
 | Genetics and Molecular Biology | Research Article

Genetic insight into the relationship between inflammatory 
bowel disease and Clostridioides difficile infection

Kelly C. Cushing-Damm,1 Yanhua Chen,1 Xiaomeng Du,1 Annapurna Kuppa,2 Chinmay Raut,1 Antonino Oliveri,1 Vincent L. Chen,1 

Brett Vanderwerff,3 Matt Zawistowski,3 Krishna Rao,4 Peter Higgins,1 Elizabeth K. Speliotes1,5

AUTHOR AFFILIATIONS See affiliation list on p. 9.

ABSTRACT Patients with inflammatory bowel disease (IBD) are at increased risk of 
Clostridioides difficile infection (CDI). Herein, we aimed to determine if genetic risk 
contributes to this observed association. We carried out a genome-wide association 
study (GWAS) analysis in the Michigan Genomics Initiative and the United Kingdom 
Biobank for CDI based on ICD codes and meta-analyzed these results with similar 
publicly accessible GWAS summary statistics from Finngen. Conditional and joint 
multi-SNP analyses were used to identify independent associations. Imputation of 
the human leukocyte antigen (HLA) region with fine mapping was used to try to 
identify causal HLA allele groups. Two-sample bidirectional Mendelian randomization 
(MR) was implemented to determine causal relationships between IBD and CDI. A 
total of 3,500 cases of CDI and 674,323 controls were meta-analyzed, revealing one 
genome-wide significant variant for CDI, HLA-C;LINC02571-rs3134745-C (P = 4.27E−08), 
which annotated to the major histocompatibility complex on chromosome 6. While 
fine mapping did not identify a statistically significant HLA allele group, there was a 
suggestive signal for HLA-B*35:01 (P = 4.74e−04). Using two-sample MR, genetically 
predicted IBD was associated with increased risk of CDI (MR Egger [odds ratio {OR} 
1.16, 95% confidence interval {CI} 1.02–1.31]). Subset analysis revealed that risk was 
primarily driven by genetically predicted ulcerative colitis (MR Egger [OR 1.22, 95% CI 
1.05–1.41]). These results highlight the importance of the host immune response in CDI 
pathogenesis, help explain the observed relationship between IBD and CDI, and open 
new avenues for targeted treatment of CDI in IBD.

IMPORTANCE Data from this paper (i) provide reproducible evidence that susceptibility 
CDI is genetically mediated, (ii) highlight genetic risk as a mechanism for the increased 
risk of CDI in patients with inflammatory bowel disease, and (iii) point toward anti-inter­
leukin-23 therapy as a common therapeutic strategy.
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C lostridioides difficile infection (CDI) occurs when the enteric bacteria, C. difficile, shifts 
to a toxigenic state, producing and releasing local exotoxins (1). These exotoxins 

mediate gastrointestinal injury, leading to symptoms such as watery diarrhea and 
abdominal cramping. A subset of patients may develop a more severe or fulminant 
form of the infection known as toxic megacolon, increasing the risk for perforation and 
sepsis. The public health burden of CDI infection is exceptionally high, with over 400,000 
infections and over 20,000 in-hospital deaths estimated in the United States in 2017 (2).

Inflammatory bowel disease (IBD) is an established risk factor for both asymptomatic 
carriage of C. difficile and CDI. In a cohort of IBD patients in remission, C. difficile 
was found more often in the asymptomatic carrier state in the stool of IBD patients 
when compared to healthy controls (8.2% vs 1%, P = 0.02), suggesting that the altered 
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intestinal landscape conferred by IBD is itself a risk factor for C. difficile colonization (3). 
IBD patients are also at increased risk of CDI in the outpatient (odds ratio [OR] 4.79, 
95% confidence interval [CI] 3.79–5.80) (4) and inpatient setting (OR 2.9, 95% CI 2.1–4.1) 
(5). Unfortunately, CDI is associated with adverse outcomes in IBD including increased 
hospitalizations, longer hospital stays, escalation of medical therapy, higher rates of 
colectomy, and higher rates of mortality (6–8). Thus, there remains a strong need for 
continued investigation into the mechanisms that drive CDI, discovery of mitigatable risk 
factors, and identification of therapeutic targets.

Given the paucity of data investigating the impact of host genetics on the observed 
relationship between IBD and CDI, we aimed to determine if genetic variation influences 
the observed association between these two diseases.

MATERIALS AND METHODS

Genome-wide association study and meta-analysis

Details on data cohorts, genotyping, and imputation are included in the supplemental 
material. Genome-wide association study (GWAS) summary statistics for CDI in the 
FinnGen cohort were publicly available. Summary statistics, including variant chromo­
some and position, effect allele, other allele, beta effect size, standard deviation, 
effect allele frequency, and P value, were downloaded from the FinnGen website. 
Details of GWAS methodology can be found on the FinnGen website (https://finngen.git­
book.io/documentation/v/r5/data­download). Briefly, GWAS of autosomal variants was 
carried out using mixed modeling by Scalable and Accurate Implementation of 
Generalized mixed model (SAIGE, version 0.36.3.2), controlling for sex, age, principal 
components, and genotyping batch (9). GWAS summary statistics for CDI in the United 
Kingdom (UK Biobank [UKBB]) and Michigan Genomics Initiative (MGI) cohorts were 
computed by the study team. GWAS of autosomal variants was carried out for each 
cohort, using mixed modeling by SAIGE (version 0.29), with CDI as the dependent 
variable and single-nucleotide polymorphisms (SNPs) in an additive genetic model. The 
model controlled for the covariates sex, age, age2, and principal components 1–10. Only 
SNPs with an imputation quality cutoff of >0.85 were analyzed.

Meta-analysis of GWAS summary statistics for CDI was performed using the soft­
ware METAL (release: 28 August 2018) (10). Input data included beta effect sizes and 
standard errors. The genomic control parameter was 0.892; therefore, no adjustment was 
made. The total number of variants after meta-analysis was 35,289,364. Genome-wide 
significance was defined as a P value of less than or equal to 5e-8. Given the relatively 
small cohort size, high-priority variants were identified using a P value (for association) 
of <1e−5, a P value for heterogeneity (pHet) of >0.05, a minor allele frequency (MAF) 
of >0.05, and a consistent direction of effect across all three cohorts. Conditional and 
joint multi-SNP analysis (COJO) was performed using GCTA software (version 1.91.2) 
(11) to distinguish independent loci. Approximate, stepwise conditional analyses were 
completed utilizing the full genotypes, including imputed genotypes, from the UK 
Biobank. Only variants with MAF of >0.01 were included in analyses. Linkage disequili­
brium (LD) was assessed for variants within 10 MB, which is the default value for COJO. 
Details on association between genotypes and microbiome abundance are included in 
the supplemental data.

Human leukocyte antigen imputation and fine mapping

Human leukocyte antigen (HLA) allele groups were imputed for individuals in the MGI 
and UKBB cohorts. The FinnGen cohort was excluded, given the lack of individual-level 
data. Imputation was completed on the Michigan Imputation Server using the hard-
call genotype variants on chromosome 6, based on the four-digit multi-ethnic HLAv2 
(GRCh37/hg19) reference panel (12, 13). The HLAv2 reference panel included 20,349 
samples with 22,733 sites (570 HLA alleles, 3,449 HLA amino acids, 4,023 SNPs within 
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HLA, and 14,691 scaffold SNPs) spanning chromosome 6, positions 27970031–33965553. 
Association analyses were carried out using an additive model in REGENIE, controlling 
for sex, age, age2, and principal components 1–10 (14). An imputation quality cutoff 
of >0.7 was used, and rare alleles (MAF < 0.01) were excluded from further analysis due 
to limitations in accuracy interpretation (15). Meta-analysis of summary statistics was 
performed using the inverse variance-based method (input: beta and standard error) 
in METAL. Genomic control correction was applied to each data set to account for 
population stratification or relatedness (UKBB: lambda = 1.843, MGI: lambda = 1.911). 
Association analysis was restricted to four-digit HLA allele groups, which were present in 
both cohorts. Significance was defined using a Bonferroni-corrected P value.

Mendelian randomization

Details on bidirectional association of IBD and CDI risk variants are included in the 
supplemental data. For Mendelian randomization (MR) analyses, the a priori exposure of 
interest was IBD, and the outcome of interest was CDI. The instrumental variables (i.e., 
SNPs) for the exposure of interest and their associated summary statistics were extracted 
from a published meta-analysis of IBD susceptibility (16). Only instrumental variables 
which reached genome-wide significance (P < 5e−8) in the European cohort were 
included. Each instrumental variable was tested for bias using the F-statistic {F-statistic = 
[r2 × (N − 1 − k)]/[(1 − r2) × k]} (17). All instrumental variables with an F-statistic of <10 
were excluded from analyses. Independent instrumental variables were identified using 
the clumping method in the TwoSampleMR package (version 0.5.6), which identifies 
the instrumental variable with the strongest association with the exposure of interest 
if multiple instrumental variables are located in the same region (18). The outcome 
data set included summary statistics generated from the meta-analysis of CDI described 
above. Two-sample MR was performed using the TwoSampleMR package in R (version 
4.1.3) (19). MR Egger and inverse variance weighted (IVW) methods are reported. Both 
MR Egger and IVW measures were tested for heterogeneity. The Egger intercept was 
calculated to assess for directional pleiotropy, and sensitivity analysis was performed 
with MR-PRESSO. Scatter plots (SNP effect on exposure by SNP effect on outcome), forest 
plots (SNP effect size on outcome and leave one out analysis), and funnel plots were 
generated (Fig. S1 to S12). The statistical significance threshold was P < 0.05.

MR was also performed to assess for reverse causality, with CDI as the exposure of 
interest and IBD as the outcome of interest. All variants meeting an association P < 1e−5, 
a pHet of >0.05, a MAF of 0.05, and a consistent direction of effect across all three cohorts 
in the CDI meta-analysis were included in the exposure data set. The same methodologic 
approach was applied to identify independent SNPs. The outcome data set included 
12,716,084 SNPs in 34,652 European individuals (“ieu-a-31”).16 Analyses were again 
performed using the TwoSampleMR package in R (19). MR egger and IVW significance 
values are reported along with tests for heterogeneity and directional pleiotropy. Scatter 
plots, forest plots, and funnel plots were generated and are provided in the supplemen­
tal data (Fig. S13 to S16).

Approval

The UKBB analyses in this study were conducted under the UK BioBank Resource Project 
18120. Details on data availability are included in the supplemental material.

RESULTS

Meta-analysis of CDI and fine mapping

GWAS summary statistics from three cohorts, including 3,500 cases of CDI (MGI [n = 
1,229], UKBB [n = 830], and FinnGen [n = 1,441]) and 674,323 controls (MGI [n = 50,259], 
UKBB [n = 407,993], and FinnGen [n = 216,071]) were meta-analyzed (Table S2). One SNP, 
HLA-C;LINC0257-rs3134745-C (P = 3.91e−08), reached genome wide significance. After 
conditional and joint analyses (COJO), rs3134745-C remained genome-wide significant (β 
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= 0.16, P = 4.27e−8) (Table 1). This variant annotated to an intergenic location between 
HLA-C and LINC0257 in the major histocompatibility complex (MHC) on chromosome 6. 
A LocusZoom plot (±500 kB), using hg19/1000 Genomes Nov 2014 EUR as the reference, 
demonstrated LD across the region (Fig. 1). To identify a potentially causative HLA allele 
group in the region, fine mapping of chromosome 6 was performed in the MGI and UKBB 
cohorts. The rs3134745 variant was again identified as having the strongest association 
signal in this region (P = 5.18e−5). No HLA allele groups exceeded a Bonferroni-corrected 
statistical significance threshold of ≤2.54e−4 (0.05/197) (Table S3). However, a suggestive 
signal was observed for HLA-B*35:01 (P = 4.74e−4).

An additional 153 variants had an association P value of <1e−5 in the meta-analysis, 
with a corresponding p-Het of >0.05, a MAF of >0.05, and a consistent direction of 
effect across all three cohorts (Table S2). Of these 153 variants, 5 were found to be 
independently associated with CDI (at a P value of <1e−5) after COJO analysis (Table 
1). These variants included PRDM2;KAZN-AS1-rs10927954-C (β = 0.19, P = 8.72e−7), 
LINC02582;FBXO15-rs12458428-A (β = 0.12, P = 3.23e−6), RETNLB;TRAT1-rs11707141-G 
(β = 0.12, P = 5.22e−6), LINC01717;LINC01774-rs1182870-C (β = 0.18, P = 5.98e−6]), and 
COL25A1-rs10031490-G (β = 0.17, P = 8.54e−6).

MR

Genetically predicted IBD was tested for association with CDI. Instruments (i.e., SNPs) 
were extracted from the Liu et al. meta-analysis, which included combined summary 
statistics for GWAS and immunochip analyses of IBD susceptibility (16). There were 
159 SNPs of which 106 were found to be independent after clumping. Of these, 105 
were present in the outcome data set (CDI). Genetically predicted IBD was significantly 
associated with risk of CDI using both MR Egger (β = 0.15, P = 0.027; OR 1.16 [95% CI 
1.02–1.31]) and IVW (β = 0.09, P = 0.001; OR 1.10 [95% CI 1.04–1.15]) methods (Table 2). 
There was no significant heterogeneity (MR Egger [P = 0.296] and IVW [P = 0.30]) and no 
directional pleiotropy (P = 0.37). Furthermore, the MR-PRESSO global test indicated no 
pleiotropy (P = 0.31).

Sensitivity analyses were then performed to assess for causal effects by disease 
subtypes. In Crohn’s disease (CD), 142 SNPs were identified from Liu et al., and of these, 
99 SNPs were found to be independent after clumping. Further, 97 were present in 
the outcome data set (CDI). There was no association between CD and CDI using MR 
Egger (β = 0.08, P = 0.19; OR 1.09 [95% CI 0.96–1.23]), but there was a significant 
association using IVW (β = 0.06, P = 0.008; OR 1.06 [95% CI 1.02–1.11]) (Table 2). There 
was no heterogeneity in either test (MR Egger [P = 0.49], IVW [P = 0.51]) or evidence of 
directional pleiotropy (P = 0.698). Additionally, the MR-PRESSO global test indicated no 
pleiotropy (P = 0.53). For ulcerative colitis (UC), there were 89 SNPs identified from Liu 
et al., and of these, 69 SNPs were found to be independent after clumping. Further, 62 
were present in the outcome data set (CDI). There was a significant association between 
UC and CDI using MR Egger (β = 0.20, P = 0.01; OR 1.22 [95% CI 1.05–1.41]) and IVW (β 
= 0.10, P = 0.0003; OR 1.11 [95% CI 1.05–1.17]) (Table 2). There was no heterogeneity in 
either test (MR Egger [P = 0.48] or IVW [P = 0.45]) or evidence of directional pleiotropy (P 

TABLE 1 Meta-analysis of genome-wide association study summary statistics identifies six independent genomic variants which are associated with 
Clostridioides difficile infectiona

rsID Chr BP
(build:hg19)

EA OA EA frequency Beta Standard error P value Function Gene

rs3134745 6 31,242,762 t c 0.328 −0.160 0.029 4.27E−08 Intergenic HLA-C;LINC02571
rs10927954 1 14,245,266 c g 0.097 0.185 0.038 8.72E−07 Intergenic PRDM2;KAZN-AS1
rs12458428 18 71,331,397 a c 0.328 0.124 0.027 3.23E−06 Intergenic LINC02582;FBXO15
rs11707141 3 108,487,582 a g 0.720 −0.124 0.027 5.22E−06 Intergenic RETNLB;TRAT1
rs1182870 1 208,971,963 t c 0.878 −0.179 0.039 5.98E−06 Intergenic LINC01717;LINC01774
rs10031490 4 109,771,479 a g 0.861 −0.171 0.038 8.54E−06 Intronic COL25A1
aBP, base position; Chr, chromosome; EA, effect allele; OA, other allele.
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= 0.18). Again, the MR-PRESSO global test indicated no pleiotropy (P = 0.44). Output from 
the scatter plot (Table S7) showing SNP effects on UC and CDI (Fig. 2) revealed an SNP, 
rs80174646-A, which was substantially protective for both UC (β = −0.48) and CDI (β = 
−0.086). This SNP annotates to an intronic region of the IL23R gene.

Reverse causality was also evaluated (i.e., genetically mediated CDI causal for IBD). 
Of the 154 SNPs, 7 remained independent after clumping and 5 were present in the 

FIG 1 A LocusZoom plot demonstrating linkage disequilibrium between the genome-wide significant variant for CDI, rs3134745, and SNPs ± 500 kB of this 

variant.

TABLE 2 MR identifies significant effect of IBD susceptibility variants on CDIa,b

Exposure Method N Beta P value OR

Outcome: CDI
  IBD MR Egger 105 0.145 0.027 1.156 (1.018–1.312)
  IBD Inverse variance weighted 105 0.091 0.001 1.096 (1.040–1.154)
  CD MR Egger 97 0.082 0.188 1.085 (0.962–1.225)
  CD Inverse variance weighted 97 0.060 0.008 1.061 (1.016–1.109)
  UC MR Egger 62 0.197 0.010 1.218 (1.053–1.410)
  UC Inverse variance weighted 62 0.103 0.0003 1.109 (1.049–1.173)
Outcome: IBD
  CDI MR Egger 5 0.178 0.669 1.195 (0.571–2.498)
  CDI Inverse variance weighted 5 0.054 0.424 1.055 (0.925–1.203)
aSensitivity analyses with disease subtypes highlight effect driven by UC susceptibility variants, rather than CD. N 
denotes the number of SNPs for the exposure variable.
bCDI, Clostridioides difficile infection; IBD, inflammatory bowel disease; MR, Mendelian randomization; UC, 
ulcerative colitis.
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outcome data set. MR Egger and IVW methods indicated no association with IBD (P = 
0.67 and P = 0.42, respectively) (Table 2). There was no evidence of heterogeneity in the 
two tests (P = 0.88 and P = 0.94, respectively). There was no evidence of pleiotropy when 
evaluated using the Egger intercept (P = 0.76) or the MR-PRESSO global test (P = 0.94).

DISCUSSION

There are several major findings from this paper. First, we describe a novel variant 
on chromosome 6, which is associated with susceptibility to CDI at genome-wide 

FIG 2 SNP effects on ulcerative colitis (UC) against SNP effects on Clostridioides difficile infection (CDI). Each black point represents an individual SNP. The SNP 

with the largest effect size on UC (β = −0.48) and CDI (−0.09) is rs80174646, which is an intronic variant in IL23R. Negative beta values for the exposure SNP are 

flipped to the positive direction to represent the effect allele, with corresponding flipping of the outcome beta value to reflect this change.
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significance, reinforcing the concept of host immunity as an important contributor to 
CDI susceptibility. Second, results from the MR suggest that genetically predisposed UC 
is potentially causal for CDI, which may help explain the observed association between 
the two diseases. Third, the most notable SNP effect across diseases (UC and CDI), 
rs80174646-A, annotates to the IL23R gene, which may highlight an avenue for further 
therapeutic investigation.

There are two notable published GWASs for CDI with the first including 1,160 cases of 
CDI and 15,304 controls and the second including 988 cases of CDI and 13,632 controls 
(20, 21). Both studies highlight an association signal near chromosome 6. In the first 
study, rs114751021-A was linked to antibiotic-associated CDI in subset analyses (OR 2.42, 
95% CI 1.84–3.11) (20). The rs114751021 variant annotates to the SNORD117 gene on 
chromosome 6 and is near several HLA genes. In the second study, several variants 
on chromosome 6 were significantly associated with CDI at genome-wide significance 
(rs68148149-C, P = 8.06 × 10−14; rs3828840-T, P = 9.96 × 10−14; rs35882239-A, P = 8.18 
× 10−12; rs71534541-C, P = 5.12 × 10−11; rs35222480-A, P = 9.88 × 10−11; rs116603449-T, 
P = 5.42 × 10−10), reinforcing the concept that genetic variation in this region contrib­
utes to CDI susceptibility. Importantly, the second study analyses were adjusted for 
age, body mass index, sex, ancestry, nursing home status, chemotherapy, diabetes, 
human immunodeficiency virus, transplant medications, corticosteroids, and antibiotic 
exposure, reducing confounding by co-morbidity and exposure. The lead variant in this 
work, rs68148149, is located between HLA-DRB5 and HLA-DRB6 and near HLA-DRB1. 
While the broad HLA association analyses did not reveal any statistically significant 
association, subset analysis of the HLA-DRB allele groups did suggest higher risk with the 
DRB1*15:01-DRB5*01:01 haplotype.

In our meta-analysis, we had a substantial gain in power with 3,500 cases of CDI, 
over three times what has been previously reported. A genome-wide significant variant, 
rs3134745-T, annotating to chromosome 6 (position 31242762), was associated with 
increased susceptibility to CDI. Using LDlink in a European ancestry population, the 
genome-wide variant (rs3134745) was not found to be in high LD with the lead variant 
from either of the previous studies: rs114751021 (r2 = 0.008) or rs68148149 (r2 = 0.025) 
(22). Thus, these variants may represent independent associations in the same region or 
highlight a common association with an unknown variant. Regardless, the reproducible 
signal on chromosome 6, near the MHC, strongly implicates host immunity in susceptibil­
ity to CDI.

We also identified a possible HLA allele group associated with CDI susceptibility, 
HLA-B*35:01. As described above, prior data highlight the DRB1*15:01-DRB5*01:01 risk 
haplotype in CDI susceptibility. In our data set, the DRB1*15:01 allele group had an 
association P value of 0.07. The DRB5*01:01 allele group was not available for testing, 
however. Ultimately, larger-powered studies will be beneficial to clarify causative HLA 
allele groups, given the small sample sizes of both studies. Interestingly, variation at the 
class II HLA genes has been found to be associated with rates of bezlotoxumab success 
implying that not only genetic variation at the MHC is important in disease susceptibility 
but also stratification of treatment response (23). The reason genetic variation at the 
MHC influences susceptibility to CDI remains unknown. However, as genetic variation at 
the MHC has been linked to susceptibility to several infections, aberrations in antigen 
recognition, processing, and presentation may represent a shared mechanism of disease 
pathogenesis (24–27).

There were also interesting genes that did not reach genome-wide significance 
but did reach a more nominal significance threshold. One example is rs11707141-A, 
which is an intergenic variant located between RETNLB and TRAT1. This variant is in 
high LD (R2 = 0.99) with a nonsynomous exonic variant (rs11708527: C59T/P20L) in 
RETNLB. (Supplementary Data, Table S8) RETNLB encodes the protein resistin-like beta, 
also known as RELM-Beta or FIZZ2. RELM-Beta mRNA has been shown to be expressed 
in goblet cells in the colon (28). RELM-Beta exerts local antimicrobial activity (29) in 
addition to contributing to the spatial segregation between epithelial cells and gut 
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microbiota (30). RELM-Beta deficient mice infected with Citrobacter rodentium exhibit 
impaired CD4+ T-cell recruitment, reduced production of interleukin22 (IL-22), increased 
invasion of pathogens into colonic crypts, worsened inflammation, and higher mortality 
which reverses with RELM-Beta rescue via enema (31). Furthermore, RELM-Beta has 
been shown to exert species­specific antimicrobial effects, which can lead to loss of 
microbiome-mediated homeostasis and subsequent colitis (32). These data suggest that 
antimicrobial proteins secreted by goblet cells are integral to the host response in enteric 
infections. The potential genetic association between RETNLB and CDI as well as the 
functional work showing the role of RELM-Beta in protecting against enteric infections 
suggests that RELM-Beta should be investigated further in the pathogenesis of CDI and 
may represent a novel therapeutic target.

A second important finding is that genetic predisposition toward development of UC 
is potentially causal for CDI. IBD patients are more likely to be asymptomatic carriers of 
C. difficile implying the microbial dysbiosis or epithelial injury induced by IBD promotes 
a hospitable environment for this organism (3). However, there has been limited work 
investigating genetic links across these diseases. The advantage of using an MR approach 
to answer this question is that genetic variants are randomly distributed at conception 
and do not change over time regardless of environmental or medication exposures. 
Using MR, a potentially causal relationship was observed between genetically predis­
posed UC and CDI. It is worth noting that none of the IBD risk variants included in 
MR were found to be significant in the GWAS of CDI. This negative association may be 
due to modest effect sizes of individual variants that could not be picked up on this 
relatively small GWAS, or it may be that individual variants offer little direct influence 
on CDI susceptibility and polygenic risk is what drives the relationship. These results are 
important because they not only help clarify the directional relationship between IBD 
and CDI but they again implicate the importance of the host immune response in CDI as 
many of the IBD susceptibility variants are highly represented in immune pathways.

A final notable finding from these results is the effect of the variant rs80174646-A, 
annotated to the IL-23R gene, which was found to be protective in both UC and CDI 
in the MR. This variant is in high LD (R2 = 0.92) with a nonsynomous exonic variant 
(rs11708527: G1142A/R381Q) in IL23R (supplemental material, Table S8). An interesting 
study in 2013 showed that (i) human intestinal biopsies from patients with C. difficile 
colitis had increased staining of IL-23p19 in lamina propria cells compared to controls 
(1.33 ± 0.30 vs 0.7 ± 0.29, P = 0.008); (ii) mice lacking IL-23 signaling (IL-23p19−/−) had a 
significantly higher likelihood of survival than wild-type mice (100% vs 16.7%); and (iii) 
mice with IL-23 signaling neutralized by an anti-p19 antibody also exhibited improved 
survival (100% vs 50%) (33). These data suggest that blockade of IL-23 signaling is 
beneficial in CDI. However, there are conflicting data regarding IL-22 signaling and 
CDI. Because IL-23 is a potent inducer of IL-22, one would hypothesize based on the 
data above that reduction in IL-22 would be associated with a protective effect in CDI. 
However, several studies have shown the opposite, that IL-22 itself exerts a protective 
effect in CDI. Specifically, in mouse studies, IL-22 has been shown (i) to direct glycosyla­
tion of the gut microbiome, creating an unfavorable environment for Clostrioides difficile; 
(ii) reduce CDI-mediated colonic inflammation; (iii) limit the negative consequences of 
systemic dissemination of commensal bacteria through complement-activated bacterial 
phagocytosis; and (iv) improve morbidity and mortality associated with infection (34–
36). Ultimately, the relationship between IL-23 signaling and CDI is likely complex 
and remains incompletely understood. With the increasing adoption of targeted IL-23 
therapies in the treatment of IBD, it will be of benefit to investigate the infection rates 
of CDI across exposed and unexposed patients as well as recurrence rates and disease 
severity. Such epidemiologic studies may yield important insights into the therapeutic 
effect and therapeutic potential of this pathway in CDI.

There are some limitations of this work that are important to acknowledge. First, this 
meta-analysis of CDI was relatively small and thus may underestimate genetic contribu­
tion to CDI susceptibility. Second, individual-level genotypes were not available for all 
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cohorts. Therefore, HLA association analysis may also underestimate association effects. 
The suggestive signal at HLA-B*35:01 should be tested for association in larger cohorts. 
Third, while MR results suggest a causal relationship between genetically predicted UC 
and CDI, results should be replicated in additional cohorts with individual-level data on 
confounders of interest (i.e., antibiotics and health care exposure). Fourth, the results of 
this paper were gathered from a European ancestry cohort. Therefore, these results may 
not be generalizable to other populations. Finally, these results do not shed light on CDI 
severity or recurrence which would be beneficial to investigate in follow up studies, as 
prior small cohort studies have identified possible genetic associations (23, 37, 38).

In summary, we report the largest GWAS of CDI to date reproducing the association 
between genetic variation on chromosome 6 (near the MHC) and susceptibility to CDI. 
We also provide data to support a causal relationship between genetically predicted UC 
and CDI. These results should prompt investigation into the mechanisms by which host 
immunity confers increased susceptibility to UC and CDI as such work could improve 
our understanding of the relationship between these two diseases and perhaps identify 
novel therapeutic targets for this important patient population.
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