of acute ischaemic infarction on MRI, 
previous studies mainly focused on DWI high-signal lesion’s 
segmentation.23,26 However, restricted diffusion regions 
did not wholly transform into the final infarct. ADC is an 
objective measure of the diffusivity of water molecules 
in the tissue.27 We referred to the ADC threshold standard 
of ischaemic core5,27 and segmented the region with 

ADC < 620 × 10−6mm2/s in the DWI high-signal area, which 
can avoid overestimating the volume of ischaemic core due 
to low ADC caused by the normal grey matter nuclei with 
metal deposit.

The ischaemic core adjacent regions of ADC < 620 ×  
10−6mm²/s with DWI normal appearance were also segmen
ted and analysed in this study. Blood supply to these regions 
is inadequate, especially white matter. Previous studies have 
shown that white matter is more tolerant to acute ischaemia 
and hypoxia than grey matter28 but much more sensitive 
to chronic ischaemia and hypoxia than grey matter.29

Irreversible axonal damage caused by demyelination may 
affect the prognosis of AACNLI. This study compared the 
value of these regional features in predicting AACNLI 
prognosis.

We calculated weighted average of the AUC score 
throughout the datasets and found that the RF model based 
on the mask ADC620 performed the best among the three 
mask types. It indicates that the features of ischaemic core 
and its adjacent region can predict prognosis more accurate
ly than the traditional ischaemic core and DWI high-signal 
area, because the mask ADC620 contains more information 

Figure 6 Evaluation of the RF model in the internal test set. (A) ROC curve, (B) calibration curve and (C) decision curves of RF models 
with three mask types in the internal test set. The task of model testing was performed by Python 3.7. Functions such as roc_curve, 
precision_recall_curve and decision_function in Python’s ‘sklearn. metrics library’ were applied to calculate the required data points for the curves.
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about the ischaemic state of brain tissue. This segmentation 
method of ischaemic core–related regions can be further ex
tended to evaluate therapeutic effect of intra-arterial 

mechanical thrombectomy in AIS and help screen more pa
tients suitable for mechanical thrombectomy according to 
the prognostic prediction results.

Table 3 The performance of RF models with three masks in the training, internal test and external test set

Mask type AUC (95%CI) Sensitivity Specificity Accuracy Precision F1 value

Training set
Mask DWI 0.98 (0.95, 1.00) 0.95 0.85 0.91 0.89 0.92
Mask ADC620 0.99 (0.96, 1.00) 0.95 0.88 0.92 0.91 0.93
Mask ADC 0.98 (0.95, 1.00) 0.93 0.94 0.93 0.95 0.94

Internal test set
Mask DWI 0.97 (0.93, 0.99) 0.83 0.97 0.89 0.97 0.90
Mask ADC620 0.98 (0.95, 1.00) 0.86 0.94 0.89 0.95 0.90
Mask ADC 0.97 (0.93, 0.99) 0.90 0.91 0.91 0.93 0.92

External test set
Mask DWI 0.92 (0.85, 0.97) 0.82 0.85 0.84 0.76 0.79
Mask ADC620 0.91 (0.83, 0.98) 0.82 0.81 0.82 0.71 0.76
Mask ADC 0.88 (0.80, 0.96) 0.80 0.78 0.78 0.67 0.73

All variables are expressed as mean. ADC, apparent diffusion coefficient; AUC, area under the curve; CI, confidence interval; DWI, diffusion-weighted imaging.

Figure 7 Evaluation of the RF model in the external test set. (A) ROC curve, (B) calibration curve and (C) decision curves of RF models 
with three mask types in the external test set. The task of model testing was performed by Python 3.7. Functions such as roc_curve, 
precision_recall_curve and decision_function in Python’s ‘sklearn. metrics library’ were applied to calculate the required data points for the curves.
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The optimal selection of FS-ML 
algorithm combinations improves the 
model’s performance
Previous studies often used limited algorithm to select and 
classify features. In this study, 12 FS algorithms and 9 ML al
gorithms were combined to construct the model, and the 
LASSO-RF algorithm combination was the most optimal al
gorithm combination according to the AUC results. This grid 
search selection method can fully evaluate the performance 
of various algorithm combinations, which lays a foundation 
for the construction of highly sensitive and specific prognosis 
prediction model.

LASSO regression algorithm is suitable for processing 
high-dimensional data with independent variables signifi
cantly larger than the sample size. Based on the sparsity 
hypothesis, continuous or discrete variables can be 
screened to reduce model complexity while fitting general
ized linear models, thus avoiding overfitting.30 RF classifi
cation algorithm is to integrate multiple weak classifiers or 
decision trees into a forest, and the final result is processed 
by voting or averaging, so as to improve the accuracy of 
the constructed model and avoid overfitting. Therefore, 
the LASSO-RF algorithm combination can effectively 
process large samples with high-dimensional feature and 
accurately evaluate the weight of each feature in prognos
tic prediction.

Clinical factors play more important 
roles in AACNLI outcome
In the AIS prognosis assessment, previous studies found that 
gender, age, admission NIHSS score and other clinical fea
tures were related to the prognosis.31 Imaging features, espe
cially those derived from DWI and FLAIR images, were also 
associated with AIS prognosis.32 In this study, 7-d 
NIHSSmax, SAP and admission GCS score were the top three 
important features in the prognostic prediction model.

According to the definition of early neurological deterior
ation, we collected the daily NIHSS score of patients within 7 
days from the onset of AIS and calculated NIHSSmax. Once 
early neurological deterioration appeared, most AIS patients 
would require longer neurological rehabilitation time, which 
may lead to higher incidence rate of poor prognosis.

SAP refers to new pneumonia in stroke patients with non- 
mechanical ventilation within 7 days from onset, and its 
pathogenesis is related to stroke-induced immunosuppres
sion, swallowing dysfunction and down-migration of oral 
colonized flora.33 SAP may lead to high stroke mortality, 
prolonged hospitalization and poor neurological function re
covery after discharge, which increases the difficulty of 
stroke treatment.34,35 In this study, SAP in the poor progno
sis group accounted for 53.9%, much higher than that in the 
good prognosis group, indicating that SAP is an important 
factor leading to poor outcome. We can select AIS patients 

with SAP for more medical care, such as phlegm resolving 
and sputum drainage, oral care, anti-infective therapy and 
so on to improve the outcome.

GCS can reflect the consciousness, speaking and motor 
status of patients. Previous studies showed that the admis
sion GCS score of patients who were functionally independ
ent at discharge was higher than that of patients who were 
functionally dependent.36 In this study, the admission GCS 
score was lower in the poor prognosis group, indicating 
that low GCS score can reflect serious neurological function 
impairment.

Limitations
Our study has several limitations. First of all, our sample size 
is limited, susceptible to selection bias. Second, the treatment 
of AACNLI cases is limited to traditional antiplatelet ther
apy, and thrombolysis and thrombectomy is not included 
in our study. Third, our study lacked hyperacute infarction 
cases. Finally, the differences of MRI equipment and se
quence parameters in different stroke centres may affect 
the radiomics features of the lesion. In the future, we will 
build a large-sample, multicentre, standardized AACNLI 
clinical and imaging database, and carry out further 
research.

Conclusions
Based on the clinical, radiological and radiomics features, 
LASSO-RF algorithm combination was most suitable for 
constructing AACNLI outcome prediction model. Seven- 
day NIHSSmax, SAP and admission GCS scores were the 
three most important features in the model. Among the RF 
models of three mask types, mask ADC620 gained the best 
prognostic prediction performance, which helped to screen 
out high-risk patients with poor prognosis and identify the 
risk factors leading to poor outcome, providing an important 
basis for clinical precision treatment and improving the 
prognosis of AACNLI.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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