Skip to main content
. 2024 Nov 13;9(1):e001903. doi: 10.1136/bmjophth-2024-001903

Table 2. A summary of the research on segmentation in the article.

Reference Method Optimisation strategy Images (n) Disease Segmentation type Performance
Mishra et al50 U-Net Shortest path algorithm 1343 AMD DursenRPD11 layers of retina Drusen: average difference between automatic and manual segmentation 0.75±1.99 pixelsRPD: average difference between automatic and manual segmentation 0.41±1.97 pixels
Lu et al51 Deep learning Binary map 29 Non-exudative AMD Calcified drusen DSC 68.27±11.09%
Ji et al52 Deep learning Stochastic gradient descent 105 Non-exudative AMD GA Dataset 1: mean OR 86.94%, AAD 11.49%, CC 0.9857Dataset 2: mean OR 81.66%, AAD 8.30%, CC 0.9952
Elsawy et al53 Deep-GA-Net 3D loss-based attention layer 1284 AMD GA Accuracy 93%
Fernández54 GVF Snake algorithm Multiscale edge detection scheme 7 Wet AMD SRFIRFPED Similar to clinical experts
Rashno et al55 GCKGC Transform OCT scans to neutrosophic domain and cost functions 796 AMD SRFIRFPED GC: dice coefficient 76.10%, sensitivity 80.54%, precision 90.34%KGC: dice coefficient 70.97%, sensitivity 86.40%, precision 77.17%
Moraes et al56 Deep learning NA 2966 Wet AMD Neurosensory RetinaRPEIRFSRFSHRMHyper-reflective fociDrusenFibrovascular PEDSerous PED SRF: accuracy 90.3%IRF: accuracy 72.7%
Xie et al57 U-NetDDP Smoothness constraints and loss functions 384 AMDNormal Inner limiting membraneInner retinal pigment epithelium-drusen complexThe outer aspect of the Bruch membrane Mean absolute surface distance±standard deviation (µm): 1.88±1.96
Pawloff et al58 Deep learning End to end 41 147 Wet AMD IRFSRF HAWK: AUC of 85% for IRF and 87% for SRF in the central millimetreHARRIER: AUC of 93% for IRF and 87% for SRF in the central millimetre
Prabha et al59 AR U-Net++ Attention blocks and residual blocks 2272 Wet AMD ILMIPLRPEBMIRFSRFPED Accuracy 99.67%Mean IoU 84%Dice coefficient 94%
Feng et al60 U-Net ResNeSt block and pyramid pooling module 116 Wet AMD CNV AUC 94.76%Specificity 99.5%Sensitivity 72.71%

AADabsolute area differenceAMDage-related macular degenerationARattention residualAUCarea under curveBMBruch’s membraneCCcorrelation coefficientCNVchoroidal neovascularization3Dthree-dimensionalDDPdistribute data parallelDSCdice similarity coefficientGAgeographic atrophyGCgraph cut GVFgradient vector flowILMinternal limiting membraneIoUintersection over unionIPLinner plexiform layerIRFintraretinal fluidKGCkernel graph cutOCToptical coherence tomographyORoverlap ratioPEDpigment epithelial detachmentRPDreticular pseudodrusenRPEretinal pigment epitheliumSHRMSubretinal hyperreflective materialSRFsubretinal fluid