Table 2. A summary of the research on segmentation in the article.
| Reference | Method | Optimisation strategy | Images (n) | Disease | Segmentation type | Performance |
| Mishra et al50 | U-Net | Shortest path algorithm | 1343 | AMD | DursenRPD11 layers of retina | Drusen: average difference between automatic and manual segmentation 0.75±1.99 pixelsRPD: average difference between automatic and manual segmentation 0.41±1.97 pixels |
| Lu et al51 | Deep learning | Binary map | 29 | Non-exudative AMD | Calcified drusen | DSC 68.27±11.09% |
| Ji et al52 | Deep learning | Stochastic gradient descent | 105 | Non-exudative AMD | GA | Dataset 1: mean OR 86.94%, AAD 11.49%, CC 0.9857Dataset 2: mean OR 81.66%, AAD 8.30%, CC 0.9952 |
| Elsawy et al53 | Deep-GA-Net | 3D loss-based attention layer | 1284 | AMD | GA | Accuracy 93% |
| Fernández54 | GVF Snake algorithm | Multiscale edge detection scheme | 7 | Wet AMD | SRFIRFPED | Similar to clinical experts |
| Rashno et al55 | GCKGC | Transform OCT scans to neutrosophic domain and cost functions | 796 | AMD | SRFIRFPED | GC: dice coefficient 76.10%, sensitivity 80.54%, precision 90.34%KGC: dice coefficient 70.97%, sensitivity 86.40%, precision 77.17% |
| Moraes et al56 | Deep learning | NA | 2966 | Wet AMD | Neurosensory RetinaRPEIRFSRFSHRMHyper-reflective fociDrusenFibrovascular PEDSerous PED | SRF: accuracy 90.3%IRF: accuracy 72.7% |
| Xie et al57 | U-NetDDP | Smoothness constraints and loss functions | 384 | AMDNormal | Inner limiting membraneInner retinal pigment epithelium-drusen complexThe outer aspect of the Bruch membrane | Mean absolute surface distance±standard deviation (µm): 1.88±1.96 |
| Pawloff et al58 | Deep learning | End to end | 41 147 | Wet AMD | IRFSRF | HAWK: AUC of 85% for IRF and 87% for SRF in the central millimetreHARRIER: AUC of 93% for IRF and 87% for SRF in the central millimetre |
| Prabha et al59 | AR U-Net++ | Attention blocks and residual blocks | 2272 | Wet AMD | ILMIPLRPEBMIRFSRFPED | Accuracy 99.67%Mean IoU 84%Dice coefficient 94% |
| Feng et al60 | U-Net | ResNeSt block and pyramid pooling module | 116 | Wet AMD | CNV | AUC 94.76%Specificity 99.5%Sensitivity 72.71% |
AADabsolute area differenceAMDage-related macular degenerationARattention residualAUCarea under curveBMBruch’s membraneCCcorrelation coefficientCNVchoroidal neovascularization3Dthree-dimensionalDDPdistribute data parallelDSCdice similarity coefficientGAgeographic atrophyGCgraph cut GVFgradient vector flowILMinternal limiting membraneIoUintersection over unionIPLinner plexiform layerIRFintraretinal fluidKGCkernel graph cutOCToptical coherence tomographyORoverlap ratioPEDpigment epithelial detachmentRPDreticular pseudodrusenRPEretinal pigment epitheliumSHRMSubretinal hyperreflective materialSRFsubretinal fluid