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Abstract 

The spectrum of synucleinopathies, including Parkinson’s disease (PD), multiple system atrophy (MSA), and dementia 
with Lewy bodies (DLB), is characterized by α-synuclein (αSyn) pathology, which serves as the definitive diagnostic 
marker. However, current diagnostic methods primarily rely on motor symptoms that manifest years after the initial 
neuropathological changes, thereby delaying potential treatment. The symptomatic overlap between PD and MSA 
further complicates the diagnosis, highlighting the need for precise and differential diagnostic methods for these 
overlapping neurodegenerative diseases. αSyn misfolding and aggregation occur before clinical symptoms appear, 
suggesting that detection of pathological αSyn could enable early molecular diagnosis of synucleinopathies. Recent 
advances in seed amplification assay (SAA) offer a tool for detecting neurodegenerative diseases by identifying αSyn 
misfolding in fluid and tissue samples, even at preclinical stages. Extensive research has validated the effectiveness 
and reproducibility of SAAs for diagnosing synucleinopathies, with ongoing efforts focusing on optimizing condi‑
tions for detecting pathological αSyn in more accessible samples and identifying specific αSyn species to differentiate 
between various synucleinopathies. This review offers a thorough overview of SAA technology, exploring its appli‑
cations for diagnosing synucleinopathies, addressing the current challenges, and outlining future directions for its 
clinical use.
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Introduction
Synucleinopathies are a diverse group of proteinopathies 
characterized by the accumulation of intracellular αSyn 
aggregates [1]. Lewy body diseases (LBDs) and multiple 
system atrophy (MSA) are two main categories of dis-
ease within this group [2]. LBDs include a spectrum of 
neurodegenerative disorders, such as Parkinson’s disease 
(PD), PD with dementia (PDD), and dementia with Lewy 
bodies (DLB). MSA, on the other hand, has two primary 
clinical subtypes: MSA with predominant cerebellar 
ataxia (MSA-C) and MSA with predominant parkinson-
ism (MSA-P).

As the most common synucleinopathy, PD is diagnosed 
based on clinical motor symptoms, accompanied by 
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brain imaging as a supportive tool [3]. Notably, the motor 
symptoms of PD typically appear after significant neu-
ronal degeneration, when 50%–80% of nigral dopamin-
ergic neurons have been lost [4]. This means that PD is 
often diagnosed in its later stages when both motor and 
non-motor symptoms are already present. Emerging evi-
dence indicates that various symptoms, such as essential 
tremor (ET), olfactory dysfunction, sleep disturbances, 
depression, anxiety, constipation, and other signs of auto-
nomic dysfunction, may appear before the classic motor 
symptoms of PD [5].

DLB diagnosis depends on key features that overlap 
with PDD, including cognitive decline, parkinsonism, 
fluctuating cognition and alertness, and visual hallucina-
tions. A critical factor in distinguishing DLB from PDD is 
the timing of dementia onset relative to parkinsonism. If 
dementia occurs before, concurrently with, or within one 
year of parkinsonism onset, then a DLB diagnosis will be 
made [6]. If dementia occurs after one year, then a PDD 
diagnosis will be made [7]. REM sleep behavior disorder 
(RBD) is now also recognized as a core feature of DLB 
[8]. However, distinguishing between synucleinopathies 
in the early stages can be difficult due to their highly var-
ied clinical presentations.

Neuropathologically, PD and DLB are characterized 
by αSyn aggregates forming Lewy bodies and Lewy neu-
rites in neurons and axonal processes [9], while MSA is 
characterized by αSyn inclusions in oligodendroglia [10]. 
These aggregates may disrupt normal neuronal func-
tion and contribute to neurological decline. However, 
the presence of Lewy pathology is neither necessary nor 
sufficient for a PD diagnosis, as some PD patients do not 
exhibit these features. For example, Lewy bodies can be 
found in conditions unrelated to PD, such as mitochon-
drial membrane protein-associated neurodegeneration, 
and may be absent from clinical cases of PD, including 
those associated with LRRK2 or Parkin mutations [11]. 
Moreover, Lewy bodies are not exclusive to PD. Some 
patients with PD lack neocortical Lewy bodies, while 
others with Lewy bodies may not have PD [12, 13]. These 
complexities have prompted ongoing discussions among 
specialists regarding the challenges and future direc-
tions in synucleinopathy research, particularly in under-
standing their molecular pathogenesis. This has led to 
new approaches to classifying and diagnosing PD from a 
biological perspective. Recently, two groups of scientists 
have introduced new ontologies for PD and related disor-
ders: the Neuronal αSyn Disease Integrated Staging Sys-
tem (NSD-ISS) and the SynNeurGe criteria [14, 15]. Both 
frameworks aim to categorize disease subtypes, including 
at the early stages before clinical appearance of parkin-
sonism, using SAA to detect misfolded αSyn with high 
sensitivity.

The detection of αSyn, particularly via SAA, holds 
promise for earlier and accurate diagnosis of synucle-
inopathies. However, there are still challenges to be 
addressed, including the need for extensive validation 
to ensure accuracy, the ethical considerations regard-
ing early diagnosis in the absence of curative treatments, 
and the complexities of interpreting results at different 
stages of the disease. Though progress has been made 
in improving the sensitivity and specificity of the tests, 
standardizing the assays across laboratories and evaluat-
ing its effectiveness in preclinical stages remain crucial. 
Over time, with more data gathered by multiple laborato-
ries, these challenges may be resolved, paving the way for 
more reliable clinical application of αSyn detection.

αSyn physiology and pathology
αSyn is encoded by the SNCA gene on chromosome 4 
(4q22.1), and consists of 140 amino acids with a molec-
ular mass of approximately 15 kDa [16]. It is structured 
into three main domains: a C-terminal region rich in 
acidic residues, a central non-amyloid component (NAC) 
region that promotes oligomerization and aggregation 
due to its hydrophobic property, and an N-terminal 
region containing four 11-residue imperfect repeats with 
a KTKGEV consensus sequence, which supports lipid 
binding [17].

Under normal physiological states, αSyn exists as an 
intrinsically disordered, soluble monomer distributed 
across several cellular locations, including synaptic ter-
minals, the endoplasmic reticulum, Golgi apparatus, 
neuronal nuclei, mitochondria, and the endolysosomal 
system [17]. However, under certain experimental or 
disease-related conditions, it can undergo pathological 
transformations, where it self-assembles into amyloid 
aggregates. While the exact mechanisms that trigger 
αSyn oligomerization remain unclear, αSyn interaction 
with lipids is a key factor contributing to its pathological 
fibrillation.

Different lipids influence αSyn aggregation in varied 
ways. Some lipids facilitate the self-assembly of αSyn into 
fibrils, while others act as inhibitors [18–21]. The impact 
of phospholipids on αSyn aggregation is dependent on 
both the lipid type and the lipid-to-protein ratio. At spe-
cific ratios, some lipids can accelerate fibril formation by 
providing nucleation sites, which promote elongation 
[19]. However, when there are sufficient phospholipid 
membranes available for binding relative to the number 
of lipid-bound αSyn molecules, aggregation is inhibited, 
as the helical conformation of membrane-bound αSyn 
prevents fibril formation [22]. Moreover, αSyn binds to 
small unilamellar phospholipid vesicles containing acidic 
phospholipids, resulting in an increase of α-helicity 
from 3% to approximately 80%, thereby stabilizing its 
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secondary structure [23]. Consistently, the V15A muta-
tion of αSyn associated with familial PD leads to a 
reduced affinity of αSyn to phospholipids and increased 
propagation activity compared to the wild-type αSyn 
[24].

Recent studies indicate that αSyn has a strong affinity 
for lysophospholipids, particularly lysophosphatidylcho-
line [25]. This binding is significant because it prevents 
the pathological aggregation of αSyn, suggesting that 
some lipids can protect against fibril formation. Factors 
such as lipid oxidation and aging can further modulate 
lipid properties, affecting interactions of αSyn with mem-
branes [21], leading to behavioral change of αSyn from 
being functional to being harmful. This suggests that 
the surrounding lipid environment plays a crucial role in 
αSyn’s propensity to form fibrils.

The cytotoxic effects of αSyn multimers, particularly 
oligomers, are closely associated with increased oxidative 
stress, impaired axonal transport, disruption of the ubiq-
uitin–proteasome system, mitochondrial dysfunction, 
and synaptic dysfunction [26–28]. Moreover, the ability 
of αSyn to propagate between neurons through a mech-
anism known as “seeding” exacerbates these harmful 
effects [29]. In this prion-like process, pathological αSyn 
induces the misfolding and aggregation of soluble αSyn 
monomers, acting as “seeds” that template and propagate 
further aggregation. The evidence supporting this seed-
ing mechanism is compelling. A key example came from 
experiments where αSyn preformed fibrils (PFFs)—syn-
thetic analogs of αSyn fibrils—or αSyn aggregates derived 
from patient Lewy bodies were injected directly into the 
brains of wild-type mice. These injections successfully 
induced hallmark αSyn pathology in the recipient mice, 
resulting in the loss of dopaminergic neurons, neuroin-
flammation, and behavioral deficits similar to those seen 
in PD [30, 31].

αSyn phosphorylation at serine 129 (pS129) plays a 
complex and dual role. Under physiological conditions, 
pS129 is implicated in the regulation of the biological 
activity of αSyn, particularly activity in pathways asso-
ciated with neuronal activity, thus contributing to the 
functioning of neurons [32, 33]. However, in the context 
of diseases, particularly neurodegenerative disorders like 
PD, pS129 phosphorylation becomes closely associated 
with αSyn aggregation and its involvement in disease 
progression [34]. While αSyn aggregation is a hallmark of 
disease, the precise relationship between pS129 and the 
aggregation process remains incompletely understood. 
Some studies, particularly those in rodent models, sug-
gest that pS129 may enhance αSyn aggregation, poten-
tially exacerbating the toxic effects on neuronal function 
[35]. Conversely, other research indicates that pS129 
could play a protective role under certain conditions [36, 

37]. It has been proposed that phosphorylation at serine 
129 occurs following the initial deposition of αSyn aggre-
gates, where it may function to limit further fibril propa-
gation [38, 39]. This result posits that phosphorylation 
might not always contribute to the seeding capacity of 
αSyn—an essential step in the spread of pathology from 
one neuron to another. In this scenario, phosphorylated 
αSyn could act as a “brake” on the aggregation process, 
preventing the continuous seeding of fibrils and thereby 
slowing disease progression.

The origin and transmission of αSyn pathology
αSyn is a protein abundantly expressed in the CNS [40]. 
Although pathological αSyn is predominantly found 
in the brain, increasing evidence suggests that in some 
patients, αSyn pathology may originate in peripheral 
organs before spreading to the brain [41]. This observa-
tion has led to the development of a dual transmission 
model of αSyn pathology, comprising the ‘brain-first’ and 
‘body-first’ hypotheses [42, 43].

In the brain-first subtype, αSyn pathology originates 
within the CNS, typically beginning unilaterally in 
regions such as the amygdala [44]. This unilateral onset 
causes the pathology to spread primarily to the same 
side of the brain, including the substantia nigra, leading 
to asymmetric dopaminergic degeneration and motor 
symptoms that are more pronounced on one side of the 
body. In contrast, the body-first PD subtype suggests that 
αSyn pathology starts in the peripheral autonomic nerv-
ous system. Braak et al. demonstrated that synucleinop-
athy lesions could originate in the peripheral nervous 
system, particularly in the gut, and spread via the auto-
nomic nerves to the dorsal motor nucleus of the vagus 
nerve to both sides of the brainstem [45–47]. This results 
in symmetric spread of αSyn within the CNS, leading 
to more balanced dopaminergic degeneration and less 
pronounced motor asymmetry. By the time of diagno-
sis, body-first patients typically have a more widespread, 
symmetric burden of pathology, which is associated 
with faster disease progression and more rapid cognitive 
decline.

Another origin theory, the dual-hit hypothesis, pro-
poses that the initial Lewy pathology arises simultane-
ously in the olfactory bulb and the enteric nervous system 
(ENS) plexuses during the earliest stages of PD [48]. 
However, recent studies have indicated that the patholog-
ical process usually begins in either the olfactory bulb or 
the ENS, seldom affecting both simultaneously[49].

Once αSyn aggregates reach the brain, they can prop-
agate to autonomic nerves and be transferred back to 
peripheral tissues that are rich in autonomic innervation 
[50, 51]. These processes allow the pathological forms 
of αSyn to move between neurons and across different 
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regions, facilitating the dissemination of the aggregates 
throughout both central and peripheral tissues. For 
instance, αSyn pathology has been detected in peripheral 
nerves located in tissues such as skin and oral mucosa, 
indicating a pathological link between the autonomic 
nervous system and the CNS [52, 53]. This finding has 
important diagnostic implications, as the detection of 
pathological αSyn in skin biopsies or olfactory mucosal 
offers a potential method for identifying PD before sig-
nificant neurodegeneration occurs [47, 54]. Beyond the 
nervous system, αSyn pathology also extends to neuroen-
docrine organs and glands. For example, phosphorylated 
αSyn has been found in the posterior lobe of the pituitary 
gland [55] and in the salivary glands [56]. Understand-
ing these transmission pathways not only enhances our 
knowledge of PD progression but also opens new avenues 
for early detection and intervention.

αSyn SAAs in readily available biological matrices
Fairfoul et al. were the first to use the protein amplifica-
tion assays to detect misfolded αSyn in cerebrospinal 
fluid (CSF) [57]. Since then, these assays have been opti-
mized to detect αSyn in olfactory mucosa, submandibular 

gland biopsies, blood, skin, and saliva of patients with 
PD and other synucleinopathies [58–65] (Fig. 1). Table 1 
provides a summary of studies on αSyn SAA using dif-
ferent sample types. αSyn SAAs rely on the intrinsic self-
replicative nature of misfolded αSyn aggregates (seeds) 
to multiply them using recombinant αSyn (rec-αSyn) 
in vitro. In these assays, αSyn seeds circulating in biologi-
cal fluids and deposited in tissues are amplified by a cycli-
cal process that includes aggregate fragmentation into 
smaller self-propagating seeds, followed by elongation at 
the expense of rec-αSyn (Fig. 2). Protein misfolding cyclic 
amplification (PMCA) and real-time quaking-induced 
conversion (RT-QuIC) are two key protein amplification 
assays for detecting misfolded αSyn seeds, both classi-
fied under the broader category of αSyn SAAs. Although 
RT-QuIC and PMCA are both powerful assays designed 
to detect misfolded αSyn seeds, they operate via dis-
tinct mechanisms and have different practical applica-
tions. Table 2 summarizes the similarities and differences 
between RT-QuIC and PMCA.   

αSyn SAAs in CSF have demonstrated high accu-
racy for differentiating LBD from other conditions 
unrelated to misfolded αSyn [57, 66]. However, due to 

Fig. 1  Schematic overview of the dissemination of pathological α-synuclein (αSyn) aggregates in various regions of the brain and peripheral tissues 
as well as in biological fluids. Graphic created with BioRender.com
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Table 1  Summary of studies on αSyn SAA using different sample types

Abbreviation: EVs, Extracellular vesicles; SMG, Submandibular glands; CSF, Cerebrospinal fluid; *, the highest sensitivity; #, the highest specificity

Tissue Type Sensitivity Specificity Study

Brain 10%–100% 50%–100% Candelise et al., 2019 [136]

Manne et al., 2019 [137]

Poggiolini et al., 2021 [138]*,#

Bentivenga et al., 2024 [139]

Mao et al., 2024 [97]

Olfactory mucosa 44.4%–90% 75%–100% De Luca et al., 2019 [140]

Stefani et al., 2021 [54]

Perra et al., 2021 [141]

Bargar et al., 2021a [61]*,#

Bongianni et al., 2022 [142]

Oral mucosa 67.30% 90.30% Zheng et al., 2024 [59]*,#

Salivary 61.1%–86% 78%–94.4% Luan et al., 2022 [126]*

Vivacqua et al., 2023 [60]#

Serum 95% 92.20% Okuzumi et al., 2023 [63]*,#

EVs 62%–99% 100.00% Kluge et al., 2024a [72]*,#

Kluge et al., 2024b [143]

Skin 75%–100% 80%–100% Manne et al., 2020a [71]*

Wang et al., 2020 [58]#

Kuzkina et al., 2021 [68]

Iranzo et al., 2023 [47]

Kuang et al., 2024 [65]

Mao et al., 2024 [97]

SMG 75%–93.75% 100% Manne et al., 2020b [64]*,#

CSF 15.4%–100% 76.9%–100% Fairfoul et al., 2016 [57]#

Groveman et al., 2018 [128]#

Bongianni et al., 2019 [144]

Kang et al., 2019 [145]

van Rumund et al., 2019 [146]

Garrido et al., 2019 [147]

Manne et al., 2019 [137]*,#

Rossi et al., 2020 [148]*

Orrù et al., 2021 [149]

Bargar et al., 2021b [150]#

Quadalti et al., 2021 [151]

Iranzo et al., 2021 [152]#

Brockmann et al., 2021 [153]

Donadio et al., 2021 [70]#

Russo et al., 2021 [107]

Hall et al., 2022 [154]*

Poggiolini et al., 2022 [155]*

Compta et al., 2022 [156]#

Majbour et al., 2022 [157]

Concha-Marambio et al., 2023 
[158]

Brockmann et al., 2024 [159]

Samudra et al., 2024 [160]

Bellomo et al., 2024 [114]
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the intrinsic limitations, such as the need for lumbar 
puncture, researchers are exploring more accessible 
biological matrices like skin and blood to detect αSyn 
pathology. Skin biopsy, a minimally invasive procedure, 
has demonstrated comparable diagnostic performance 
to CSF in distinguishing PD patients from non-PD con-
trols [67–69]. Notably, results can be obtained within 
less than 24 h. This rapid and accurate detection makes 

skin αSyn SAA a promising peripheral biomarker for 
synucleinopathies [58, 69–71]. In these protocols, a 
threshold is established; a fluorescence signal exceeding 
the threshold indicates the presence of detectable amy-
loid fibrils. The ability to reliably and efficiently detect 
pathological αSyn in the skin makes it a reliable periph-
eral marker for synucleinopathies.

Fig. 2  Mechanisms of seed amplification assays (SAA) and quiescent seed amplification assays (QSAA). Both assays induce misfolding of normal 
proteins into pathological forms, leading to fibril formation. The legend highlights the active fragmentation in SAA and the passive amplification 
approach of QSAA. Graphic created with BioRender

Table 2  Key differences and similarities between real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic 
amplification (PMCA)

RT-QuIC PMCA

Purpose Detecting misfolded αSyn Detecting misfolded αSyn

Amplification mechanism Physical shaking (quaking) to induce protein aggregation Cycles of sonication and incubation to amplify aggregates

Substrate Recombinant αSyn produced in vitro, highly purified Either recombinant αSyn or tissue-derived αSyn (e.g., 
from brain samples)

Real-time detection Yes. Real-time monitoring based on ThT fluorescence No. Post-amplification detection such as immunoblotting 
is required

Sensitivity High Extremely high

Operational complexity Simple and suitable for high-throughput and fast detection Complex and time-consuming, often for research use

Time Short, providing results rapidly Longer, requiring more time for amplification and analysis

Clinical application Common in clinical diagnostics, fast and efficient Less commonly used in clinical settings, mainly for research 
purpose

Safety Simple and safe, with lower biological hazard More complex handling with additional experimental steps
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Blood-based αSyn detection, specifically through 
serum SAA and neuronal extracellular vesicles (EVs), 
has also gained attention. Serum SAAs, using an immu-
noprecipitation-based method (IP/SAA), have proven 
capable of identifying pathogenic αSyn in individuals 
with synucleinopathies and distinguishing PD and MSA 
patients from controls [63]. Furthermore, neuronal-
derived αSyn extracted from EVs in blood plasma has 
shown the potential to predict PD risk and detect mis-
folded αSyn years before clinical diagnosis [62, 72, 73]. 
Additionally, a longer disease duration has been linked 
to decreased αSyn seeding activity in PD, as identified 
by neuronal EVs in the blood [74]. Another notable find-
ing is the high concentration of αSyn in red blood cells 
(RBCs) [75]. Moreover, αSyn is also abundantly expressed 
in various other cell types within the hematopoietic sys-
tem, such as T and B lymphocytes, monocytes, natural 
killer (NK) cells, and megakaryocytes [76, 77]. This wide-
spread expression indicates that αSyn plays an essential 
role in the development and functioning of hematopoi-
etic cells. Studies in αSyn-deficient mouse models further 
support this, as the absence of αSyn results in dysfunc-
tional hematopoietic cells, highlighting its critical role 
in cell maturation [78–80]. Therefore, the high levels of 
αSyn found in RBCs likely stem from its expression dur-
ing earlier stages of hematopoiesis before the cells lose 
their nuclei. Research has shown that hemoglobin-bind-
ing αSyn (Hb-αSyn) levels are elevated in patients with 
PD and MSA, and αSyn accumulation in the aging brain 
correlates with an increase in the Hb-αSyn complex in 
RBCs [81–84].

However, detecting pathological αSyn in the blood 
is challenging due to its typically low concentration 
compared to CSF where αSyn levels reflect neuronal 
and glial activities, EV release, and contributions from 
peripheral tissues. In CSF, αSyn concentration aver-
ages around 1.36 ± 0.35  ng/ml, but in the serum, αSyn 
seeds are present at much lower concentrations [85]. 
Additionally, many proteins and substances in the 
blood can interfere with αSyn aggregation in vitro. For 
example, lipoproteins and serum albumin are known 
to inhibit αSyn aggregation, making the development 
of reliable blood assays for αSyn a complex task [86, 
87]. Some recent serum assays have employed meth-
ods such as EV extraction or immunoprecipitation to 
remove these inhibitory components, facilitating the 
amplification of pathological αSyn seeds using SAA 
(Fig. 3). However, these techniques are time-consuming 
and not yet practical for large-scale use. Simplifying 
the process to amplify pathological proteins in serum 
is a promising area for future research. Before such an 
assay can be fully developed, technical challenges need 
to be addressed. These include optimizing the sample 

volume, preserving maximum seeding activity while 
removing inhibitory proteins, and concentrating amy-
loid fibrils from large serum samples. One potential 
method is the use of sarkosyl precipitation and ultra-
centrifugation, which isolate insoluble protein aggre-
gates from biological samples [88]. This process reduces 
the concentrations of inhibitors in the blood, allow-
ing pathological αSyn seeds to be detected without 
interference. Detecting pathological αSyn in the blood 
through SAA may eventually become feasible with opti-
mization of the amplification process.

Current optimization directions for αSyn SAAs
The sensitivity and specificity of SAAs for distinguish-
ing various synucleinopathies from non-synucleinopathy 
controls are promising, but full validation is necessary 
before they can be implemented in clinical practice for 
diagnosing PD and other synucleinopathies. Several 
methodological variables—such as temperature, mono-
meric αSyn concentration, type of well plates, ionic 
strength and pH of reaction buffers, incubation times, 
detergent presence, and shaking protocols—can all 
impact the variability of results [65, 89–91]. Addition-
ally, the composition and biological characteristics of 
the sample matrix and its dilution in the reaction mix 
are significant factors. Variations in protocols can lead to 
different αSyn conformations or tissue-specific amplifi-
cations, potentially altering assay performance. Multiple 
research groups are working to optimize assay conditions 
to improve detection limits and expand the range of bio-
fluids and tissues that can be used. In the following, we 
will explore these challenges in greater detail, examining 
how protocol variations influence αSyn amplification and 
discussing strategies to address these issues.

A commonly used and well-characterized substrate 
for SAAs is full-length αSyn protein. However, recombi-
nant αSyn from other mammals and mutant forms such 
as K23Q have been developed as monomer reservoirs 
to improve reaction conditions [65, 92, 93]. The K23Q 
mutant, known for its enhanced stability and amplifica-
tion efficiency, is particularly notable [92]. Additionally, 
studies have shown seven distinct amino acid differ-
ences between mouse and human αSyn proteins, with the 
A53T mutation causing a “natively unfolded” structure 
that significantly affects the protein’s behavior, result-
ing in a shorter lag phase in fibril formation compared 
to human wild-type and other mutant forms [94]. The 
concentration of αSyn monomers is also crucial. The 
Soto group’s protocol utilized concentrations exceed-
ing 1  mg/ml to ensure effective seed conversion and 
elongation [95]. Increasing the reaction temperature, 
typically ranging from 30 °C to 42 °C, in some cases even 
up to 50  °C to 70  °C, improves the assay efficiency by 
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enhancing molecular motion [96, 97]. Shaking protocols 
with important parameters of intensity and duration, play 
a role in αSyn aggregation [98]. While neutral pH typi-
cally results in slow aggregation, vigorous shaking or the 
introduction of beads or surfactants can accelerate this 
process [99]. Lowering the pH to 5.5 can also significantly 
speed up aggregation, even without agitation, due to 
enhanced secondary nucleation at mildly acidic pH levels 
[100, 101]. The type of salt used in the reaction can also 
significantly influence amplification speed, with salts like 
SO₄2⁻ and Cl⁻ optimizing the difference between seeded 
and spontaneous fibrillization [102]. SO₄2⁻, in particular, 
facilitates critical interactions between proteins, water, 
and anions, promoting partial folding of αSyn and rapid 
amplification of oligomeric seeds [102, 103]. In some 
protocols, detergents like sodium dodecyl sulfate (SDS) 
are used, especially in CSF SAA protocols for detecting 
pathological proteins [98, 104]. SDS significantly acceler-
ates αSyn aggregation, both with and without seeds. This 
effect has been documented in studies by Otzen et  al., 
though they may introduce challenges in standardizing 
screening assays [98].

We propose several strategies to enhance the assay 
performance. While these techniques can significantly 
boost sensitivity and efficiency, they also have notable 
drawbacks. High monomer concentrations may cause 
non-specific aggregation due to increased protein den-
sity, leading to unwanted interactions [105]. Elevated 
temperatures, though effective for speeding up aggrega-
tion, can induce non-specific aggregation due to thermal 

instability or changes in protein dynamics [106]. Simi-
larly, the use of beads and increased ionic strength may 
improve aggregation efficiency, but they also risk non-
specific interactions, potentially leading to false positives 
or misleading results. Non-specific aggregation is a criti-
cal issue, as it can obscure true protein interactions and 
complicate data interpretation. Therefore, despite their 
advantages, these strategies must be carefully optimized 
and controlled to minimize their impact on specificity 
and ensure accurate results.

Quiescent SAA
Building on traditional SAA principles, we have devel-
oped αSyn quiescent SAA (QSAA) through four key 
modifications of SAA [97]: raising the incubation tem-
perature to 70 °C; utilizing a quiescent incubation mode; 
using mouse αSyn monomers instead of human αSyn 
monomers; and adding 10% ammonium sulfate to the 
incubation buffer. Unlike traditional methods which 
require agitation or sonication to promote aggregation, 
QSAA relies solely on a temperature-controlled fluores-
cence reader. This innovative technique facilitates the 
on-site amplification of αSyn seeds within brain homoge-
nates and tissue sections. Mechanistically, the prion-like 
seeding activity of misfolded αSyn makes them as seeds 
to catalyze the transformation of soluble αSyn monomers 
into further misfolded aggregates, without any need of 
subsequent fragmentation (Fig. 2).

Fig. 3  Steps of seed amplification assays (SAAs) involving immunoprecipitation (IP) and extracellular vesicles (EVs). αSyn in plasma can be isolated 
using magnetic beads coated with αSyn antibodies or by ultracentrifugation to separate EVs containing αSyn, followed by SAA. Graphic created 
with BioRender
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A key advantage of QSAA is the quiescent conditions, 
unlike physical agitation in other assays. By avoiding 
agitation, QSAA preserves the structural integrity of 
samples and prevents artificial fragmentation of the 
αSyn aggregates, providing precise and detailed infor-
mation on both the distribution and the density of αSyn 
aggregates. Key differences between SAA and QSAA 
are summarized in Table 3.

QSAA has demonstrated exceptional sensitivity 
and specificity, both exceeding 90% in distinguishing 
between PD and non-PD cases across brain and skin 
tissue sections. It also correlates αSyn seeding activ-
ity with the spatial distribution of pathological αSyn in 
biological specimens. This highly sensitive and reliable 
assay offers the potential for deeper spatial insights into 
the pathological attributes of misfolded proteins within 
tissue Sects [97].

As a variant of SAA, QSAA has demonstrated high 
sensitivity in detecting pathological αSyn aggregates 
through a mechanism distinct from pS129 stain-
ing [107–110]. This suggests that QSAA could offer a 
reliable and comprehensive approach to studying the 
pathology of LBD. One key distinction between QSAA 
and pS129 staining lies in the timing and the nature of 
the markers they detect. While pS129 staining identi-
fies phosphorylated αSyn, a marker that emerges after 
the initial deposition of the protein, QSAA targets the 

misfolded αSyn aggregates themselves, which likely 
form earlier in the disease process [39]. Importantly, 
pS129 is believed to inhibit the formation of seeded 
fibrils, meaning that by the time it becomes detectable, 
critical steps in pathological propagation may already 
have occurred [39]. This temporal difference highlights 
QSAA’s potential for earlier and accurate detection of 
disease progression.

New Parkinson’s classification proposed 
based on biomarkers: two framework focuses 
on the biology of LBD
The pathological processes underlying PD begin many 
years before symptoms appear, by which time approxi-
mately 50% − 80% of dopamine-producing nigrostriatal 
cells are already lost [4]. This extensive neuronal loss 
poses significant challenges to the effectiveness of future 
disease-modifying interventions. To improve early diag-
nosis of synucleinopathies, two articles published in The 
Lancet Neurology presented distinct but complemen-
tary frameworks for biological definition of LBD. These 
frameworks aim to create a biological foundation for rig-
orous testing of research theories and ultimately aid in 
earlier diagnosis and intervention.

The first framework, the “Neuronal αSyn Disease 
Integrated Staging System (NSD-ISS)”, was developed 
by the research team led by Drs. Tanya Simuni and Ken 

Table 3  Comparison of performance between SAA and QSAA

SAA, seed aggregation assay; QSAA, quiescent aeed aggregation assay; AS, ammonium sulfate

SAA QSAA QSAA in situ

Incubation mode Sonication/shaking Quiescent Quiescent

Cyclic Cyclic fragmentation One-step amplification One-step amplification

Detection device Fluorescence-plate-reader Real-time PCR instruments Incubator

Reaction vessel 96-well plate 96-well PCR plate 24-well plate

Substrate type Human αSyn (WT/mutant) 
monomer

Mouse αSyn monomer Mouse αSyn monomer

Substrate concentration 0.1–1.0 mg/ml 1.0 mg/ml 1.0 mg/ml

AS addition None 10% w/v AS 10% w/v AS

Beads addition Silicon/zirconia beads None None

Reaction temperature 30–42 ℃ 70 ℃ 70 ℃
Sample type Liquid Liquid Slices

Incubation duration 24–120 h 6–24 h 6–24 h

Reaction volume 100 μl/well 20 μl/well 200 μl/well

Oil seal None Paraffin oil Paraffin oil

Fluorescent dye ThT ThT ThT

ThT concentration 5 μM 30 μM 30 μM

Quantitative data Lag phase/Fmax Lag phase/Fmax Fluorescence graph

Detection limit (PFFs) Attograms Femtograms Femtograms

Amplification mechanism Nucleation, elongation Secondary nucleation, elonga‑
tion

Secondary nucleation, elongation
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Marek [14]. This system provides a biological definition 
of PD and DLB, introducing a schema for disease symp-
tom progression. NSD-ISS is enabled by advances in αSyn 
SAA, which allows precise identification of pathological 
αSyn in CSF, providing reliable evidence for diagnosing 
synucleinopathies. Additionally, molecular imaging tech-
niques such as dopamine transporter scans, neuromela-
nin-sensitive MRI, and single-photon emission computed 
tomography are recommended for quantifying the loss of 
dopaminergic neurons and confirming neurodegenera-
tion in specific brain regions.

NSD-ISS enables researchers to study PD and DLB as 
a unified disease entity under the category of synucle-
inopathies, using three biological markers: neuronal αSyn 
(S), dopaminergic neuron dysfunction (D), and genetic 
status (G). These markers serve as anchors for staging 
the disease. Stages 1 and 2 are defined by S and D, while 
stages 3–6 are determined by combining biomarkers with 
clinical symptoms. However, NSD-ISS does not cover all 
PD and DLB cases. For instance, some individuals with 
inherited forms of PD may not exhibit pathological αSyn 
through SAA testing, meaning they would not fit within 
the NSD-ISS framework.

In parallel, a second framework, known as the “Syn-
NeurGe Research Diagnostic Criteria”, was developed 
by Drs. Günter Höglinger and Anthony Lang [15]. This 
system also integrates three key biomarkers: pathological 
αSyn (S) in tissues or CSF, neuronal degeneration (N) as 
assessed through neuroimaging, and genetic variants (G) 
that cause or predispose individuals to PD. Unlike NSD-
ISS, SynNeurGe incorporates the evaluation of patho-
logical αSyn in skin and other biological materials as 
part of its diagnostic criteria, rather than being limited to 
CSF testing. It emphasizes the utility of αSyn SAA in skin 
samples, while also recommending immunohistochem-
istry or immunofluorescence techniques to detect αSyn, 
though these methods are less sensitive than skin SAA.

Both NSD-ISS and SynNeurGe are intended for 
research and clinical trials rather than for routine clini-
cal diagnosis. These frameworks highlight the cumula-
tive genetic risks, presence of pathological αSyn, and loss 
of dopaminergic neurons, aiming to create a biological 
foundation for understanding disease progression before 
the onset of parkinsonism. Both frameworks also employ 
SAA for highly sensitive detection of misfolded αSyn.

Despite their similarities, there are notable differences 
between the two frameworks: NSD-ISS introduces a stag-
ing system that includes functional impairment, mak-
ing it particularly useful for early interventional trials. It 
emphasizes neuronal pathological αSyn and unifies PD 
and DLB under the term “neuronal αSyn disease”. Syn-
NeurGe takes a novel approach by integrating the assess-
ment of pathological αSyn in various tissues, including 

skin, which increases its practical applicability. However, 
it also includes cases where synucleinopathy is not iden-
tified, posing a potential risk for misclassification. The 
characteristics and differences between the NSD-ISS and 
SynNeurGe Research Diagnostic Criteria are summa-
rized in Table 4.

These research initiatives represent a potential turning 
point in the design of future clinical trials. However, PD 
is a clinical-pathological entity characterized by signifi-
cant heterogeneity and clinical complexity. While αSyn 
plays a key role in its pathophysiology, the diverse mani-
festations of the disease complicate efforts to create uni-
form diagnostic and therapeutic approaches.

The role of αSyn‑SAA in Alzheimer’s disease (AD)
AD is a complex neurodegenerative disorder primarily 
characterized by the accumulation of abnormal neuritic 
plaques and neurofibrillary tangles in the brain [111]. 
While these hallmark features define AD, the presence 
of additional brain pathologies, referred to as copathol-
ogies, is increasingly recognized as common [111–114]. 
Among these, αSyn pathology is particularly prevalent, 
and is observed in over half of AD cases, as confirmed 
by various autopsy studies [115, 116]. αSyn copathology 
has also been found in conditions like amyotrophic lat-
eral sclerosis (ALS) [117]. This has led to the inclusion 
of αSyn-SAA in the revised criteria for AD diagnosis, 
acknowledging the relevance of synuclein biomarkers 
since AD often coexists with other pathologies in older 
adults [118].

One key aspect of the interaction between AD and 
αSyn pathology is the colocalization of tau and αSyn 
aggregates within nerve cells [119]. Research has demon-
strated that αSyn can initiate tau aggregation, while tau 
can accelerate the fibrillization and spread of αSyn [120–
122]. This bidirectional relationship not only drives the 
progression of both pathologies but also creates a more 
complex and severe clinical presentation. AD patients 
who also exhibit Lewy body pathology experience a more 
rapid cognitive decline and have higher mortality rates 
compared to those with pure AD [114, 123]. This sug-
gests that αSyn pathology exacerbates the severity of AD, 
potentially leading to a more aggressive disease course.

Despite the significant implications of αSyn pathology 
in AD, traditional methods for detecting pathological 
αSyn in AD patients have yielded inconclusive results, 
limiting our understanding of its role. Recent advance-
ments in SAA have addressed this diagnostic challenge, 
revealing that αSyn-SAA can effectively detect αSyn 
pathology even in non-Lewy body diagnoses [112–114]. 
More importantly, the presence of pathological αSyn in 
CSF has been linked to specific clinical features in AD 
patients [113]. Understanding the relationship between 
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AD and αSyn pathology could pave the way for accurate 
predictions of the disease trajectory observed in clinical 
practice.

αSyn SAAs for differential diagnosis 
of synucleinopathies
The conformation and seeding behavior of pathological 
αSyn vary across neurodegenerative diseases, allowing for 
their differentiation through SAAs (Fig. 4). Research has 
shown that the seeding kinetics of αSyn aggregates dif-
fer between PD, MSA, and DLB, improving the accuracy 
of differential diagnosis. For instance, studies by Claudio 
Soto’s group, using CSF and postmortem brain samples 
from PD and MSA patients, identified faster aggrega-
tion kinetics in MSA-derived samples compared to PD 
[124]. However, despite this acceleration, MSA samples 
reached a lower fluorescence plateau than PD samples, 
indicating a more aggressive aggregation behavior in 
MSA. This plateau, which reflects beta-sheet structures 
in amyloid fibrils (indicated by Thioflavin T (ThT) fluo-
rescence), suggests structural differences between MSA 
and PD aggregates. These structural variations have been 
validated by cryo-electron microscopy (cryo-EM), which 
consistently shows that PD filaments have protofilament 
folds with eight beta-sheets, while MSA filaments have 
seven beta-sheets [125]. Interestingly, αSyn aggregates 
from different regions of the body show distinct aggre-
gation behaviors. For instance, salivary samples from PD 
patients show faster aggregation kinetics than those from 
MSA, reflecting different disease progression in non-
CNS tissues [126]. On the other hand, cutaneous samples 
from both PD and MSA display comparable kinetics, sug-
gesting a more uniform αSyn strain in peripheral tissues 

[127]. αSyn aggregation kinetics have also been used to 
differentiate PD from DLB. Studies using CSF and post-
mortem brain samples indicate that DLB samples show 
faster aggregation and reach higher fluorescence maxima 
compared to PD samples, which can help distinguish 
between these two disorders [128].

The variability in diseases associated with αSyn has led 
to the “strains” hypothesis. According to this concept, 
the conformation of a misfolded protein determines its 
morphology, pathology, and functional properties, which 
in turn shape the disease phenotype [129]. Recent analy-
ses using cryo-EM have revealed structural disparities 
in αSyn filaments from PD and MSA patients. In PD, 
the filaments tend to be elongated and linear with heli-
cal twists ranging from 76.6 to 199  nm, contributing to 
the formation of long, continuous fibrils. In contrast, 
MSA filaments display shorter helical twists, underscor-
ing the unique molecular conformations associated with 
distinct synucleinopathies [124]. Recombinant αSyn 
monomers have been shown to aggregate into distinct 
forms with unique properties under varying conditions. 
Groundbreaking work by Bousset et  al. highlighted this 
phenomenon by generating distinct conformations of 
aggregated wild-type αSyn in vitro [130]. By manipulat-
ing factors such as buffer composition and salinity, they 
generated two main forms: cylindrical structures termed 
“fibrils” and flat, twisting structures termed “ribbons”. 
These forms exhibited characteristic differences in seed-
ing capacities, toxicity, inclusion formations, and dis-
semination pathways. Moreover, when elongated with 
monomeric αSyn, these structures maintained their orig-
inal conformation, supporting the strain hypothesis [130, 
131].

Table 4  The characteristics and differences of the NSD-ISS and the SynNeurGe research criteria

DAT, Dopamine transporter; SPECT, single-photon emission computed tomography

NSD-ISS SynNeurGe

Purpose Biological definition of disease Biological definition of disease

Classification system Yes Yes

Integrated staging system Yes No

Disease Label Neuronal α-synuclein disease Parkinson’s disease

Genetic variants considered Yes Yes

α-Synuclein pathology Yes Yes

CSF seed amplification assays Yes Yes

Other assays involved No Skin seed amplification assays, skin immunohistochemistry

Neuronal dysfunction/neurodegeneration Yes Yes

DAT scan Yes Yes

Other imaging modalities No [18F]fluorodeoxyglucose-PET, metaiodobenzylguanidine SPECT

Staging system Yes No

Clinical signs and symptoms usage Not used for diagnosis; used 
to distinguish stages

Not used for diagnosis; provides a list of related signs and symptoms
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The structural diversity of αSyn strains across PD, 
MSA, and DLB is further reflected in their sensitivity 
to proteases and detergents. Studies have shown that 
αSyn from MSA samples is less stable in the presence of 
detergents compared to PD samples [132]. Despite this, 
αSyn aggregates from CSF samples of both PD and MSA 
patients exhibit high resistance to degradation [124, 133]. 
Under protease conditions, the N-terminal and middle 
regions of αSyn are protease-resistant, while the C-ter-
minal region is fully degraded, suggesting that the C-ter-
minal is not involved in aggregate formation. Moreover, 
under treatment with guanidine hydrochloride, a chao-
tropic agent, the MSA-derived αSyn is less stable than 
that from PD [133]. Similarly, SDS treatment resulted in 
more insoluble αSyn in DLB and PD samples compared 
to MSA [134]. The increased resistance of PD and DLB 
aggregates to detergents indicates a tighter packing of the 
aggregates, while the increased sensitivity of MSA aggre-
gates to Proteinase K may be due to their rapid aggrega-
tion and looser structure, which could explain the faster 
progression observed in MSA.

In summary, the distinct structural and kinetic prop-
erties of αSyn aggregates offer critical insights into the 
differential diagnosis of synucleinopathies. Continued 
research is essential to unravel the complex interplay 
between αSyn conformation, aggregation dynamics, and 
disease progression, which will improve our ability to 
distinguish between PD, MSA, and DLB and develop tar-
geted therapeutic approaches.

Conclusions and future directions
αSyn SAAs have shown substantial potential in diag-
nosing synucleinopathies, particularly in early detection 
using CSF and other biological samples. While these 
assays have demonstrated effectiveness, they are insuf-
ficient for definitive diagnosis when used alone. Rather, 
αSyn SAAs should be integrated into a broader diagnos-
tic approach that includes a variety of biomarkers, as 
exemplified by AD, where early biomarker identification 
has enabled pre-symptomatic interventions. However, 
identifying individuals before symptoms arise, though 
advantageous for early treatment, introduces ethical 
concerns, such as psychological impacts and potential 

Fig. 4  Evolution and applications of seed amplification assay (SAA) in differentiating between PD and MSA. Upper, outline of the history of SAA 
development; lower, three analytical methods: proteinase K digestion of the final products from the SAA, followed by Western blot detection; 
amplification kinetics analysis; and cryo-electron microscopy. These methods are utilized to differentiate between PD and MSA
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stigmatization. These factors must be balanced carefully 
in clinical practice.

To further integrate αSyn SAAs into clinical use, sev-
eral key challenges must be addressed. Standardized 
guidelines for sample collection, handling, and analysis 
are crucial to ensure consistent results across laborato-
ries. Additionally, enhancing the sensitivity and specific-
ity of the assay to detect early-stage pathological αSyn 
and accurately quantify its concentration is vital for mon-
itoring disease progression and evaluating therapeutic 
responses.

Resolving these key issues will make αSyn SAAs a via-
ble clinical tool for early and accurate diagnosis. When 
combined with other biomarkers—such as neurofila-
ment light chain, amyloid, tau, and glial fibrillary acidic 
protein—and applied to diverse biological samples, these 
assays can significantly improve the diagnostic precision 
for synucleinopathies [135]. This holistic approach offers 
a promising path toward better disease management, 
early intervention, and development of personalized 
treatments for conditions like PD and related disorders. 
To ensure the success of this approach, ethical guidelines 
must also evolve, providing clarity on how to handle early 
detection and its societal implications, thus fostering a 
responsible and balanced application of these emerging 
technologies.
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