Skip to main content
. 2024 Nov 21;24:1448. doi: 10.1186/s12913-024-11837-9

Table 2.

Summary of the selected articles

Sl. No. Authors Year Objectives GIS/Spatial Analysis Methods Software
Disease Surveillance (N = 30)
1 Madhu, B., Srinath, K. M., Rajendran, V., Devi, M. P., Ashok, N. C., & Balasubramanian, S 2016 To visualise the spatiotemporal distribution of breast cancer incidences Thematic mapping and creation of point maps ArcGIS
2 Sabesan, S., Palaniyandi, M., Das, P. K., & Michael, E. 2000 To map lymphatic filariasis in India Probability mapping MapInfo
3 Mutheneni, S. R., Mopuri, R., Naish, S., Gunti, D., & Upadhyayula, S. M. 2018 To understand the epidemiology and spatial distribution of dengue fever Spatial mapping, Getis-Ord Gi* statistic, SoM ArcGIS
4 Mala, S., & Jat, M. K 2019 To study the spatiotemporal distribution of dengue fever Kernel density, directional distribution, Spatial Scan Statistic ArcGIS
5 Raghava, M. V., Prabhakaran, V., Jayaraman, T., Muliyil, J., Oommen, A., Dorny, P., Vercruysse, J., & Rajshekhar, V 2010 To map spatial clusters of Taenia Solium infections Spatial mapping, cluster analysis SaTScan, ArcGIS
6 Sowmyanarayanan, T. V., Mukhopadhya, A., Gladstone, B. P., Sarkar, R., & Kang, G 2008 To investigate the disease pattern of viral hepatitis in children Spatial mapping, cluster analysis Arc View GIS, SaTScan
7 Sarkar, R., Prabhakar, A. T., Manickam, S., Selvapandian, D., Raghava, M. V., Kang, G., & Balraj, V 2007 To study outbreaks of acute diarrhoeal disease Spatial mapping, cluster analysis Arc View GIS, SaTScan
8 Mandal, R., Kesari, S., Kumar, V., & Das, P 2018 To study spatiotemporal dynamics of visceral leishmaniasis cases Spatial mapping, overlay analysis Moran’s I Index ArcGIS
9 D’Mello, M. K., Badiger, S., Kumar, S., Kumar, N., D’Souza, N., & Purushothama, J. 2022 To geospatially analyse hotspots of diarrheal cases Moran’s I Index, Getis-OrdGi* statistic QGIS, GeoDa
10 Felix, C., Kaur, P., Sebastian, I. A., Singh, G., Singla, M., Singh, S., Samuel, C. J., Verma, S. J., & Pandian, J. D. 2021 To identify high-incidence areas of transient ischemic attack for stroke prevention interventions Spatial mapping, Moran’s I Index, Getis-OrdGi* statistic ArcGIS
11 Gupta, A. K., & Santhya, K. G. 2020 To understand proximal and contextual correlates of childhood stunting Moran’s I Index, ordinary least square (OLS) regression, spatial error model (SEM) GeoDa
12 Krishnamoorthy, Y., Majella, M. G., Rajaa, S., Bharathi, A., & Saya, G. K. 2021 To assess the spatial pattern and determinants of HIV Moran’s I Index GeoDa
13 Krishnamoorthy, Y., Rajaa, S., Verma, M., Kakkar, R., & Kalra, S. 2022 To find the spatial pattern and determinants of diabetes mellitus Moran’s I Index, Getis-OrdGi* statistic, ordinary least square (OLS) regression GeoDa
14 Kumar, C., Singh, P. K., & Rai, R. K. 2012 To study under five mortality rates at the district level Buffer, Moran’s I Index, Getis-OrdGi* statistic, ordinary least square (OLS) regression, spatial error model (SEM) GeoDa, ArcGIS
15 Garg, S., Dewangan, M., & Barman, O. 2020 To study malaria amongst symptomatic and asymptomatic pregnant women Spatial mapping, correlation Map Window
16 Nath, M. J., Bora, A. K., Yadav, K., Talukdar, P. K., Dhiman, S., Baruah, I., & Singh, L. 2013 To identify the malaria hot spots GPS survey, spatial mapping ArcGIS
17 Yadav, K., Nath, M. J., Talukdar, P. K., Saikia, P. K., Baruah, I., & Singh, L. 2012 To understand the geographical distribution of malaria GPS survey, spatial mapping ArcGIS
18 Rai, P. K., Nathawat, M. S., & Rai, S. 2014 To malaria-susceptibility modelling for predicting malaria occurrence GPS survey, thematic mapping, malaria inventory mapping Ilwis, ArcGIS, ERDAS Imagine
19 Qayum, A., Arya, R., Kumar, P., & Lynn, A. M. 2015 To identify the malaria hot spots Thematic mapping, IDW, overlay analysis ArcGIS
20 Singh, P. S., & Chaturvedi, H. K 2021 To map dengue cases and to identify the hotspots IDW, Getis-OrdGi* statistic ArcGIS
21 Mopuri, R., Mutheneni, S. R., Kumaraswamy, S., Kadiri, M. R., Upadhyayula, S. M., & Naish, S. 2019 To study the spatiotemporal distribution of malaria Moran’s, I Index, Getis-OrdGi* statistic, cluster analysis ArcGIS, SaTScan
22 Oinam, B., Anand, V., & Kajal, R. 2021 To detect the hotspot regions of HIV Getis-OrdGi* statistic, ordinary least square (OLS) ArcGIS
23 Tyagi, N., & Sahoo, S. 2019 To identify areas of encephalitis and to create an encephalitis risk model Thematic mapping, Map algebra ArcGIS
24 Sabesan, S., Raju, K. H. K., Subramanian, S., Srivastava, P. K., & Jambulingam, P. 2013 To find areas with lymphatic filariasis transmission risk Geo-Environmental Risk model (GERM) & Standardised Filariasis Transmission Risk Index (SFTRI) based mapping, cluster analysis STATA
25 Joseph, P. V., Balan, B., Rajendran, V., Prashanthi, D., & Somnathan, B. 2015 To study small area clustering of diseases and to find probable chances of high disease prevalence Probability mapping ArcGIS
26 Das, A., Ghosh, S., Das, K., Basu, T., Dutta, I., & Das, M. 2021 To examine the impact of living environment deprivation on COVID-19 hotspots Getis-OrdGi* statistic, Geographically Weighted Principal Component Analysis (GWPCA), data regression models ArcGIS, R
27 Das, S. K., & Bebortta, S. 2022 To understand the role of GIS in tracking the spread of COVID-19 Choropleth maps, heatmap analysis, cluster analysis, Getis-OrdGi* statistic QGIS
28 Murugesan, M., Venkatesan, P., Kumar, S., Thangavelu, P., Dash, N., John, J., Castro, M., Manivannan, T., Mohan, V. R., & Rupali, P. 2022 To analyse patterns of spread and hotspots of COVID-19 Spatial mapping, density map ArcGIS
29 Soni, P., Gupta, I., Singh, P., Porte, D. S., & Kumar, D. 2022 To evaluate the occurrence and distribution pattern of COVID-19 Analytical Hierarchy Process (AHP), overlay analysis ArcGIS
30 Wani, M. A., Kawoosa, W., & Mayer, I. A. 2019 To conduct a block-level analysis of respiratory diseases Zonation map, hotspot mapping ArcGIS
Risk Assessment (N = 14)
31 Bohra & Andrianasolo 2001 To evaluate spatial relationships between sociocultural practices and the incidences of dengue fever IDW, spatial modelling GIS
32 Ali, S., Ali, H., Pakdel, M., Ghale Askari, S., Mohammadi, A. A., & Rezania, S. 2021 To assess the risk due to exposure to fluoride concentration in drinking water IDW, spatial mapping ArcGIS
33 Shukla, S., Saxena, A., Khan, R., & Liu, P. 2021 To assess the overall groundwater quality and the spatial distribution of the physicochemical parameters IDW, spatial mapping ArcGIS
34 Singh, Rani., Upreti, P., Allemailem, K. S., Almatroudi, A., Rahmani, A. H., & Albalawi, G. M. 2022 To assess the quality of groundwater for drinking purposes IDW, spatial mapping ArcGIS
35 Vikrma, A., & Sandhu, H. A. S. 2022 To conduct a risk assessment based on the quality of groundwater IDW, spatial mapping ArcGIS
36 Gugulothu, S., Rao, N. S., Das, R., Duvva, L. K., & Dhakate, R 2022 To assess the sources of low groundwater quality and to understand the human health risk IDW, spatial mapping ArcGIS
37 Singh, A., Raju, A., Chandniha, S. K., Singh, L., Tyagi, I., Karri, R. R., & Kumar, A. 2022 To assess the human risk exposure due to consumption of groundwater Overlay analysis, mapping ArcGIS
38 Ananth, M., Rajesh, R., Amjith, R., A L, A., Valamparampil, M. J., Harikrishnan, M., Resmi, M. S., Sreekanth, K. B., Sara, V., Sethulekshmi, S., Prasannakumar, V., Deepthi, S. K., Jemin, A. J., Krishna, D. S., Anish, T. S., Insija, I. S., & Nujum, Z. T. 2018 To assess the sanitary condition and water quality of household wells DGPS survey, IDW ArcGIS
39 Ravindra, K., & Mor, S. 2019 To assess risk due to distribution of arsenic and selected heavy metals in groundwater Kriging interpolation ArcGIS
40 Sargaonkar, A., Nema, S., Gupta, A., & Sengupta, A. 2010 To assess the risk of contamination of water in water distribution systems Spatial and thematic mapping AutoCAD, ArcGIS
41 Bidhuri, S., & Jain, P. 2018 To analyse the spatial risk of waterborne diseases GPS, analytical hierarchical process (AHP), IDW, buffer GIS
42 Singh, D., Dahiya, M., & Nanda, C. 2022 To analyse the variability in air pollutants, AQI and ER% in three scenarios, viz. prelockdown, during lockdown, postlockdown IDW, spatial mapping GIS
43 Kanga, S., Meraj, G., Sudhanshu, Farooq, M., Nathawat, M. S., & Singh, S. K. 2021 To analyse the risk of COVID-19 infection Spatial mapping, overlay analysis, kriging interpolation ArcGIS
44 Nath, B., Majumder, S., Sen, J., & Rahman, M. M. 2021 To study the degree of risks associated with COVID-19 infections Cosine Similarity Index (CSI) by similarity search tool ArcGIS Pro
Healthcare Access (N = 14)
45 Pramod Nayak, P., Mitra, S., Pai, J. B., Vasthare Prabhakar, R., & Kshetrimayum, N. 2022 To map distribution and accessibility to oral health care Geo-coding, spatial mapping, kernel density estimation QGIS
46 Ghosh, A., & Mistri, B. 2020 To investigate spatial disparities in the provision of rural health facilities Buffer, Euclidean distance, IDW ArcGIS
47 Parvin, F., Ali, S. A., Hashmi, S. N. I., & Khatoon, A. 2020 To study accessibility and site suitability for healthcare services Kernel density, Euclidean distance, buffer, weighted linear combination method, site suitability analysis ArcGIS
48 Rekha, R. S., Wajid, S., Radhakrishnan, N., & Mathew, S. 2017 To study the distribution of healthcare facilities Three-step floating catchment area method, GPS survey, Origin-Destination cost function, site suitability analysis ArcGIS
49 Ranga, V., & Panda, P. 2014 To analyse spatial access to inpatient rural healthcare Three-step floating catchment area method, Euclidean distance QGIS, R
50 Vadrevu, L., & Kanjilal, B. 2016 To study spatial access to maternal health services Enhanced two-step floating catchment area method ArcGIS, STATA
51 Roberts, T., Shiode, S., Grundy, C., Patel, V., Shidhaye, R., & Rathod, S. D. 2019 To assess the relation between distance to health services and treatment-seeking for depressive symptoms Network analysis ArcGIS
52 Oinam, B., Oinam, J., & Kajal, R. K. 2020 To assess health coverage of healthcare facilities Thematic mapping, spatial catchment analysis, scaling-up analysis ArcGIS, AccessMod
53 Dutta, B., Das, M., Roy, U., Das, S., & Rath, S. 2022 To analyse the spatial pattern of healthcare facilities and to determine the possible sites for the provision of healthcare facilities GPS survey, overlay analysis, network analysis, analytical hierarchy process (AHP) and ordinary least square (OLS) ArcGIS
54 Singh, N., Patel, R., & Chauhan, S 2021 To investigate the utilisation of maternal health care services Ordinary least square (OLS) and spatial error model (SEM), Moran’s I Index ArcGIS
55 Kumar, N. 2004 To study access to and locational efficiency of health services Location-allocation models (LAM), Euclidean distance ArcInfo
56 Dare, A. J., Ng-Kamstra, J. S., Patra, J., Fu, S. H., Rodriguez, P. S., Hsiao, M., Jotkar, R. M., Thakur, J. S., Sheth, J., & Jha, P. 2015 To analyse access to surgical care regarding deaths from acute abdominal conditions Geo-coding, Clustering analysis, Getis-OrdGi* statistic, kriging, Euclidean distance SaTScan
57 Verma, V. R., & Dash, U. 2020 To measure accessibility and model spatial coverage of public healthcare networks. Thematic mapping, Euclidean distance, overlay analysis, accessibility analysis, geographical coverage analysis AccessMod, ArcGIS
58 Sabde, Y., Diwan, V., Mahadik, V. K., Parashar, V., Negandhi, H., Trushna, T., & Zodpey, S. 2020 To analyse the geographical distribution of medical schools Spatial mapping, Near neighbourhood analysis QGIS, ArcGIS