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ABSTRACT
Recent advancements in ophthalmology have been 
driven by the incorporation of artificial intelligence (AI), 
especially in diagnosing, monitoring treatment and 
predicting outcomes for age-related macular degeneration 
(AMD). AMD is a leading cause of irreversible vision loss 
worldwide, and its increasing prevalence among the 
ageing population presents a significant challenge for 
managing the disease. AI holds considerable promise in 
tackling this issue. This paper provides an overview of the 
latest developments in AI applications for AMD. However, 
current limitations include insufficient and unbalanced 
data, lack of interpretability in models, dependence on data 
quality and limited generality.

INTRODUCTION
Age-related macular degeneration (AMD) 
primarily affects the macula, the central part 
of the retina essential for clear vision. AMD 
can significantly impact daily activities such as 
reading, driving and facial recognition.1 Over 
the past 30 years, the prevalence of AMD 
has consistently increased.2 3 As the popula-
tion ages, this trend is expected to continue, 
with projections suggesting that the number 
of AMD cases will reach 288 million by 2040, 
posing a significant public health challenge.4 
The staging of AMD is complex; early-stage 
patients often show minimal symptoms, while 
late-stage AMD can lead to severe vision 
loss. Treatment efficacy for wet AMD varies, 
as most patients experience delayed disease 
progression, while others respond poorly to 
therapy.5 Similarly, treatment modalities for 
atrophic dry AMD are also evolving.6

Advancements in retinal imaging tech-
nology now allow for accurate identification of 
biomarkers associated with late-stage macular 
degeneration and assessment of disease 
severity. This technology finds widespread 
application in ophthalmology, particularly 
among elderly patients with AMD. As AMD 
prevalence continues to rise, nearly all 
ophthalmic facilities have accumulated exten-
sive retinal imaging data, including fundus 

photographs, optical coherence tomography 
(OCT) images and fluorescein fundus angi-
ography (FFA) images. This presents both 
challenges and opportunities for ophthalmol-
ogists.

The ongoing advancement of artificial 
intelligence (AI) technology has significantly 
impacted ophthalmology, providing new 
possibilities for diagnosing and treating 
AMD. By leveraging machine learning and 
deep learning techniques, AI can effectively 
analyse and interpret large-scale medical 
data, achieving accuracy comparable to 
that of human practitioners, particularly 
in image recognition and natural language 
processing.7 Consequently, it has emerged as 
an important adjunct tool for medical diag-
nosis and treatment. It is especially valuable 
in enhancing the accuracy of early diag-
nosis, individualising treatment efficacy and 
predicting therapeutic outcomes in AMD. 
This review offers an overview of AI technol-
ogy’s role in assisting with the diagnosis and 
treatment of AMD, highlighting its potential 
to improve diagnostic accuracy and thera-
peutic efficacy.

METHODS
We conducted a systematic search of the Web 
of Science database for studies published 
between August 2005 and March 2024. The 
search strategy included the following terms: 
(‘artificial intelligence’ OR ‘AI’ OR ‘machine 
learning’ OR ‘deep learning’) AND (‘age-
related macular degeneration’ OR ‘AMD’) 
AND (‘fundus photograph’ OR ‘optical 
coherence tomography’ OR ‘fluorescein 
fundus angiography’). Studies that did not 
involve AI or AMD were excluded from the 
review. This article is based on previously 
published research and does not contain 
any new studies involving human or animal 
subjects conducted by the authors.
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AI FOR FUNDUS DISEASE
AI is a technology that enables computers to simulate 
human behavior.8 AI algorithms are typically grounded 
in mathematical concepts, such as machine learning9 
and deep learning.10 The models derived from these 
algorithms are employed for various tasks, including clas-
sification, prediction and data generation. Commonly 
used algorithms encompass decision trees, random 
forests (RFs), support vector machines (SVM) and artifi-
cial neural networks (ANN).

Retinal diseases are complex ocular disorders that 
pose a significant threat to public health, especially with 
an ageing population. Thus, enhancing the objectivity 
and consistency of medical image diagnosis has become 
an urgent priority in ophthalmic healthcare. Recent 
advancements in AI technology have made significant 
strides in addressing this need. AI has shown notable 
progress in the study of retinal diseases, particularly 
AMD, diabetic retinopathy,11 retinal vein occlusion12 
and retinopathy of prematurity.13 AI systems trained 
on extensive retinal image datasets can efficiently and 
accurately analyse images, identify various lesions and 
offer diagnostic recommendations, thereby significantly 
enhancing diagnosis and screening processes.14 15 This 
technology empowers healthcare professionals to detect 
diseases at earlier stages, ultimately improving diagnostic 
accuracy and timeliness.

AI-driven retinal diagnostic systems also provide 
personalised treatment plans tailored to each patient’s 
characteristics and condition.16 By analysing retinal 
images and clinical data, these systems can predict 
disease progression and recommend appropriate treat-
ments.17 This personalised approach enhances precision 
in ophthalmic care, leading to higher patient satisfaction 
and an improvement in quality of life.

The integration of AI in retinal disease management 
presents promising solutions to ongoing challenges in 
AMD. Despite being a common cause of blindness, AMD 
remains difficult to diagnose early, customise treatment, 
control costs and monitor over time. AI can address 
these issues by facilitating faster and more accurate early 
diagnosis through retinal image and OCT scan analysis. 

Additionally, AI leverages big data to predict disease 
progression and develop personalised treatment plans 
based on individual patient data. Further details will be 
discussed in subsequent sections.

ADVANCEMENTS IN AI APPLICATION FOR AMD
AI application for AMD based on fundus photography
Fundus photography is a non-invasive, low-cost method 
for screening AMD, used to identify related lesions such 
as vitreous warts, macular haemorrhage and geographic 
atrophy (GA). This technique plays a key role in the 
screening and diagnosis of AMD. A brief process of 
applying the AI model to diagnose and screen for AMD is 
shown in online supplemental figure S1.

Researchers like Mark and Andrés have developed 
machine learning models for retinal image analysis, 
which accurately detect and quantify abnormal deposits 
in the macula from fundus images. These models can 
automatically prediagnose AMD and assess the risk of 
its progression.18 19 Findings show that these machine 
learning systems perform comparably to human observers 
in automated AMD risk assessment, offering a promising 
solution for faster and more reliable diagnosis. Further-
more, Feeny et al created a fully automatic segmentation 
model using RFs to effectively segment GA areas in 
colour fundus images, enabling more precise segmenta-
tion.20 In addition, Abd et al designed a machine learning 
model for classifying AMD stages, including no AMD, 
intermediate AMD, dry AMD and wet AMD. Their study 
employed eleven classification models, optimising their 
performance through comparison.21 This approach not 
only achieved high accuracy but also provided detailed 
assessments of retinal severity, aligning the final diagnosis 
with clinicians’ understanding of AMD. As a result, these 
models aid clinicians in the ongoing management and 
follow-up of AMD patients.

Deep learning models, particularly convolutional 
neural networks (CNNs) and their variants, are increas-
ingly applied in ophthalmology. Unlike traditional 
machine learning, deep learning processes images 
directly, minimising errors from feature computation 
and segmentation. For example, Burlina et al used CNN 

Figure 1  Convolutional neural network (CNN) processing flow. CNN learns image features by performing a series of 
convolution and pooling, and finally outputs the corresponding results by different modules. AMD, age-related macular 
degeneration.

https://dx.doi.org/10.1136/bmjophth-2024-001903
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to classify fundus images of individuals with no AMD, 
early-stage AMD and those with intermediate or advanced 
AMD. The model’s performance in grading was compa-
rable to that of clinicians, but it required significantly 
less time.22 23 Liu et al concentrated on early-stage AMD 
detection using deep learning within a multiple instance 
learning framework, allowing the model to capture subtle 
features for early diagnosis.24 Grassmann et al enhanced 
this approach by employing six neural networks to stage 
AMD into 13 categories, including nine based on the age-
related eye disease study (AREDS) severity scale, three 
late-stage categories and one ungradable category. Inte-
grating RF models with these networks further improved 
the accuracy of AMD staging.25 Xu et al developed 
DeepDrAMD, a deep learning model that efficiently 
distinguishes AMD subtypes by leveraging hierarchical 
visual transformers, data augmentation techniques and 
SwinTransformer. It achieved classification accuracies 
of 93.46% for dry AMD and 91.55% for wet AMD, with 
the wet AMD subtype showing exceptional performance, 
with an area under curve (AUC) of 99.36%.26 Chen et al 
and Peng et al introduced DeepSeeNet, a deep learning 
model designed for automatic classification of AMD 
severity, extracting disease features from colour fundus 
images of both eyes and categorising patients based on 
severity ratings.27 28 These models, while comparable 
to expert evaluations, offer significant cost savings and 
improved efficiency. The advancements in deep learning 
are set to provide vital support in AMD detection and 
diagnosis, significantly assisting healthcare professionals.

AI application for AMD based on OCT images
Compared with fundus photography, OCT provides 
clearer, high-resolution images of retinal structures 
and subtle changes, including layers such as the retinal 
pigment epithelium and neurosensory layers. This 
enhanced imaging allows for the detection of AMD-
related abnormalities such as subretinal fluid (SRF), 
retinal pigment epithelial detachment (PED) and 
macular cystoid oedema, providing physicians with a 
better understanding of the disease. To better under-
stand the structure of the model, figure  1 shows the 
detailed process using CNN as an example.

Classification
Deep learning AI models have proven effective in clas-
sifying OCT images to detect AMD, distinguish it from 
other macular lesions and identify various stages of the 
disease. This leads to faster, more accurate diagnoses, 
enabling timely interventions, improving diagnostic effi-
ciency and allowing for more timely treatment.

Initial work on classifying AMD OCT images relied 
on traditional machine learning techniques such as 
principal component analysis, SVMs and RFs. However, 
the advent of deep learning has brought about substan-
tial advancements. Early deep learning efforts focused 
primarily on distinguishing AMD images from normal 
ones. For instance, Lee et al modified the VGG16 CNN 

model to identify AMD and used occlusion tests to verify 
the model’s robustness and generalizability, achieving 
sensitivity and specificity of 92.64% and 93.69%, respec-
tively.29 Shi et al developed a deep learning model called 
Med-XAI-Net, designed to detect GA in OCT volume 
scans. Its unique design, incorporating two key atten-
tion modules, enhances interpretability by identifying 
the most relevant B scans for GA detection. The model 
achieved an accuracy of 91.5%, AUC of 93.5%, sensitivity 
of 82.8% and specificity of 94.6%.30 Sun et al employed 
a residual networks-50 (ResNet-50) CNN model to diag-
nose AMD using the Duke dataset and a proprietary 
dataset. The model reached 98.17% accuracy, 99.26% 
sensitivity and 95.65% specificity on the Duke dataset. 
For the proprietary dataset, which included both 
diabetic macular oedema (DMO) and AMD images, a 
fine-tuned ResNet-50 with various classifiers (SVM, CNN, 
CNN_CBAM) achieved high accuracy through fivefold 
cross-validation.31 He et al introduced an automated AMD 
detection method combining deep learning with the 
local outlier factor (LOF) algorithm. Using ResNet-50 
for feature extraction and LOF for classification, their 
method was trained on the University of California, San 
Diego (UCSD) dataset and tested on both UCSD and 
Duke datasets, achieving 99.87% accuracy on UCSD and 
97.56% on Duke. Compared with other methods, this 
study demonstrated high efficiency in AMD detection.32

Some studies have focused on differentiating AMD 
from other macular diseases. For example, Kermany et al 
used deep learning to classify OCT images of wet AMD, 
normal eyes, DMO and epiretinal membrane, achieving 
96.6% sensitivity, 94% specificity and 93.4% accuracy. 
Their model’s performance equalled that of ophthalmic 
experts and demonstrated robustness in occlusion tests.33 
Li et al applied deep transfer learning using the VGG-16 
network to classify AMD and DMO in OCT images, 
involving 109 312 images covering various conditions 
and normal cases. Their method achieved 98.6% accu-
racy, 97.8% sensitivity, 99.4% specificity and 100% AUC 
in OCT image detection.34 Baharlouei et al proposed a 
CNN-based method using wavelet scattering transform 
to detect retinal abnormalities from OCT images. Their 
study, using the Heidelberg and Duke datasets, classified 
images into DMO, AMD and normal categories, achieving 
97.1% and 94.4% accuracy, respectively.35

Given the differences in treatment for wet and dry 
AMD, several studies have aimed to distinguish between 
the various stages of the disease. Deng et al and Serener 
and Serte developed machine learning and deep CNN 
models for the rapid classification of dry and wet AMD, 
with the ResNet model outperforming the AlexNet model 
in classification accuracy.36 37 Motazawa et al created a 
deep learning model to differentiate between normal 
and AMD OCT images and to distinguish AMD with and 
without exudation. Their study used two models: a basic 
CNN and a transfer learning model designed to improve 
stability and efficiency. The basic CNN model achieved a 
sensitivity of 100%, specificity of 91.8% and accuracy of 
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Table 1  A summary of the research on classification in the article

Reference Purpose Neural network backbone Optimisation strategy Performance

Lee et al29 Detecting AMD from 
AMD and normal

VGG-16 Stochastic gradient 
descent

Accuracy 87.63%
AUC 92.77%
Sensitivity 84.63%
Specificity 91.54%

Shi et al30 Detecting AMD from 
AMD and normal

Med-XAI-Net Region-attention module, 
image-attention module 
and loss function

Accuracy 91.5%
AUC 93.5%
Sensitivity 82.8%
Specificity 94.6%

Sun et al31 Detecting AMD from 
AMD, DMO and 
normal

ResNet-50 Convolutional block 
attention module

Mean accuracy 98.17%
Sensitivity 99.26%
Specificity 95.65%

He et al32 Detecting AMD from 
AMD and normal

ResNet-50 and LOF 
algorithm

Residual network Internal validation: average 
accuracy 99.78%, AUC 100%
External validation: average 
accuracy 97.56%, AUC 
99.54%

Kermany et al33 Distinguish CNV, 
DMO, drusen, 
normal

Transfer learning NA Accuracy 93.4%
Sensitivity 96.6%
Specificity 94%

Li et al34 Detecting dry AMD 
and DMO from 
normal, drusen, wet 
AMD and DMO

VGG-16 Convolution filters and 
backpropagation

Accuracy 98.6%
Sensitivity 97.8%
Specificity 99.4%

Baharlouei et al35 Distinguishing AMD, 
DMO, normal

CNN Wavelet scattering 
transform

Heidelberg dataset: accuracy 
97.1%
Duke dataset: accuracy 
94.4%

Deng et al36 Detecting dry AMD 
and wet AMD from 
normal, dry AMD and 
wet AMD

RF, SVM, neural network Gabor filtering
Supervised

Accuracy 94.7%, 97.1%, 
84.7%

Serener and 
Serte37

Detecting dry AMD 
and wet AMD from 
normal, dry AMD, 
wet AMD and DMO

ResNet
AlexNet

NA Dry AMD: ResNet model 
accuracy 99.5%, AUC 94%, 
sensitivity 98.0%, specificity 
100%
AlexNet model: accuracy 
81.0%, AUC 81.0%, 
sensitivity 93.8%, specificity 
99.73%
Wet AMD: ResNet model 
accuracy 98.8%, AUC 63%, 
sensitivity 95.6%, specificity 
99.9%
AlexNet model: accuracy 
96.5%, AUC 61.0%, 
sensitivity 88%, specificity 
99.3%

Motozawa et al38 CNN models for 
distinguishing normal 
and AMD Migration 
learning models for 
distinguishing AMD 
with and without 
exudative changes

CNN
Transfer learning

Data augmentation and 
dropout technique

CNN: accuracy 99%, 
sensitivity 100%, specificity 
91.8%
Transfer learning: accuracy 
93.9%, sensitivity 98.4%, 
specificity 88.3%

Continued
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99.0% in distinguishing AMD from normal images. The 
transfer learning model achieved a sensitivity of 98.4%, 
specificity of 88.3% and accuracy of 93.9% in identifying 
AMD with or without exudation.38 Hwang et al proposed 
three CNN architectures—VGG16, InceptionV3,and 
ResNet-50—to classify normal retinas and three types of 
AMD: dry AMD (drusen), inactive wet AMD and active wet 
AMD. The models demonstrated accuracies of 91.40%, 
92.67% and 90.73%, respectively, with AUC values of 
98.3%, 97.8% and 98.7%. All three models showed high 
sensitivity (>99%) in detecting normal retinals.39 Hwang 
et al further developed a deep learning model to differen-
tiate retinal angiomatous proliferation from polypoidal 
choroidal vasculopathy (PCV), adjusting the VGG-19-
based CNN for this purpose. The model’s performance 
was evaluated through sensitivity, specificity, accuracy 
and AUC, while Cohen’s kappa coefficient measured 
agreement between two retinal specialists and between 
the model and each specialist.40 Wongchaisuwat et al 
employed multiple CNN models to differentiate between 
PCV and wet AMD. Their study used 2334 OCT images 
for training and 1171 images for external validation. 
The best-performing model, incorporating an attention 
mechanism within the ResNet architecture, achieved an 
AUC of 81%, sensitivity of 85% and specificity of 71% on 
the external validation set.41

Table 1 provides detailed information on the outcomes 
of these studies.

Segmentation
Segmentation enables the identification of AMD features, 
such as drusen and subretinal hyperreflective material 
(SHRM), in retinal images, allowing for precise local-
ization and quantification of lesions in OCT scans. This 
process supports the monitoring of disease progression, 
evaluation of treatment efficacy and improved under-
standing of AMD pathology, thereby enhancing diagnosis 
and patient management.

Earlier studies on OCT image segmentation relied 
heavily on machine learning algorithms such as edge 
detection,42 SVM43 and graph cut algorithms.44 However, 
the rise of deep learning has led to the development of 
advanced algorithms such as CNN,45 U-Net,46 SegNet,47 
ResNet48 and fully convolutional network,49 which have 
shown significant promise in tackling segmentation tasks 
related to AMD.

In dry AMD research, Mishra et al employed the U-Net 
model to segment early-stage AMD OCT images. Their 
algorithm automatically segmented reticular pseudod-
rusen (RPD), drusen and 11 retinal layers, facilitating 
early non-exudative AMD analysis and potentially 
aiding in the development of early treatment options.50 
Similarly, Lu et al developed an automated algorithm 
for segmenting and quantifying calcified drusen in 
three-dimensional (3D) OCT images, showing strong 
consistency with human graders and achieving a dice 
similarity coefficient of 68.27%±11.09%, which holds 
clinical significance for assessing AMD progression.51 Ji et 
al proposed an automated segmentation method for GA 
based on deep learning. The model architecture consists 
of a deep network with five layers, including an input 
layer, three hidden layers using sparse autoencoders and 
an output layer. The study incorporated two datasets 
comprising a total of 105 OCT images. The first dataset 
achieved an average mean overlap ratio (OR) of 86.94%, 
absolute area difference (AAD) of 11.49% and correla-
tion coefficient (CC) of 98.57%. The algorithm applied 
to the second dataset obtained average OR, AAD and CC 
values of 81.66%, 83% and 99.52%, respectively.52 Elsawy 
et al developed the Deep-GA-Net model, which is a 3D 
deep learning network with a 3D attention layer. This 
model is designed for detecting GA on spectral-domain 
OCT scans. The accuracy of the model is reported to be 
93%.53

Reference Purpose Neural network backbone Optimisation strategy Performance

Hwang et al39 Identify normal 
macula and three 
types of AMD: 
dry AMD (drusen), 
inactive wet AMD 
and active wet AMD

VGG16
InceptionV3
ResNet-50

Data augmentation VGG16: accuracy 91.40%, 
AUC 98.3%
InceptionV3: accuracy 
92.67%, AUC 97.8%
ResNet-50: accuracy 90.73%, 
AUC 98.7%

Hwang et al40 Detecting PCV and 
RAP from AMD and 
normal

VGG-19 Data augmentation and 
transfer learning

Accuracy 89.1%
AUC 95.3%
Sensitivity 89.4%
Specificity 88.8%

Wongchaisuwat 
et al41

Distinguish PCV, wet 
AMD

ResNet-50 Transfer learning 
technique and attention 
blocks

AUC 81%
Sensitivity 85%
Specificity 71%

AMD, age-related macular degeneration; AUC, area under the curve; CNN, convolutional neural network; CNV, choroidal neovascularization; 
DMO, diabetic macular oedema; LOF, local outlier factor; PCV, polypoidal choroidal vasculopathy; RAP, retinal angiomatous proliferation; 
ResNet, residual network; RF, random forest; SVM, support vector machines.

Table 1  Continued
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Table 2  A summary of the research on segmentation in the article

Reference Method
Optimisation 
strategy

Images 
(n) Disease Segmentation type Performance

Mishra et al50 U-Net Shortest path 
algorithm

1343 AMD Dursen
RPD
11 layers of retina

Drusen: average 
difference between 
automatic and 
manual segmentation 
0.75±1.99 pixels
RPD: average 
difference between 
automatic and 
manual segmentation 
0.41±1.97 pixels

Lu et al51 Deep learning Binary map 29 Non-exudative 
AMD

Calcified drusen DSC 68.27±11.09%

Ji et al52 Deep learning Stochastic 
gradient 
descent

105 Non-exudative 
AMD

GA Dataset 1: mean 
OR 86.94%, AAD 
11.49%, CC 0.9857
Dataset 2: mean OR 
81.66%, AAD 8.30%, 
CC 0.9952

Elsawy et al53 Deep-GA-Net 3D loss-based 
attention layer

1284 AMD GA Accuracy 93%

Fernández54 GVF Snake 
algorithm

Multiscale 
edge detection 
scheme

7 Wet AMD SRF
IRF
PED

Similar to clinical 
experts

Rashno et al55 GC
KGC

Transform 
OCT scans to 
neutrosophic 
domain and 
cost functions

796 AMD SRF
IRF
PED

GC: dice coefficient 
76.10%, sensitivity 
80.54%, precision 
90.34%
KGC: dice coefficient 
70.97%, sensitivity 
86.40%, precision 
77.17%

Moraes et al56 Deep learning NA 2966 Wet AMD Neurosensory Retina
RPE
IRF
SRF
SHRM
Hyper-reflective foci
Drusen
Fibrovascular PED
Serous PED

SRF: accuracy 
90.3%
IRF: accuracy 72.7%

Xie et al57 U-Net
DDP

Smoothness 
constraints and 
loss functions

384 AMD
Normal

Inner limiting 
membrane
Inner retinal pigment 
epithelium-drusen 
complex
The outer aspect of the 
Bruch membrane

Mean absolute 
surface 
distance±standard 
deviation (µm): 
1.88±1.96

Pawloff et al58 Deep learning End to end 41 147 Wet AMD IRF
SRF

HAWK: AUC of 85% 
for IRF and 87% for 
SRF in the central 
millimetre
HARRIER: AUC of 
93% for IRF and 
87% for SRF in the 
central millimetre

Continued
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The segmentation concerning wet AMD are as follows. 
Fernández and Rashno et al, among others, have devel-
oped segmentation models for fluid in OCT images 
of wet AMD.54 55 Moraes et al automated the segmenta-
tion and quantification of various features of wet AMD 
in OCT images, including neurosensory retina, retinal 
pigment epithelium (RPE), intraretinal fluid (IRF), SRF, 
SHRM, hyper-reflective foci, drusen, fibrovascular PED 
and serous PED. They also analysed the correlation of 
these features with visual acuity.56 Xie et al proposed a 
deep learning model for segmenting individual retinal 
layers, conducting experiments on two datasets. The 
results demonstrated subpixel-level accuracy, with 
average absolute surface distance errors of 1.88±1.96 µm 
and 2.75±0.94 µm for all segmented surfaces in the two 
datasets.57 Pawloff et al built on this work, employing deep 
learning to automatically detect macular fluid and vali-
dating the model’s reliability through comparisons with 
manual segmentation results.58 Prabha et al introduced a 
novel deep learning model called AR U-Net++, specifically 
for segmenting retinal layers and fluid. The segmenta-
tion targets included the inner limiting membrane, inner 
plexiform layer, RPE, Bruch’s membrane and IRF, SRF 
and PED. Compared with existing U-Net, AR U-Net and 
AR W-Net models, AR U-Net++ achieved superior accu-
racy (99.67%), mean intersection over union (84%) and 
dice coefficient (94%). One notable feature of this model 
is its ability to identify the exact location and depth of 
retinal fluid between retinal layers.59 Feng et al developed 
a model that automatically segmented choroidal neovas-
cularization (CNV) in OCT angiography (OCTA) images. 
By using the ResNeSt module as the backbone, the 
CNV segmentation model achieved an AUC of 94.76%, 
with high specificity (99.5%) and moderate sensitivity 
(72.71%). The results indicated satisfactory performance 
of the model in extracting CNV regions from OCTA 
images of patients with wet AMD.60

Detailed information on each of the above studies is 
shown in table 2.

Predicting
AI’s role in predicting AMD progression and treatment 
efficacy using OCT images is crucial. By quantitatively 
analysing retinal thickness and pathological features, 
AI supports doctors more accurately and quickly assess 
the severity of AMD and understand how the disease is 
progressing. For wet AMD, while anti-vascular endothe-
lial growth factor (anti-VEGF) medications benefit most 
patients, some respond poorly, making AI’s predictive 
and evaluative capabilities vital.

Initial efforts to predict the progression from early-stage 
to late-stage exudative AMD used traditional machine 
learning techniques, achieving AUC performances of 
74% and 68%, respectively.61 62 Subsequently, Banerjee 
et al built on these studies by introducing a predictive 
model for sequential learning of longitudinal OCT data 
captured during multiple visits, enhancing predictive 
performance while identifying trends in both short-
term and long-term progression of AMD.63 Following 
this, Waldstein et al employed segmentation algorithms 
to extract drusen and hyper-reflective foci from OCT 
images, analysing changes over time at the same retinal 
location to predict the likelihood of early macular degen-
eration progressing to macular neovascularization and 
macular atrophy.64 In 2023, Rudas et al proposed a deep 
learning model (SLIVER-net) that further improved 
prediction of AMD progression by integrating a large 
volume of retrospective OCT images with corresponding 
electronic health records.65

The following are related studies on the evaluation 
of therapeutic efficacy in wet AMD. Bogunovic et al 
proposed a machine learning model to predict the treat-
ment needs of wet AMD patients by analysing clinical 
data and classifying them into low and high treatment 

Reference Method
Optimisation 
strategy

Images 
(n) Disease Segmentation type Performance

Prabha et al59 AR U-Net++ Attention blocks 
and residual 
blocks

2272 Wet AMD ILM
IPL
RPE
BM
IRF
SRF
PED

Accuracy 99.67%
Mean IoU 84%
Dice coefficient 94%

Feng et al60 U-Net ResNeSt block 
and pyramid 
pooling module

116 Wet AMD CNV AUC 94.76%
Specificity 99.5%
Sensitivity 72.71%

AAD, absolute area difference; AMD, age-related macular degeneration; AR, attention residual; AUC, area under curve; BM, Bruch’s 
membrane; CC, correlation coefficient; CNV, choroidal neovascularization; 3D, three-dimensional; DDP, distribute data parallel; DSC, dice 
similarity coefficient; GA, geographic atrophy; GC, graph cut ; GVF, gradient vector flow; ILM, internal limiting membrane; IoU, intersection 
over union; IPL, inner plexiform layer; IRF, intraretinal fluid; KGC, kernel graph cut; OCT, optical coherence tomography; OR, overlap ratio; 
PED, pigment epithelial detachment; RPD, reticular pseudodrusen; RPE, retinal pigment epithelium; SHRM, Subretinal hyperreflective 
material; SRF, subretinal fluid.

Table 2  Continued
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frequency categories, with AUC values of 70% and 77%, 
respectively.16 However, simply classifying patients’ future 
treatment needs does not accurately predict treatment 
outcomes. Romo-Bucheli et al improved Bogunovic’s 
model by combining DenseNet and recursive neural 
network to predict the need for anti-VEGF treatment in 

wet AMD patients, categorising predictions into high, 
medium and low demand, with the best performance 
in predicting low demand.66 Subsequently, Bogunović et 
al used CNNs to extract OCT image features and then 
constructed a model using machine learning methods 
to predict visual outcomes and treatment needs in wet 

Table 3  A summary of the research on prediction in the article

Reference Method
Optimisation 
strategy Images (n) Disease Forecast content Performance

de Sisternes et 
al61

L1-penalised 
Poisson model 
predictors

Piecewise-linear 
functions
and L1-penalised 
Poisson model

244 Dry AMD Predicting the transition 
from early and intermediate 
age-related macular 
degeneration to advanced 
exudative macular 
degeneration

AUC 0.92

Schmidt-Erfurth 
et al62

Cox proportional 
hazards

Supervised 
setting, the 
least absolute 
shrinkage and 
selection operator

1095 Dry AMD Predicting the risk of 
conversion to advanced 
AMD in patients with 
early age-related macular 
degeneration

CNV: AUC 0.68
GA: AUC 0.80

Banerjee et al63 RNN Many-to-many
data 
augmentation and 
long short-term 
memory

671 Dry AMD Predicting the transition 
from early and intermediate 
age-related macular 
degeneration to advanced 
exudative macular 
degeneration

Internal validation: 3 
months AUC 0.96, 21 
months AUC 0.97
External validation: 
3 months AUC 0.82, 
21 months AUC 0.68

Waldstein et al64 Deep learning NA 1097 Dry AMD Predicting the risk of 
conversion to advanced 
AMD in patients with 
early age-related macular 
degeneration

MNV: AUC 0.66
MA: AUC 0.73

Rudas et al65 SLIVER-net NA 4200 Dry AMD Predicting progress in wet 
AMD

AUC 0.82

Bogunovic et al16 Random forest NA 1095 Wet AMD Predicting patient demand 
for anti-VEGF therapy

Low demand AUC of 0.7
High demand AUC of 
0.77

Romo-Bucheli 
et al66

DenseNet and 
RNN

Hyperbolic 
tangent

350 Wet AMD Predicting patient demand 
for anti-VEGF therapy

Low demand AUC of 
0.85
High demand AUC of 
0.81

Bogunović et al67 CNN NA 228 Wet AMD Predicting treatment needs 
and visual outcomes

The AUC for the 
predicted treat-and-
extend group was 0.71
The AUC for the visual 
outcome was 0.87

Liu et al68 GAN and 
pix2pixHD

‘Coach-to-fine’ 
training strategy

476 Wet AMD Predicting short-term 
responses in patients 
treated with a single anti-
vascular endothelial growth 
factor injection

92% of the synthesised 
OCT images were 
considered to be of 
sufficient quality for 
clinical interpretation
predicting post-
treatment macular 
status (wet or dry) 
accuracy 85%

Zhao et al69 SSG-Net Squeeze and 
excitation 
network and class 
activation

206 Wet AMD Predicting whether 
patients will have a positive 
treatment response after 
short-term anti-VEGF 
therapy

Accuracy 84.6%, AUC 
0.83, sensitivity 69.2%, 
specificity 100%

AMD, age-related macular degeneration; AUC, area under the curve; CNN, convolutional neural network; CNV, choroidal neovascularization; 
GA, geographic atrophy; GAN, generative adversarial network; MA, macular atrophy; MNV, macular neovascularization; OCT, optical coherence 
tomography; RNN, recursive neural network.
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AMD patients under the treat-and-extend regimen.67 The 
study found that accurate prediction of treatment inter-
vals and visual outcomes through analysis of OCT images 
and clinical data supports the implementation of person-
alised treatment strategies and management of wet AMD 
patients. Liu et al proposed a generative adversarial 
network model, which, based on learning from 476 pairs 
of pretreatment and post-treatment OCT images, synthe-
sised post-treatment OCT images from 50 pretreatment 
OCT images to demonstrate treatment efficacy.68 The 
advantage of this method is its use of only images as input 
and generation of other images as output, eliminating 
the need for labels, segmentation or clinical informa-
tion; however, it also increases the difficulty of model 
interpretability. Building on previous research, Zhao 
et al developed a deep learning model that associates 
OCT images with best-corrected visual acuity (BCVA), 
divided patients into responders and non-responders 
based on changes in BCVA after anti-VEGF injections and 
predicted changes in visual acuity after treatment.69

Detailed information on each of the above studies is 
shown in table 3.

Advancements in multimodal models combining various 
imaging data in AMD
Although OCT is the most common and essential 
diagnostic tool for AMD, integrating FFA, fundus 

photography and other clinical data into models is also 
important. Jointly learning the correlations between 
different modalities can enhance diagnostic and predic-
tive accuracy.

Yoo et al proposed a deep learning model based on 
OCT, fundus images and their combination to diagnose 
AMD, comparing the performance of different models. 
Five models were proposed: (1) RF transfer learning 
using OCT imaging only; (2) RF transfer learning using 
fundus images only; (3) RF transfer learning using the 
combination of OCT and fundus imaging; (4) transfer 
learning using multimodal restricted Boltzmann 
machines; and (5) transfer learning using multimodal 
deep belief networks. The results showed that the multi-
modal approach combining OCT and other fundus data 
performed better.70 Subsequently, Vaghefi et al added 
OCTA to fundus images and OCT, exploring the use 
of deep learning methods combined with OCT, OCTA 
and colour fundus images to improve the accuracy of 
diagnosing intermediate dry AMD. The study found 
that a CNN using multiple imaging modalities outper-
formed those using a single modality. In particular, the 
multimodal CNN combining OCT, OCTA and colour 
fundus photographs achieved an accuracy of 96% in the 
AMD group.71 Chen et al proposed a multimodal, multi-
task, multiattention (M3) deep learning algorithm for 

Table 4  A summary of datasets

Dataset Author

CFP

AREDS dataset Feeny et al,20 Burlina et al,22 23 Grassmann et al,25 Chen et al,27 Peng et al28

Original dataset Abd et al,21 Huiyin et al,24 Xu et al26

AREDS2 dataset Chen et al27

STARE dataset Garcia-Floriano et al19

Ocular Disease Intelligent Recognition 
dataset

Xu et al26

OCT

HARBOR clinical trial dataset Schmidt-Erfurth et al,62 Banerjee et al,63 Waldstein et al,64 Bogunovic et al16

Duke dataset Sun et al,31 Baharlouei et al,35 Xie et al57

AREDS2 Elsawy et al53

Heidelberg Spectralis Imaging Database Lee et al29

UCSD dataset He et al32

OCTID dataset Baharlouei et al35

Topcon dataset Baharlouei et al35

Optima dataset Rashno et al55

Annotated Retinal OCT Images Database Prabha et al59

Original dataset Sun et al,31 Kermany et al,33 Li et al,34 Baharlouei et al,35 Deng et al,36 Motozawa 
et al,38 Hwang et al,39 40 Wongchaisuwat et al,41 Mishra et al,50 Lu et al,51 Ji et al,52 
Rashno et al,55 Moraes et al,56 Pawloff et al,58 Feng et al,60 de Sisternes et al,61 
Rudas et al,65 Romo-Bucheli et al,66 Liu et al,68 Zhao et al69

AREDS, The age-related eye disease study; CFP, colour fundus photography; OCT, optical coherence tomography; OCTID, optical 
coherence tomography image database; STARE, structured analysis of the retina; UCSD, University of California, San Diego.
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detecting RPD in AMD. The model could analyse either 
single colour fundus photography (CFP), single fundus 
autofluorescence (FAF) or their combination. The M3 
model performed exceptionally well in RPD detection, 
achieving AUC values of 83.2%, 93.1% and 93.3% for 
CFP, FAF and combined images, respectively. Compared 
with human retinal experts, the performance of the M3 
model on CFP was significantly improved.72 Thakoor 
et al developed a deep learning model to distinguish 
non-AMD from non-neovascular AMD or neovascular 
AMD. Nine model variants were trained using different 
imaging modalities and configurations, including 
OCTA, OCT structure, 2D B-scan flow images and high-
definition 5-line B-scan cubes. The results showed that 
models trained using multimodal images consistently 
outperformed those trained using OCT or OCTA alone. 
In the test dataset, the best-performing model trained 
using multimodal imaging (MMI) achieved an accu-
racy of 70.8%±1.12%.73 Goh et al compared the clinical 
likelihood of predicting the progression of early to late 
AMD using CFP only versus using MMI, which includes 
OCT, FAF, near-infrared reflectance and CFP. Their 
predictions were based on a neural network model with 
a multimodal model combining age, pigment abnormali-
ties and OCT-based vitreous membrane wart volume. The 
results showed that the use of MMI had a better clinical 
performance in predicting the progression of late AMD 
compared with CFP.74 Sutton et al used machine learning 
to identify pathological features of OCT, integrating 
novel characteristics such as OCT-A, FAF imaging, BCVA, 
microperimetry and genetic profiling. This approach 
facilitated more personalised predictions regarding the 
progression of AMD to the intermediate and late stages.75

Datasets summary
Datasets are crucial for the effective application of AI 
models. High-quality datasets determine the learning 
outcomes and performance of these models, particu-
larly in the medical field, where accurate annotations 
are essential for reliable diagnosis. Therefore, this 
paper categorises the datasets of the literature cited in 
the previous sections. The most common CFP dataset is 
AREDS dataset; OCT datasets are mainly HARBOR clin-
ical trial dataset and Duke dataset.

Detailed dataset usage is summarised in table 4.

DISCUSSION
AI has made notable progress in diagnosing and 
managing AMD. This review explores the applica-
tion of AI across different imaging modalities used 
for AMD, demonstrating how advanced algorithms 
enhance disease feature identification, detection, clas-
sification, segmentation and prognostication. Despite 
these advancements, several limitations remain. Current 
datasets are often biased, with an over-representation of 
advanced cases and limited inclusion of specific subtypes, 
leading to data imbalance and insufficiency. Additionally, 
the quality and consistency of data significantly impact 

model performance, as AI systems are highly sensitive to 
variations in image quality, resolution and equipment, 
resulting in discrepancies in model accuracy. Moreover, 
the generalisability of AI models is restricted by their 
reliance on specific datasets, which may not perform 
consistently across different clinical environments or 
imaging devices, posing challenges for practical imple-
mentation.

Future research should prioritise collecting and anno-
tating more OCT images, integrating additional imaging 
data to enhance model performance and improving 
model interpretability through visualisation and atten-
tion mechanisms. Efforts should also focus on designing 
deep learning architectures specifically for OCT anal-
ysis, optimising algorithms and incorporating clinical, 
genetic and lifestyle data for personalised AMD treat-
ment and prediction. Moreover, the development of 
more effective multimodal fusion techniques is essential 
to capture intermodal relationships while preserving 
the unique characteristics of each modality, thereby 
enhancing diagnostic and therapeutic accuracy. The 
ultimate objective is to develop a high-performance 
AI model that supports AMD diagnosis, segmentation, 
progression prediction and prognosis, thereby assisting 
physicians in clinical practice, improving treatment 
efficacy, optimising management and reducing their 
workload.
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