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ABSTRACT: Adhesive contact phenomena play a crucial role in
various scientific and engineering fields. However, considering
viscoelasticity, which is essential for understanding practical
applications involving soft materials like polymers, makes analysis
challenging. Traditional elastic contact models such as the
Johnson−Kendall−Roberts and Maugis−Dugdale models often
fail to account for viscoelastic behavior. In this study, rate-
dependent viscoelastic adhesive contacts were analyzed using
atomic force microscopy force−distance curve measurements,
comparing the elastic models with the viscoelastic model proposed
by Barthel. The force curve analysis, conducted with the Barthel
model for the first time, reveals that viscoelastic behaviors inside the contact area and the interaction zone both affect the contact
state. These viscoelastic behaviors result in phenomena specific to viscoelastic contact, such as the “stick region” and the apparent
work of adhesion. The Barthel model successfully captures the rate dependence of the contact situation, promoting a comprehensive
understanding of viscoelastic adhesive contact phenomena.

■ INTRODUCTION
The contact phenomena are involved in many areas of science
and engineering, but of particular interest are those
accompanying adhesion.1−5 Adhesion is especially noticeable
at microscopic scales where the surface-to-bulk ratio is large
and attractive surface forces become non-negligible. Therefore,
further understanding of adhesive contact requires both
theoretical and experimental investigation of microscopic
contact, given that macroscopic contact can be considered to
consist of numerous microscopic asperities.
Such microscale contact phenomena can be experimentally

studied using instruments like the surface force apparatus6,7 or
the atomic force microscope (AFM).8,9 AFM is often
employed to gain a detailed understanding of nanoscale
contact.9−16 Force−distance curve measurements, in particular,
are commonly used to easily obtain the load and penetration
within microscopic, possibly single asperity, contacts.11−13

Since the contact radius in AFM is too small to be directly
measured, it must be estimated by analyzing the measured data
with some contact mechanics models for the single asperity
contact problem.
The effect of adhesion on the contact model depends on the

degree of additional deformation caused by the adhesion force,
which is influenced not only by the strength of the adhesion
force but also by the size and softness of the bodies involved in
the contact. If the deformation caused by the adhesion force is
small�i.e., the adhesion force is weak, the contact radius is
large, and the body is stiff�such contact is usually explained
by the Derjaguin−Muller−Toporov (DMT) model.17 Con-

versely, if the deformation caused by the adhesion force is
large�i.e., the adhesion force is strong, the contact radius is
small, and the body is compliant�such contact is often
represented by the Johnson−Kendall−Roberts (JKR) model.18
These are both extreme models of adhesive contact, and actual
contact is positioned in an intermediate state between these
models. This intermediate situation (the JKR−DMT tran-
sition) was first described in a unified manner by Tabor,19 after
which Maugis proposed an analytical model [the Maugis−
Dugdale (MD) model].20 The double-Hertz model has also
been proposed by Greenwood and Johnson as a model that
can represent the JKR−DMT transition.21 The difference
between these models lies in how they consider the region
where the adhesion force acts, often called the interaction
zone.
Unfortunately, since these contact models have all started

with the Hertz model,22 which deals with elastic materials, they
cannot explain cases involving viscoelastic soft materials such
as polymers. In the case of viscoelastic contact, the softness
that determines the contact changes with the time scale over
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which the contact occurs, making the contact phenomenon
rate-dependent and difficult to handle.
Some attempts have been made to explain this rate

dependency by incorporating the idea of fracture mechan-
ics.23−27 Maugis and Barquins, for example, have shown that
the apparent work of adhesion, i.e., the energy required to
move the contact line, exhibits rate dependence in the case of
viscoelastic materials.23 Greenwood theoretically explained this
behavior by considering rate-dependent contact edge
shapes,24−26 based on earlier results provided by Schapery.27

These attempts suggest that the key to explaining such rate-
dependent contacts is to take into account the viscoelastic
behavior near the contact line, i.e., in the interaction zone,
within the contact model.
In this regard, several contact models have attempted to

represent viscoelastic contact by separating the interaction
zone and the rest of the region (i.e., bulk scale).24,28−35 In
those models, the contact process at the bulk scale is
considered slow enough compared to the relaxation of the
viscoelastic materials and is therefore represented with elastic
models under a fully relaxed state, while that in the interaction
zone is considered to occur more instantaneously and is
expressed with a rate-dependent under-relaxed state. In the
sense that the viscoelastic rate dependence is attributed only to
the interaction zone, such models can be described as “quasi-
viscoelastic” contact models. A more direct model for
viscoelastic contact has been proposed by Barthel et al.36−38

They expressed the rate dependence of the adhesive
viscoelastic contact by extending the definitive solution of
the viscoelastic contact without adhesion proposed by Ting,39

using the interaction zone based on the double-Hertz model.
There are also attempts to represent viscoelastic contact using
the finite element method, though it is more complex and
difficult to handle.40,41

Studies on the theoretical side have been conducted in this
way; however, attempts to link these theories to actual
experimental data are still lacking, especially for the viscoelastic
adhesive contact. There have been several studies of “quasi-
viscoelastic” contact models that have been compared to
experiments,32−35 but there are no such examples of more
direct viscoelastic contact models like the Barthel model,
perhaps due to its complex representation.
In this article, viscoelastic adhesive contacts were inves-

tigated using AFM force−distance curve measurements. These
were analyzed with the viscoelastic Barthel model and then
compared with results based on the elastic contact models,
specifically, the JKR and MD models. To the best of our
knowledge, force curve analysis using the Barthel model has
been performed for the first time, enabling a unified discussion
of the rate dependence of contact behavior in both loading and
unloading processes from experimental and theoretical
perspectives. For measurements at sufficiently slow ramp
rates, an elastic force curve where the loading and unloading
curves overlapped was obtained, and the contact radii
estimated by the elastic models and the Barthel model agreed
well. This indicates that such contact can be explained in a fully
relaxed state, and at the same time suggests that the analysis
using the Barthel model can also handle the elastic contact. As
the ramp rate increased, hysteresis of the force curve due to
viscoelastic losses was observed, and the contact radius
estimated from the Barthel model differed from that of the
elastic models, implying that the contact can no longer be
considered to be occurring in the fully relaxed state. The

Barthel model allows for the representation of the peculiar
behavior of viscoelastic contact, for example, the stick region.
Further analysis suggested that deviations from the elastic
model at high rates can be explained by viscoelastic behavior
near and inside the contact line, and the subsequent apparent
work of adhesion.

■ THEORY
Adhesionless Elastic Contact. The concept of elastic

contact without adhesion was first formulated by Hertz,22 and
later generalized for arbitrary bodies by Sneddon.42 Sneddon’s
analytical equations for the applied load P and the penetration
δ can be expressed as follows
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The equations include a, the contact radius; f(x), the
expression of the indenter shape; and E*, the reduced
modulus. The reduced modulus is defined as E* ≡ E/(1 −
ν2), where E and ν are the Young’s modulus and the Poisson’s
ratio, respectively. Equation 2 indicates that the penetration is
geometrically determined from the indenter shape and the
contact radius. The integrand in eq 1 can be related to the
penetration by the following relation
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where δ0(r) can be interpreted as the Hertz-like penetration
when the contact radius is r. Therefore, eq 1 can be
transformed using eq 3 as follows
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The first term represents the load required to push in δS
under a constant contact radius a (i.e., the applied force for flat
punch contact), and the second term accounts for the excess
force considered due to the difference between the flat punch
shape and the actual indenter shape.
The well-known Hertz’s solution can be derived by

considering a parabolic indenter whose apex curvature radius
is R in Sneddon’s expression. In this case, δ0(r) = r2/R, then

=
*
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2

(5)

Adhesive Elastic Contact. As already mentioned, there
are two fundamental theories for adhesive elastic contact: the
DMT model17 and the JKR model.18

The DMT model assumes that adhesion does not affect the
deformation of the sample, i.e., the Hertzian deformation is
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maintained, though the load due to the adhesion force is added
to the applied force. Therefore, eq 5 is left as it is, and eq 4 is
modified as follows, using the work of adhesion w

=
*

P
E a

R
wR

4
3

2DMT

3

(6)

The 2πwR term that is added to eq 4 represents the effect of
the adhesion force.
In contrast, the JKR model accounts for additional sample

deformation caused by adhesion by considering the energy
balance between the change in mechanical energy associated
with the deformation exerted by the adhesion and the surface
energy derived from that adhesion. The resulting applied load
and penetration are then specified as follows
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There was a controversy since these models yielded different
results for the same system, until Tabor explained that these
two models represented both extremes of the contact
condition, varying in scale and softness.19 Tabor introduced
a parameter known as Tabor’s parameter
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where z0 is the equilibrium separation of the surface. The
DMT model is effective in the limit of μ ≪ 1 (i.e., for small R
and large E*) while the JKR model is effective in the limit of μ
≫ 1 (i.e., for large R and small E*). The actual adhesive elastic
contact occurs at an intermediate state between these models.
In this context, Maugis proposed the MD model,20 which

described the JKR−DMT transition by introducing the step-
shaped Dugdale potential43 to represent the adhesion force
distribution near the contact line. The MD model consists of
following four equations. Using normalized values,
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The introduced parameter λ is equivalent to Tabor’s
parameter (λ ≈ 1.16 μ)44 and determines the JKR−DMT
transition state. Since σ0 is a positive value representing the
maximum adhesive stress predicted by the Lennard-Jones
potential (σ0 ≈ 1.03w/z0), eqs 9 and 10 have almost the same

physical meaning. Under the Dugdale potential, the adhesive
stress acts only within a region in the vicinity of the contact
line, a ≤ r ≤ c, and is considered to take a constant value σ0.
The region where the adhesion force acts is often referred to as
the interaction zone. Maugis incorporates this interaction zone
into the contact model via m defined as m ≡ c/a. This simple
treatment of the interaction zone enables the JKR−DMT
transition to be expressed analytically.
Greenwood et al. also proposed the double-Hertz model21

which serves as an alternative to the MD model. Unlike the
MD model, which utilizes the Dugdale potential with a
constant adhesive stress region, the double-Hertz model
considers its interaction zone by assuming the adhesive stress
distribution, σ(r), within the interaction zone to be ellipsoidal
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If c ≤ r, then σ(r) = 0. Consequently, the penetration and
the applied load can be expressed as follows
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The value of c can be determined using the following
equation, which incorporates Tabor’s parameter
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here, * *a a E R w( / )2 1/3 is represented in a normalized form.
It should be noted that eq 17 is similar to eq 13. The results
obtained by the double-Hertz model can handle the JKR−
DMT transition as effectively as the MD model. However, it is
important to point out that the results of the double-Hertz
model are expressed using only elementary functions as in eqs
15−17, making them easier to handle compared to the MD
model, which utilizes elliptic functions as in eqs 11−13.
From both the MD model and the double-Hertz model, one

can derive the DMT and the JKR models as the respective
limits of the interaction zone size. The DMT model results
when the interaction zone is sufficiently wide relative to the
contact area, while the JKR model emerges when the zone is
localized at the contact line. In the MD model, eqs 11 and 12
simplify to the DMT model (eqs 5 and 6) as λ → 0, and to the
JKR model (eqs 7 and 8) as λ → ∞. In the double-Hertz
model, the JKR−DMT transition is directly controlled by c,
which in turn is determined by μ.
The representation of the interaction zone is crucial when

addressing viscoelastic contact. For instance, in the JKR model,
the localization of the interaction zone at the contact line
implies that the adhesion force diverges at that point, a
scenario that is unrealistic in practical situations. Furthermore,
regardless of how slowly the contact condition progresses, only
instantaneous deformation is considered at the contact line,
precluding any discussion of rate-dependence. Both the MD
model and the double-Hertz model address this by considering
a finite interaction zone, thereby preventing the divergence of
the adhesion force. However, since these models do not
account for rate dependency, they still struggle with handling
viscoelastic contact effectively. Consequently, to accurately
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represent viscoelastic contact, contact models that consider
both the interaction zone and its rate dependence are essential.
Many force curve analyses still use simple elastic contact

models, even when viscoelasticity cannot be ignored during
AFM measurements. This paper focuses on this issue and aims
to clarify the difference between cases where viscoelastic
contact is deliberately analyzed using the elastic contact
models and cases where the viscoelastic contact model is used
correctly. The JKR and the MD model were used as the elastic
contact models, and the details of the analytical approaches are
described in Supporting Information.
Adhesionless Viscoelastic Contact. For the adhesionless

case, a definitive solution for viscoelastic contact has been
presented by Ting,39 based on an extension of Sneddon’s
elastic solutions. Considering a single cycle of loading−
unloading process, the applied load during both loading and
unloading phases can be expressed as follows

=P t t r r( ) 4 ( )
d

d
( ( ( ) ( ))d )d

t a

0 0

( )

S 0

(18)

here, ψ(t) represents the relaxation function of the viscoelastic
material. This expression models the viscoelastic contact as a
convolution of Sneddon’s solution (referenced in eq 1′) under
an elastic modulus that relaxes over time since the force was
first applied at each position.
Ting’s approach can indeed be extended to more complex

loading−unloading histories. However, no examples could be
found where this approach is applied directly to force curve
analysis. Regarding the loading phase, Johnson proposed a
simpler model,45 which has been employed in AFM force curve
analyses.46,47

Adhesive Viscoelastic Contact. As mentioned earlier, for
the adhesive case, the key is the treatment of the interaction
zone and its rate dependence. A simple approach is to divide
the contact region into the interaction zone and the remaining
bulk region. Given that the contact process is sufficiently
slower than the viscoelastic relaxation process, the bulk contact
can be expressed using elastic contact models under fully
relaxed properties. This is not the case for the interaction zone.
Drawing an analogy with fracture mechanics, it is expected that
the stress and deformation in the vicinity of the contact line
exhibit steep changes, even if the contact process is sufficiently
slow. Therefore, the interaction zone is considered to be in a
rate-dependent, under-relaxed state rather than a fully relaxed
state. Based on this idea, some models attempt to describe
adhesive viscoelastic contact by attributing the rate depend-
ence solely to the interaction zone.24,28−35 In a sense, such
models could be called “quasi-viscoelastic” models. Some
studies have described the rate dependence of the contact
using “quasi-viscoelastic” models and compared these with
experimental data.32−35 However, those studies focused only
on the rate dependence of the unloading process, and none
have been analyzed loading and unloading together in a unified
manner. Furthermore, it should be noted that these studies
assumed the unloading process started from a fully relaxed
state. This assumption does not always hold, depending on the
loading−unloading history, which limits the application of the
“quasi-viscoelastic” models in real cases. More importantly, the
assumption that the bulk contact can be represented in a fully
relaxed state also needs careful consideration to determine its
validity.

For the concerns mentioned above, models that consider the
relaxation state at all points involved in the contact is desirable,
rather than considering the relaxation state in the interaction
zone and the bulk region separately. One such model is the
one proposed by Barthel et al.36−38

The Barthel model extends Ting’s solution to the adhesive
case by combining it with the double-Hertz model to represent
the interaction zone. Here, an approximate model for the
situation where the interaction zone is sufficiently small
compared to the contact radius is described.37 In this model,
the mechanical equilibrium equation relating stress and
deformation reduces to an equation linking the applied load,
the penetration, and the contact radius as follows
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0 0
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Note that this equation has almost the same form as eq 18,
but δ(τ) in eq 19 is differs from δS in eq 18 due to the effects of
the adhesion force, and the integral range for r is different.
Additionally, to avoid discrepancies between the adhesive

stress distribution given by the double-Hertz model (eq 14)
and the contact edge shape inside the interaction zone, the
following self-consistency equations are introduced
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where eqs 20 is for loading, while eq 21 is for unloading. ε(t) ≡
c(t) − a(t) is the interaction zone width based on the double-
Hertz model, and tr(t) ≡ ε(t)/|da(t)/dt| is the dwell time
representing the time required for the contact line to pass
through the interaction zone. Since _ t( )eff load r and _ t( )eff unload r

are moments of the creep compliance governed by tr, they
represent the effective creep compliance dominating the
behavior inside the interaction zone. Note that eq 19 relates
to the interior of the contact area, whereas the self-consistency
(eqs 20 and 21) relate to the interaction zone outside the
contact area.
To avoid discontinuities or conflicts in the contact state

inside and outside the contact area, these equations must be
connected by the coupling equations as follows, using the
auxiliary function g(a(t),t) determined by a given time t and
the contact line position a(t) at that time

=
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t− denotes the time when the position a(t) first entered inside
the contact area. g(a(t),t) is defined as a suitable transform of
the normal surface stress, as follows

=
+

g a t t
r r

r a
r( ( ), )

( )
d

a 2 2 (24)

Equation 22 is derived from the equilibrium equation and
the self-consistency equation. Qualitatively, both the adhesive
stress inside the interaction zone (the first term on the right-
hand side) and the stress inside the contact area (the second
term on the right-hand side) are superimposed based on the
history up to the time of interest. Equation 23 comes from the
double-Hertz model, which can be easily obtained by
substituting the adhesive stress distribution of the double-
Hertz model (eq 14) into eq 24. For eq 19 and the self-
consistency equations to be coupled, eqs 22 and 23 must
match via g(a(t),t).
The Barthel model can express the viscoelastic adhesive

contact more directly because it does not treat the bulk and the
interaction zone independently as in the “quasi-viscoelastic”
models. However, perhaps due to the complexity of the model,
it has not been used for real data analysis. In this article, the
Barthel model, which is difficult to handle, was applied to force
curve analysis for the first time by combining inductive
computation and optimization methods. Detailed procedures
are described in the Supporting Information.

■ EXPERIMENTAL SECTION
Materials. Polydimethylsiloxane (PDMS) was mainly used to

evaluate the effect of viscoelasticity on the contact in various contact
models. The PDMS sample was prepared by mixing primer (KE-106,
Shin-Etsu Chemical, Tokyo) and cross-linker (CAT-RG, Shin-Etsu
Chemical, Tokyo) at a ratio of 10:1, defoaming, pouring into a mold,
and heating at 75 °C for 1 h and 150 °C for 30 min. Its Tg and tan δ,
measured with an AR2000ex rotational rheometer (TA Instruments,
New Castle DE), were −125 °C and 0.02 at 20 °C at 1 Hz,
respectively, suggesting that the viscoelasticity of the PDMS was
insignificant.
Styrene−butadiene rubber (SBR) provided by Yokohama Rubber

(Kanagawa) was also used as a sample with higher viscoelasticity. The
Tg and tan δ of the SBR were −35 °C and 0.36, respectively,
indicating that it exhibits greater viscoelasticity than the PDMS.
For the AFM measurements, these samples were cut at −120 °C

with an ultramicrotome (EM UC6, Leica Microsystems, Wetzlar).
Force−Distance Curve Measurements. The force−distance

curve measurement of AFM can easily obtain the relationship
between the applied load P and the penetration δ (i.e., the force
curve) for the microscopic contact. What is obtained during the actual
measurement is the deflection of the cantilever d and the z-position of
the scanner z. The applied load is calculated as P = kd using the spring
constant k calibrated in advance, and the penetration is calculated as δ
= z − d. Figure 1 shows a typical force curve for a sample with
adhesion. As the cantilever tip approaches the sample surface, a jump-
in behavior occurs at a certain area (point A′ ∼ A), followed by the tip
being pushed into the sample to reach the maximum load point (point
B). The cantilever is then retracted from this point until a jump-out
behavior occurs after some negative deformation δC due to the effect
of adhesion force (point C). Since the contact radius and the
mechanical properties cannot be measured directly, it is necessary to
analyze the force curve with contact mechanics to estimate these
values.
It is important to note that in the case of a force curve like in Figure

1, its viscoelasticity is already non-negligible, because if the contact
were perfectly elastic, the loading and unloading curves would overlap
completely. The difference between the two curves when they do not
overlap corresponds to the viscoelastic loss.33 Although such

viscoelastic loss behavior is frequently observed, it is common
practice to use elastic contact models even for such curves. Therefore,
it is necessary to deepen our understanding in this aspect by
comparing the analysis based on elastic contact models with those
based on viscoelastic contact models.
The difficulty here is how to handle the zero-point of the

penetration, i.e., when the tip makes contact with the surface. The
jump-in behavior starts where the gradient of the attractive force
acting between the surface and the tip exceeds the spring constant of
the cantilever.48,49 If the long-range attractive force is negligible, the
tip makes contact at point A′, thus this point is regarded as the zero-
point. The tip is then pulled in by adhesive interaction to reach point
A. However, since the attractive force is not always negligible, the
cantilever starts bending before making the contact, thus the tip
actually makes contact somewhere between point A′ and A.
Furthermore, it is also a question of whether the moment of contact
can be regarded as δ = 0, as the sample surface can be negatively
deformed by the attractive force. The validity of the zero-point cannot
be discussed in usual elastic contact models, so in many cases, it is
common to consider point A′ or A as δ = 0, or to take an approach
that does not depend on the δ = 0 point.48,50 Point A will be referred
to as the “jump-in point” throughout this paper; however, note that
this point is not necessarily the zero-point of penetration. The
introduction of the Barthel model may provide a different approach to
this issue, which will be discussed later.
AFM Measurements. All AFM data were obtained using a

Dimension ICON with a NanoScope VI controller (Bruker Nano
Surface, Santa Barbara, CA) at room temperature and humidity
(about 20 °C, 25%). Note that it has been pointed out that the effect
of humidity on the force curve (i.e., capillary force) can be neglected
in the case of hydrophobic polymers.51 The Dimension ICON has a
closed-loop scanner that allows precise determination of the scanner’s
z-position during force curve measurements, making it suitable for
accurate discussion of contact conditions. An LRCH 500 silicon
cantilever (Team Nanotec, Villingen-Schwenningen) with a spring
constant of 5.01 N/m (calibrated with the thermal fluctuation
method52) and a tip radius of 625 nm (obtained from the SEM
images provided by the manufacturer) was used.
To investigate the viscoelastic rate dependence of each sample,

force curves were measured at various ramp rates (10, 30, 301, 3050,
and 9770 nm/s). Each force curve was obtained at a random point on
the sample surface. Since there was almost no dependence on the
measurement point for the force curves, it can be said that the
measurements were performed stably and that the sample surfaces
were sufficiently uniform.

■ RESULTS
Force Curve Measurements. The force curves of the

PDMS and the SBR measured by varying ramp rates are shown
in Figure 2a,b, respectively. The zero-point of the penetration
is taken here at point A for now.

Figure 1. A schematic diagram of the force curve.
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For the PDMS, its loading and unloading curves overlapped
at lower ramp rates, indicating that the force curves obtained
can be regarded as fully relaxed elastic curves. At higher ramp
rates, on the other hand, those curves did not overlap,
suggesting that the viscoelasticity is not negligible, even for the
PDMS with a fairly small tan δ of 0.02. The pull-off force PC at
point C was negatively large at higher rates and gradually
converged to a constant value at lower rates. This tendency is
consistent with the rate dependence of the apparent work of
adhesion discussed by Greenwood based on the standard linear
solid (SLS) model.24−26 A rate dependence was also observed
in the load PA at point A. This indicates that the degree to
which the tip is pulled into the sample at jump-in varies with
the time scale of the measurement; i.e., the higher the rate, the
more imperfect the tip is pulled in due to the viscoelastic effect.
It has been pointed out that in the loading phase of the
adhesive contact, it takes a considerably long time to reach
equilibrium, even for a sample that equilibrates instantaneously
in a bulk mechanical measurement.53,54 This is assumed to be
because sufficient time is needed for the cantilever tip and
elastomer surface to achieve a complete equilibrium adhesion
interface when even microscopic roughness is taken into
account. The rate dependence of the jump-in observed here
may reflect this point of view.
For the SBR, its behavior was more complex than the

PDMS. First, its loading and unloading curves did not overlap
even at 10 nm/s, indicating that even in this slow rate range, a
completely relaxed elastic situation could not be obtained and
viscoelastic effects remained. Second, though its jump-in
behavior was similar to that of the PDMS, its jump-off
behavior could not be interpreted in the same way as the
PDMS. There was no convergence of PC toward lower rates as
seen in the PDMS; rather, it tended to increase negatively in
the lower rate range, i.e., it did not behave like the Greenwood
case. As mentioned above, Greenwood treated the rate
dependence of the apparent work of adhesion based on the
SLS model, whose relaxation behavior is expressed in terms of

a single relaxation time. However, since the relaxation behavior
of actual elastomers consists of multiple relaxation phenomena,
there are limitations in expressing their true relaxation with a
single relaxation time. The viscoelasticity of the PDMS and the
SBR in this experiment is assumed to be mainly due to the
glass transition. However, since the glass transition itself
cannot be explained by a single relaxation process, it is not
strictly appropriate to represent it using the SLS model. The
fact that Greenwood-like rate dependency was observed for the
PDMS but not for the SBR may suggest that the PDMS, with
its sufficiently low Tg and small viscoelasticity, approximately
follows the SLS model under the measurement conditions,
whereas the SBR, with its relatively high Tg and large
viscoelasticity, cannot be approximated by the SLS model.
Another possibility is that, as viscoelasticity increases, the effect
of microscopic roughness on the contact conditions during
loading may no longer be negligible, thereby affecting the
unloading behavior. Since it has been observed that the
adhesion of elastomers is influenced by contact time under
microscopic roughness,54 it is possible that the adhesion
energy during the unloading phase becomes larger due to a
longer contact time at a smaller ramp rate.
Such contributions of multiple relaxation phenomena or

roughness to the viscoelastic contact have not been adequately
studied. Even the viscoelastic Barthel model considered in this
paper uses the SLS model with a smooth surface, making it
inapplicable to samples showing complex viscoelastic behavior
such as the SBR. Therefore, in the following sections, the
PDMS, which exhibits simple and tractable viscoelastic
behavior, was analyzed with various contact mechanics. Of
course, the treatment of complex contact behavior involving
multiple relaxation phenomena or roughness needs further
research, which is a subject for future research.
Force Curve Analyses. In the following sections, the

contact radius, the interaction zone, and the apparent work of
adhesion during the force curve measurements of the PDMS
were analyzed from the elastic models (the JKR and the MD)

Figure 2. Rate-dependent force curves of (a) the PDMS and (b) the SBR. Blue and green lines correspond to the loading and unloading curves,
respectively. Dashed lines indicate the load at points A and C for the smallest ramp rate.
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and the viscoelastic Barthel model. Details of the fitting process
are provided in Supporting Information, and this section
focuses on the differences between models.
The Contact Radius. Figure 3a,b show the time variation

of the contact radius obtained by the Barthel model analysis of
the force curve of the PDMS at a ramp rate of 10 and 9770
nm/s, respectively. The penetration at each ramp rate is shown
in Figure 3c. The relationship between load and contact radius
for all force curve measurements (10, 30, 301, 3050, and 9770
nm/s) is summarized in Figure 3d.
As can be seen in Figure 3a, for the 10 nm/s curve, the

contact radius estimated from the Barthel model agreed well
with those from the JKR model (and thus from the MD model,
since there was little difference between the JKR and the MD
models in this case, as mentioned in Supporting Information).
Since this force curve was measured at a slow enough rate to
be handled by the elastic model in a fully relaxed state, it is
reasonable that almost the same results can be obtained when
analyzed with the Barthel model. A schematic diagram is

shown in Figure 4a. The contact situation proceeds in a fully
relaxed state, so it is the relaxed modulus E∞ that dominates.
Note that although the interaction zone is depicted large in the
figure, it is actually very small (which is why the contact radius
matches in the Barthel and JKR models). Additionally, a minor
difference was found at point A, where the Barthel model
estimates a smaller contact radius. Even with a sufficiently slow
ramp rate, there should be somewhat instantaneous tip
movement at the jump-in, so it is not surprising that the
contact radius there is smaller than expected from the elastic
model. In fact, the Barthel model may be more accurate in
estimating the contact, given that it can represent such
instantaneous behavior at the jump-in point.
In Figure 3b, for the 9770 nm/s curve, the contact radius

estimated from the Barthel model differed significantly from
those from the JKR model. First, the contact radius for the
loading was estimated to be about 10 nm smaller than in the
JKR model. This behavior seems reasonable, as the PDMS
relaxation upon contact should be insufficient as the ramp rate

Figure 3. Time variation of the contact radius for the ramp rate of (a) 10 and (b) 9770 nm/s. Thick solid yellow lines and thin dashed blue lines
represent the contact radius from the Barthel and JKR models, respectively. (c) shows the time variation of the penetration corresponding to (a,b).
(d) shows the relationship between load and contact radius under various ramp rates.

Figure 4. Schematic diagrams of contact situations. (a) shows the loading and unloading situation under a fully relaxed state. (b) and (c)
respectively show the loading and unloading situations where relaxation is in progress.
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increases. A schematic diagram is shown in Figure 4b. Under
fast ramp rates, the PDMS at the moment of contact is in the
process of relaxing, so the relaxation function takes a value
larger than E∞. Of course, the PDMS relaxes from there, but at
each moment of contact, there is a component that has not
reached fully relaxed state, so the contact radius should be
smaller than in the JKR model, in line with the penetration
being smaller. Indeed, as shown in Figure 3c, the penetration at
9770 nm/s is overall smaller than at 10 nm/s. Second, just
after the beginning of the unloading phase, a region where the
contact radius did not change much was identified, which was
not seen in the JKR analysis. This region is referred to as the
“stick region” in Barthel’s articles.36,37 It can be inferred from
Figure 3d that this sticking behavior has a rate dependency,
since the “stick region” becomes more pronounced as the rate
increases. This means that the “stick region” is due to
viscoelasticity, so it is not surprising that it does not appear in
the JKR analysis. The contact radius in unloading changed
more slowly than in the JKR model, not only in the “stick
region” but also in subsequent regions. As a result, the contact
radius estimated at point B is about 10 nm smaller than the
value estimated from the JKR model, but at point C, it is about
10 nm larger than the JKR model.
To discuss such behaviors in more detail, the components of

g(a(t),t) around the “stick region” were investigated. As
mentioned earlier, in eq 22, g(a(t),t) can be decomposed into
the first term derived from the adhesive stress inside the
interaction zone (i.e., outer term) and the second term derived
from the stress inside the contact area (i.e., inner term). Based
on this, Figure 5 shows the g(a(t),t) in the vicinity of the “stick

region”, divided into the outer term (blue line) and the inner
term (red line), with the contact radius (yellow line), for
various ramp rates. In the case of loading, the inner term is
zero since t = t− in eq 22, thus g(a(t),t) is always dominated by
the outer term, that is, the interaction zone. In the case of the
unloading, on the other hand, the inner term remains zero at
small rate, while at large rates the inner term also affects
g(a(t),t) to some extent. The inner term represents the stress
relaxation that has taken place from the moment a(t) enters
inside the contact area to the moment it moves out again. The
fact that the inner term is zero at sufficiently small rate implies
that the stress relaxation has already completed by the moment
the point a(t) enters the inside of the contact area, which
corresponds to Figure 4a. By contrast, a nonzero value of the
inner term at large rates implies that the stress relaxation is
insufficient by the moment the point a(t) enters inside the

contact area, and that the stress relaxation during the contact is
not negligible, as illustrated in Figure 4b,c. It can therefore be
suggested that the tendency of the contact radius during
loading to be smaller at higher rates, as shown in Figure 3d,
results from the fact that the inside of the contact area is in the
process of relaxation. Moreover, Barthel et al. pointed out that
the “stick region” also originates from the stress relaxation
inside the contact area during contact.36 If the unloading
process is started in an incomplete state of relaxation as in
Figure 4c, part of the applied tensile stress is canceled out by
the stress relaxation still ongoing inside the contact area, so
that the contact radius is less likely to change in response to
the applied tensile stress, i.e., the sticking behavior occurs. In
the present analysis, as shown in Figures 3d and 5, the stick
region is indeed more pronounced as the contact radius during
loading becomes smaller and the inner term becomes larger at
higher rates.
The discussion so far suggests that the viscoelastic behavior

inside the contact area does contribute to the rate dependence
of the contact state. Consequently, it is not appropriate to
assume that the interior of the contact area is in a completely
relaxed state, as in the “quasi-viscoelastic” models, at least in
systems like the present one where the loading process affects
the unloading process. Meanwhile, it has been pointed out that
the interaction zone also contributes to the rate dependency in
many papers. Therefore, the rate dependence of the interaction
zone is examined in the following section.
The Interaction Zone and the Apparent Work of

Adhesion. The interaction zone is described by its width ε(t)
and the dwell time tr(t), as mentioned earlier. Figure 6a,b show

these values against the moving velocity of the contact line (|
da(t)/dt|, referred to as the crack velocity), respectively. Note
that these values can be obtained at each time of each force
curve, so their average values are plotted. The interaction zone
width was almost constant regardless of the crack velocity
during loading, whereas it tended to become slightly wider
with increasing the crack velocity during unloading. In
response to this, the dwell time was slightly smaller for loading
at higher crack velocities.
The rate dependence of the interaction zone width has an

inseparable relationship with the crack shape in the vicinity of
the contact line.24−27 The mechanical properties near the
contact line and the creep deformation that occurs there
determine this relationship. In the case of loading, the creep
deformation near the contact line directly infulences the crack
shape (Figure 4b). Therefore, it is both the mechanical

Figure 5. Components of g(a(t),t) in the vicinity of the “stick region”
for various ramp rates. The red and blue lines represent components
originating from the contact area and the interaction zone,
respectively. The yellow lines represent the contact radius.

Figure 6. Crack velocity dependence of (a) the interaction zone width
and (b) the dwell time.
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properties and the creep behavior near the contact line that
contribute to the interaction zone. In the case of unloading, the
creep deformation near the contact line is also present but does
not affect the interaction zone, as the creeping region almost
immediately goes outside the interaction zone (Figure 4c).
Therefore, it is only the mechanical properties near the contact
line that define the interaction zone during unloading. This
difference is considered to be reflected in the difference
between loading and unloading in Figure 6a.
The apparent work of adhesion can also be discussed from

this point on. It has been shown that the apparent work of
adhesion based on the Barthel model can be expressed as
follows.38 For loading, the energy required to increase the
contact radius is apparently reduced because the creep
deformation that occurs in the vicinity of the contact line
has the effect of increasing the contact area (Figure 4b). By
incorporating such creep deformation effects, the following
equation can be obtained.
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Gload(t) is the apparent work of adhesion for loading at t, ε∞(t)
is the interaction zone width under fully relaxed modulus, and
ϕ0(tr(t)) is a moment of the creep compliance that links the
apparent work of adhesion to the creep deformation in the
vicinity of the contact line. Given that the interaction zone was
almost unchanged during loading in Figure 6a, it can be said
that the creep deformation component ϕ0(tr(t)) is the main
cause of the change in the apparent work of adhesion in the
present system. For the unloading, creep deformation has no
effect on the reduction of the contact radius as described
above. What does affect is the interaction zone dominated by
the mechanical properties near the contact line. If the
deformation near the contact line is more instantaneous and
the relaxation there is insufficient (i.e., behaves stiffly), the
contact state can be said to shift in the DMT direction in the
JKR−DMT transition. Thus, it widens the interaction zone
(Figures 4c and 6a) and increases the apparent work of
adhesion. That is
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The apparent work of adhesion was calculated based on eqs
25 and 26, and plotted against the crack velocity as shown in
Figure 7. An increase in the apparent work of adhesion at
unloading and a decrease at loading with increasing the crack
velocity can be observed. Therefore, the apparent work of
adhesion also has an effect on the rate dependence of the
contact state in the present force curves, together with the
viscoelastic behavior inside the contact area discussed earlier.
Note that, the crack velocity dependence of the work of
adhesion obtained from the JKR model for unloading was
estimated to be about 5% larger than that of the Barthel model.
This means that even if the apparent work of adhesion is
obtained from the unloading curve which appears to be able to
be fitted with the JKR model successfully, it may deviate from
the accurate apparent work of adhesion.

Greenwood has numerically calculated the rate dependence
of the apparent work of adhesion for both loading and
unloading, and proposed approximate equations.25,26 In these
equations, the apparent work of adhesion under the SLS model
with a relaxation time T is represented via the interaction zone
width. Based on this, the rate dependence of the apparent work
of adhesion obtained by Greenwood’s method with T = 1.5 ×
10−6 s and T = 1.0 × 10−7 s was calculated and displayed in
Figure 7 (red and blue dashed lines). The slope of the crack
velocity dependence obtained from the Greenwood model was
steeper than the present Barthel analysis results. When T is
changed, the graph shifted along the velocity axis, but the slope
did not change and therefor did not agree with the results of
the Barthel analysis. The slope in the Greenwood model is
dominated by the SLS model used, which means that the same
slope will be obtained under the same SLS model. The fact
that the rate dependence of the apparent work of adhesion
obtained from the Barthel analysis is gentler than that from the
Greenwood model may indicate the limitations of expressing
the rate dependence of contact based on the SLS model. As
mentioned in Supporting Information, the Barthel analysis in
this study is implemented by representing viscoelasticity using
the SLS model, with its relaxation time is optimized for each
force curve. In this context, introducing viscoelastic models
that are more representative of real elastomer behavior, such as
the Prony approximation or fractional viscoelastic models,55

into the Barthel model could be of interest for future studies.
It is also suggested in Figure 7 that the force curve

measurements carried out in this study were in the very low
velocity range. Greenwood noted that the above approximate
equations tend to overestimate the slope of the velocity
dependence in the very low velocity range. It has been pointed
out that the Barthel model can better represent the velocity
dependence in such a very low velocity range.38 Therefore, this
perspective could also be the reason for the deviation from the
Greenwood model and the Barthel analysis results. Analysis of
force curves acquired at higher ramp rate may provide a better
understanding of this aspect.

■ CONCLUSION
The force curves of the elastomers measured by AFM were
analyzed using the Barthel model and compared with the

Figure 7. Crack velocity dependence of the apparent work of
adhesion estimated from the Barthel (triangles) and JKR models
(circles). The dashed lines represent the Greenwood approximation.
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results from the elastic JKR and MD models. The PDMS force
curves showed elastic behavior at very low ramp rates, but as
the ramp rate increased, viscoelasticity became non-negligible,
and analysis with the elastic contact model was no longer
appropriate, necessitating analysis with the Barthel model,
which takes viscoelasticity into account. Even in the analysis of
elastic force curves, the Barthel analysis may be more accurate
regarding the jump-in point, which actually behaves instanta-
neously.
The analysis via g(a(t),t) suggested that viscoelastic

behavior, both inside the contact area and the interaction
zone, influences the contact state at higher ramp rates. In
conventional studies dealing with viscoelastic contact, it is
often assumed that the interior of the contact area is in a
perfectly relaxed state, but the present analysis shows that this
assumption is not always true. The viscoelastic behavior inside
the contact area affected the reduction of the contact radius
during loading and the formation of a “stick region” during
unloading, while the viscoelastic behavior inside the interaction
zone affected the apparent work of adhesion during loading
and unloading. It can now be said that the “stick region” and
the apparent work of adhesion in actual force curves can be
quantitatively analyzed using the Barthel analysis.
In implementing the Barthel model, the viscoelasticity was

represented by the SLS model based on a single relaxation
time. However, as the actual elastomer behavior is explained by
multiple relaxation times, there may be limitations in
representing contact based on the SLS model. Indeed, while
the contact state of the PDMS was successfully analyzed in this
study, the contact state of the SBR was more complex and has
not been analyzed yet. Therefore, it is a subject for future work
to analyze complex viscoelastic contacts by introducing more
realistic viscoelastic models that are even closer to practical
elastomers or by considering microscopic roughness. Beyond
these topics, potential applications include the analysis of the
mechanical properties of polymer blends and nanocomposites.
To achieve this, further improvements in lateral resolution
using smaller AFM tips will also be an important focus for
future research.
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