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Abstract 

Background  Z-DNA, a left-handed helical form of DNA, plays a significant role in genomic stability and gene regula‑
tion. Its formation, associated with high GC content and repetitive sequences, is linked to genomic instability, poten‑
tially leading to large-scale deletions and contributing to phenotypic diversity and evolutionary adaptation.

Results  In this study, we analyzed the density of Z-DNA-prone motifs of 154 avian genomes using the non-B DNA 
Motif Search Tool (nBMST). Our findings indicate a higher prevalence of Z-DNA motifs in promoter regions across all 
avian species compared to other genomic regions. A negative correlation was observed between Z-DNA den‑
sity and developmental time in birds, suggesting that species with shorter developmental periods tend to have 
higher Z-DNA densities. This relationship implies that Z-DNA may influence the timing and regulation of develop‑
ment in avian species. Furthermore, Z-DNA density showed associations with traits such as body mass, egg mass, 
and genome size, highlighting the complex interactions between genome architecture and phenotypic character‑
istics. Gene Ontology (GO) analysis revealed that Z-DNA motifs are enriched in genes involved in nucleic acid bind‑
ing, kinase activity, and translation regulation, suggesting a role in fine-tuning gene expression essential for cellular 
functions and responses to environmental changes. Additionally, the potential of Z-DNA to drive genomic instability 
and facilitate adaptive evolution underscores its importance in shaping phenotypic diversity.

Conclusions  This study emphasizes the role of Z-DNA as a dynamic genomic element contributing to gene regula‑
tion, genomic stability, and phenotypic diversity in avian species. Future research should experimentally validate these 
associations and explore the molecular mechanisms by which Z-DNA influences avian biology.
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Introduction
In Z-DNA, the sugar-phosphate backbone follows a zig-
zag pattern, hence the name “Z-DNA” [1–3]. This zigzag 
conformation results in a more compact and elongated 
structure than B-DNA [4, 5]. Z-DNA has attracted atten-
tion because of the frequent presence and conservation 
of Z-DNA-forming sequences among various eukary-
otic species [6, 7]. Specific base-pairing sequences drive 
its unique structure and are typically stabilized under 
conditions such as high salt concentrations or the pres-
ence of certain cations [8, 9]. This conformation can form 
transiently under physiological conditions, especially in 
regions with alternating purine-pyrimidine sequences 
[10, 11].

Z-DNA formation is favored by sequences rich in alter-
nating CG (cytosine-guanine) repeats [12]. This helical 
configuration arises due to the physical and chemical 
properties of these specific nucleotide pairings, which 
induce the DNA to adopt a left-handed spiral structure 
under certain conditions, such as negative supercoil-
ing and physiological ionic strength. This alteration also 
readily occurs with alternating CA sequences on one 
strand and TG sequences on the complementary strand 
[13, 14]. The inherent instability of these sequences can 
create local torsional stress, further promoting the transi-
tion from the typical right-handed B-DNA to left-handed 
Z-DNA. Other sequences, including alternating purine-
pyrimidine tracts such as (GA)n or (GT)n repeats, can 
also adopt this configuration under specific conditions. 
The propensity of these sequences to form Z-DNA is 
influenced by factors like sequence length, superhelical 
density, and the presence of stabilizing proteins [15].

Z-DNA plays a significant role in several fundamental 
biological processes, including transcription [16], epi-
genetics [17], DNA damage repair [18], genome stabil-
ity [19, 20], genome evolution [21], recombination [22], 
RNA editing [23], and signal transduction [24]. Its ability 
to form in response to supercoiling and interact with var-
ious proteins underscores its multifaceted role in regulat-
ing and maintaining genomic functions [5].

Z-DNA formation induces genomic instability by pro-
moting double-strand breaks (DSBs) [18, 20, 25]. These 
breaks constitute a critical form of DNA damage that 
can lead to severe genetic alterations if not correctly 
repaired. Z-DNA’s unique left-handed helical structure 
creates tension and torsional stress within the DNA mol-
ecule, making it more susceptible to breakage [18]. When 
DSBs occur, the cell’s repair mechanisms attempt to fix 
the damage, but these processes can be error-prone. For 
instance, microhomology-mediated end-joining (MMEJ) 
is a repair mechanism that aligns short homologous 
sequences flanking the breakpoints [26] but it is less 
accurate than homologous recombination, often resulting 

in deletions or insertions. This error-prone repair can 
lead to large-scale deletions, altering the genomic land-
scape significantly and making Z-DNA regions hotspots 
for genetic variation, thereby contributing to natural 
selection and adaptive evolution [21].

An example of Z-DNA-induced genomic instability 
driving phenotypic evolution is observed in sticklebacks, 
where the transition from marine to freshwater environ-
ments has led to the repeated loss of pelvic fins [27, 28]. 
This phenotypic change is primarily driven by deletions 
in a specific enhancer region of the PITX1 gene, which 
is crucial for pelvic fin development [29]. The enhancer 
region in marine sticklebacks contains TG-dinucleotide 
repeats prone to forming Z-DNA, making this region 
particularly susceptible to double-strand breaks. These 
deletions silence PITX1 expression in developing pelvic 
fins, resulting in their loss in freshwater populations [27, 
28]. This process has occurred independently in different 
stickleback populations, demonstrating how Z-DNA can 
facilitate rapid and repeated evolutionary adaptations. 
This evolutionary convergence highlights the importance 
of genomic regions prone to Z-DNA formation in driving 
phenotypic diversity and adaptability in response to envi-
ronmental pressures.

Similarly, variations in PITX1 expression contribute to 
notable phenotypic traits like foot feathering in domes-
tic birds, such as pigeons and chickens. A 44-kb deletion 
upstream of PITX1 in pigeons [30] and a 17.7-kb deletion 
in chickens are associated with this phenotype [31, 32]. 
These deletions are selected traits in domestic breeds, 
highlighting the role of PITX1 in phenotypic diversity. 
The regulation of PITX1 involves complex genetic inter-
actions [33]. Deletions disrupting conserved elements 
near the PITX1 gene can significantly alter its expression. 
One such regulatory element is the pan-limb enhancer 
(Pen), which interacts differently with PITX1 in forelimbs 
and hindlimbs [34]. Structural mutations repositioning 
Pen near PITX1 can cause ectopic expression, leading to 
homeotic transformations such as the arm-to-leg trans-
formation observed in Liebenberg syndrome [35]. These 
regulatory mechanisms underscore the intricate control 
required for PITX1 expression and its impact on limb 
development. The 17-kb deletion associated with foot 
feathering in chickens involved a 7-bp microhomology at 
the deletion junctions [31]. We propose that the forma-
tion of Z-DNA in these regulatory regions can contrib-
ute to the observed genomic instability and subsequent 
deletions.

Given its involvement in phenotypic variation and 
gene expression regulation, we speculate that the den-
sity of Z-DNA-forming sequences in the genome is a 
crucial factor influencing genomic stability, gene regu-
lation, adaptive evolution, and phenotypic diversity in 
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birds. High-density Z-DNA regions are prone to genomic 
instability, leading to increased mutation rates, double-
strand breaks (DSBs), and large-scale deletions or rear-
rangements. These mutations and structural variations 
often occur in regulatory regions of the genome, such as 
enhancers and promoters, where they can significantly 
alter gene expression patterns. This genomic instability 
is a double-edged sword; while it can lead to deleterious 
mutations, it also provides a rich source of genetic varia-
tion essential for evolutionary processes.

Yeast artificial chromosomes (YAC) were widely pro-
vided as a good tool in chromosomal function and stabil-
ity study, especially for non-B DNA-induced fragility [18, 
36–39]. Shuttle vectors usually contain centromeres, tel-
omeres, and specific selection markers, enabling them to 
replicate in bacteria and eukaryotic cells. Another feature 
of YACs is that the largest size of inserts could be approx-
imately 100 kb [40]. All above allow YACs to mimic 
eukaryotic genomic DNA’s metabolic processes, includ-
ing replication, damage, repair, and chromatinization.

Critical life-history traits such as developmental time, 
genome size, body mass, and egg mass are closely tied to 
an organism’s growth, reproduction, and survival, mak-
ing them critical indicators of evolutionary fitness. For 
instance, developmental time is closely linked to species-
specific life strategies [41, 42], where faster-developing 
species may be subject to different genomic pressures 
than those with more extended developmental periods. 
Similarly, genome size varies among avian species and 
is often associated with metabolic efficiency and adapta-
tions to distinct ecological niches [43, 44]. Body and egg 
mass also reflect physiological and reproductive strate-
gies shaped by evolutionary selection. We hypothesize 
that species with shorter developmental periods and 
higher metabolic demands may display higher Z-DNA 
densities, potentially influencing adaptive responses 
through genomic instability and variation.

To better understand the impact of Z-DNA density 
on avian biology, we explored its correlation with these 
critical life-history traits. By investigating the relation-
ships between Z-DNA density and characteristics such 
as developmental time, genome size, body mass, and egg 
mass, we aim to uncover genomic regulatory patterns 
that shape species development and evolutionary trajec-
tories. Understanding these correlations will shed light 
on how Z-DNA contributes to the evolution of avian 
species and the maintenance of phenotypic diversity. 
In this study, we applied phylogenetic linear regression 
models to analyze the correlation between Z-DNA den-
sity and various physiological traits, including adult body 
mass, egg mass, and developmental durations, providing 
a comprehensive view of Z-DNA’s role in avian biology. 
Additionally, we examined the density of Z-DNA-prone 

motifs in the promoter regions of avian genomes. This 
study is among the first to systematically investigate 
Z-DNA density in avian species, correlating it with devel-
opmental and phenotypic traits unique to birds.

Materials and methods
S1 nuclease test
Two web-based resources, “non-B DNA Motif Search 
Tool” (nBMST) (version 2.0) [45] and function “zdna: 
Predicting Z-DNA motif(s)” on R package “gquad” doc-
umentation (https://​CRAN.R-​proje​ct.​org/​packa​ge=​
gquad), were applied to predict possible “spots” that could 
form Z-DNA (Table S1) [46]. The Z-DNA search crite-
ria are that one strand must contain alternating purine/
pyrimidine sequences (such as GT and GC repeats). The 
S1 nuclease was used to identify sequences recognized 
as Z-DNA in the nBMST to determine Z-DNA forma-
tion in plasmids after synthesis. S1 nuclease specifically 
degrades single-stranded nucleic acids and cleaves at the 
junctions between right-handed and left-handed DNA 
segments [47]. It has also been utilized to detect the for-
mation of supercoils [18, 48]. For the S1 nuclease assay, 
a mixture containing approximately 1000 ng of plasmid 
DNA, 0.1 µl of S1 nuclease, 6 µl of 5X reaction buffer, and 
an appropriate amount of water to a final volume of 30 µl 
was prepared. The mixture was incubated at room tem-
perature for 30 min, and the reaction was terminated by 
adding 2 µl of 0.5 M EDTA, followed by heating at 70 °C 
for 10 min.

YAC assay
A yeast artificial chromosome (YAC) was used to investi-
gate the impact of Z-DNA sequences detected around the 
Pen region on genomic stability, following the procedures 
outlined by Polleys and Freudenreich (2020) [39]. In our 
experiment, the pRS415 plasmid—a YC-type shuttle vec-
tor with LEU2 selection for Saccharomyces cerevisiae—
was obtained from ATCC​®, and Omics Bio synthesized 
the ZP1 and ZP4 sequences. The pRS415 vector was 
transformed into wild-type yeast strains (W303-1a) and 
plated on LEU- media for the fragility assay. All sub-
sequent experiments were conducted at an incuba-
tion temperature of 30  °C. The yeast colonies with the 
transformed pRS415 plasmid were incubated in a YPD 
medium to induce the loss of LEU2 for approximately 
22 h. Afterward, 100 µl of the cultures were diluted to a 
specific concentration and plated on YPD plates. These 
were then replica plated on LEU-media after two days. 
The survival ratio of colonies between LEU- and YPD 
plates was calculated for each culture, with and with-
out the Z-DNA insert. Additionally, amplification of the 
LEU2 gene was performed to determine if the failure to 
grow on LEU- plates was due to the loss of the selection 
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marker. We employed the maximum likelihood method 
using the fluctuation analysis calculator, FALCOR [43], to 
estimate the recombination rate.

Genomic Z‑DNA and short tandem repeat (STR) motifs 
search
The Non-B DNA Motif Search Tool (nBMST) (version 
2.0) [45, 46, 49] was utilized to identify Z-DNA and short 
tandem repeat (STR) motifs using the computational 
resources of the National Center for High-performance 
Computing (NCHC). The genomes of all available avian 
species (154 species, Table S6) from the UCSC Genome 
Browser [50] were included in the search. The primary 
haplotype or the most recent version was used for species 
with multiple assembly versions.

Z‑DNA and STR motif density and ancestral state 
reconstruction
The phylogeny of the 154 avian species (Table  S6) was 
obtained from BirdTree.org [51] using the Ericson all-
species tree source to create 1000 trees. A consensus tree 
was generated using TreeAnnotator (version 1.10.4) [52] 
from these 1000 trees. Z-DNA and STR motif densities 
for each species were calculated by dividing the num-
ber of motifs by the genome size. The function fitCon-
tinuous from the package geiger (version 2.0.11) [53] was 
used to fit Z-DNA and STR motif densities to the “BM”, 
“OU”, and “EB” models on the consensus tree. The “OU” 
model was the best fit for both Z-DNA and STR motifs 
according to AICc values. The function fastAnc from the 
package phytools (version 1.5.1) [54] was then used to 
estimate the ancestral state of Z-DNA and STR densities, 
and the function contMap was used to plot the phylogeny 
tree with the ancestral states.

Phylogenetic linear regression model
Data on several physiological traits, including adult 
body mass, egg mass, genome size, developmental dura-
tion, incubation duration, and fledging duration, were 
obtained from previous studies [55, 56]. These traits and 
adjusted measures, such as body mass-adjusted dura-
tions and egg mass-adjusted durations, were used to 
develop phylogenetic linear regression models incor-
porating Z-DNA and STR motif densities. Each pair of 
traits was analyzed across three categories: “all species”, 
“non-Passeriformes species”, and “Passeriformes spe-
cies”. The treedata function was used to exclude species 
lacking trait data from the phylogenetic analysis. Three 
evolutionary models—“BM” (Brownian Motion), “OU” 
(Ornstein-Uhlenbeck), and “lambda”—were fitted using 
the phylolm function from the phylolm package (ver-
sion 2.6.2) [57]. The best-fit model for each trait pair is 
provided in the supplementary table. Phylogenetic linear 

regression models were then constructed using the best-
fit model for each trait pair, with 1,000 bootstraps to 
assess the robustness of the correlations. Two traits were 
considered correlated if the p-value was < 0.05 and the 
adjusted R-squared value was > 0.1.

Z‑DNA location analysis and gene ontology (GO)
To evaluate the distribution of Z-DNA motifs upstream 
of genes, the nBMST output TSV file was compared 
with the annotation GTF file to identify instances where 
the stop site of a Z-DNA motif appeared within 10-kb 
upstream of a start codon. The number of Z-DNA motifs 
per kbp within the 10 kbp upstream region of all start 
codons in the genome was then calculated. For this anal-
ysis, Augustus annotation files from the UCSC Genome 
Browser were used for each species, except for Myiop-
sitta monachus and Apteryx mantelli. Since an Augustus 
annotation file was unavailable for Myiopsitta monachus, 
the xenoRefGene annotation file was used instead. For 
Apteryx mantelli, assembly aptMan1 was used for motif 
searching, but no suitable annotation file was available 
for this assembly version.

To determine if the number of Z-DNA motifs within 
1 kb of a start codon is significantly higher than in other 
regions, we first applied the Lilliefors test to assess 
whether the Z-DNA counts in each region followed a 
normal distribution. This was done using the lillie.test() 
function from the R package nortest (version 1.0.4) 
(https://​cran.r-​proje​ct.​org/​web/​packa​ges/​norte​st/​index.​
html). Since the data did not follow a normal distribu-
tion, we proceeded with the Friedman test to examine 
whether the Z-DNA counts across different regions were 
significantly different. This was performed using the 
friedman.test() function in R (version 4.4.1). Following 
the Friedman test, Nemenyi’s all-pairs comparisons test 
was used to assess pairwise differences in Z-DNA counts 
between regions. This was implemented using the frd-
AllPairsNemenyiTest() function from the PMCMRplus 
package (version 1.9.12) (https://​cran.r-​proje​ct.​org/​web/​
packa​ges/​PMCMR​plus/​index.​html).

To determine the functions of genes with the highest 
number of Z-DNA motifs in their upstream regions, the 
nBMST output TSV file was again compared with the 
annotation GTF file to check if the stop site of a Z-DNA 
motif appeared within 10  kb upstream of a gene’s start 
codon. The number of Z-DNA motifs within this 10-kb 
upstream region for all genes was then calculated. NCBI 
RefSeq annotation files from the UCSC Genome Browser 
were used for functional gene cluster analysis. The top 5% 
of genes with the highest Z-DNA motifs in each species 
were selected for functional clustering using the Data-
base for Annotation, Visualization, and Integrated Dis-
covery (DAVID) [58, 59]. Genes with the same number 

https://cran.r-project.org/web/packages/nortest/index.html
https://cran.r-project.org/web/packages/nortest/index.html
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of Z-DNA motifs within their 10-kb upstream region 
as those in the fifth percentile were also included. Only 
74 species were included in this analysis, as ncbiRefSeq 
annotation files were available for 88 species, and DAVID 
could not recognize the gene IDs of 14 species.

Data availability
All raw data were deposited in the figshare with DOI 
nos. https://​doi.​org/​10.​6084/​m9.​figsh​are.​26925​115 and 
https://​doi.​org/​10.​6084/​m9.​figsh​are.​26924​593.

Results
Z‑DNA motifs prediction and structure determination 
and fragility assay
Understanding the distribution and density of Z-DNA 
motifs within key regulatory regions, such as the Pen 
region, provides valuable insights into potential gene 
regulation mechanisms and evolutionary pressures 
across species. The results of Z-DNA prediction on the 
Pen region are shown in Fig.  1a, with detailed informa-
tion on each motif provided in Table S1. In chickens, five 
motifs were detected on chromosome 13 between 10.11 
and 16.05 Mb, while in pigeons, six motifs were identified 
on scaffold 79 between 6.715 and 6.775  Mb. The aver-
age Z-DNA density in the Pen region is approximately 
one motif per 10  kb, about three times higher than the 
Z-DNA density across the entire genome in both chick-
ens and pigeons. This suggests that the Z-DNA density in 
the Pen region is higher than in other genomic regions. 
Compared to pigeons, the distribution of Z-DNA motifs 
on the PITX1 enhancers in chickens is more clustered 
and uneven, although the average Z-DNA density is simi-
lar in both species. Notably, both species’ most extended 
predicted motifs are identical in length, repeat type, and 
composition. In chickens and pigeons, the most extended 
motifs in the Pen region, ZP1 and TG19, respectively, 
consist of 19 TG repeats.

Repetitive sequences like TG repeats have been impli-
cated in genomic instability and deletions, which can 
have functional consequences on gene regulation and 
phenotypic traits. Stickleback fish’s upstream regions of 
the Pel gene contain a TG20 repeat, which may be simi-
lar to the TG19 repeats found in chickens and pigeons 
[28]. These findings suggest that the Pen region could 
be considered a fragility site compared to the rest of the 
genome, primarily due to the TG19 repeat. Furthermore, 
the differences in the distribution and composition of 
each motif between chickens and pigeons could explain 
the variation in deletion scales in the Pen region.

Investigating the structural properties of Z-DNA 
sequences, such as ZP1 and ZP4, and their impact on 
chromosomal stability provides crucial insights into the 
role of Z-DNA in genome integrity. During the structure 

determination, ZP1 and ZP4 were cleaved when reacted 
with S1 nuclease (Fig. 1b), indicating Z-DNA formation 
in vitro. To test the effect of the ZP1 and ZP4 sequences 
on chromosome stability in  vivo, we measured the rate 
of DNA double-strand breaks in yeast artificial chro-
mosomes (YACs) (Fig.  1c, S1 and S2). Z-DNA-forming 
sequences were positioned on the right arm of a YAC 
upstream of the URA3 gene. The left arm of the YAC 
contains the LEU2 gene, essential for maintaining the 
YAC. If Z-DNA induces breakage, it will result in the loss 
of the right arm of the YAC, including the URA3 gene, 
leading to resistance to 5-Fluoroorotic acid (FOA) (FOA 
resistance, FOAR). Thus, the rate of FOAR cell generation 
was measured to monitor the breakage rate. A ZP1, ZP4, 
or a control B-DNA-forming sequence was inserted into 
the YAC adjacent to the URA3 gene.

By conducting fragility assays, we aim to assess 
the capacity of Z-DNA-forming sequences to induce 
genomic breakage, even without exogenous stress factors, 
which may highlight their inherent instability and poten-
tial to cause gene loss or rearrangements under normal 
cellular conditions. In the fragility assay, both ZP1 and 
ZP4 sequences contributed to the loss of LEU2 (Fig.  1c 
and S2). The highest rate of LEU2 loss was observed with 
both ZP1 and ZP4 (Sign test, P = 0.02939) in the absence 
of exogenous DNA-damaging factors, with ZP4 also 
showing a marginal loss rate (Sign test, P = 0.12842).

The evolution of Z‑DNA density in bird
Investigating the genome-wide distribution of Z-DNA 
motifs and short tandem repeats (STRs) across avian 
species provides valuable insights into how these struc-
tural features contribute to genetic diversity and evolu-
tion. By comparing Z-DNA densities and STR densities, 
we aim to uncover patterns of genomic organization and 
evolutionary changes within and across bird lineages. 
The whole genome Z-DNA densities and STRs densities 
of 154 avian species (Table  S6 and S7) were conducted 
to ancestral state reconstruction analysis. Our phyloge-
netic tree analysis reveals substantial interspecific varia-
tion in Z-DNA density among the studied bird species, 
with values ranging from 76.72 to 240.08 motifs per 
megabase (Mb). Palaeognathae birds exhibit a higher 
density of Z-DNA than Neognathae birds (Fig. 2). Within 
Neognathae, both Anseriformes and the basal lineages 
of Neoaves show a higher Z-DNA density. In general, 
Z-DNA density is lower in more derived lineages within 
Neognathae. Passerine birds typically have relatively 
low Z-DNA density, except for species in the Passerel-
lidae family, where an expansion in Z-DNA density may 
have occurred in their common ancestor. Furthermore, 
Z-DNA expansion has occurred sporadically in Neog-
nathae birds, with notable increases in certain passerine 

https://doi.org/10.6084/m9.figshare.26925115
https://doi.org/10.6084/m9.figshare.26924593
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and non-passerine species. The ancestor of the genus 
Falco may also have experienced a rise in Z-DNA density.

Short Tandem Repeats (STRs) are DNA sequences 
where a short sequence of base pairs is repeated con-
secutively. The repeated units typically consist of 2–6 
base pairs, and these repeats can occur a variable 
number of times within a specific region. Similarly, 
analysis of STR density reveals significant interspecific 

variation, ranging from 479.06 to 1,353.89 motifs per 
Mb (Fig. S3). The phylogenetic changes in STRs differ 
markedly from those observed in Z-DNA, suggesting 
that these two genomic elements have distinct evolu-
tionary trajectories. Unlike Z-DNA, STR density is 
not exceptionally high in Palaeognathae birds and has 
decreased in Psittaciformes, indicating that the evolu-
tionary pattern of Z-DNA density may be unique.

Fig. 1  Distribution of Z-DNA motifs and structural analysis of supercoiled DNA. a Distribution of Z-DNA motifs in the Pen region of chickens 
and pigeons (not to scale). The analyzed regions correspond to chromosome 13 positions 16.05–16.11 Mb in chickens and scaffold 79 positions 
6.715–6.775 Mb in pigeons. b S1 nuclease digestion assay of pUC57 vectors with and without Z-DNA insertions. Vectors containing the ZP1 and ZP4 
motifs were susceptible to cleavage by S1 nuclease, indicating the presence of supercoiled structures associated with these motifs (original gel 
image shown in Fig. S11). c Fragility data of S. cerevisiae with the fragile sequence ZP1 integrated between the telomere seed sequence (G4T4)13 
and URA3 markers. YAC assays demonstrate that 5-FOA resistance increases in the presence of ZP1
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Developmental time predicts Z‑DNA density in birds
To explore the evolutionary relationships between 
Z-DNA density and critical life-history traits, we per-
formed a PGLS analysis across 154 avian species, inte-
grating data on both non-passerine and passerine birds. 
Given the variable availability of trait data across spe-
cies, the sample sizes for each analysis differed accord-
ingly. The results of the PGLS model confirmed that 
Z-DNA density in birds is significantly and negatively 
correlated with developmental time (Table S2, Fig.  4). 
A lambda or an OU model, which transforms the phy-
logeny into a covariance matrix, provided the best fit 

for examining the relationships among these variables 
(Table S2).

All 154 species were included in the PGLS analy-
sis of Z-DNA density and genome size. An analysis 
of the relationship between genome size and Z-DNA 
density across different bird groups reveals distinct 
patterns (Fig.  3a). In the overall group of bird spe-
cies, there is a weak positive correlation (R² = 0.1808, 
p = 2.324 × 10−8), suggesting a slight increase in 
Z-DNA density with larger genome sizes. For non-
passerine birds, there is no significant correlation (R² 
= −0.002996, p = 0.3986), indicating no association 

Fig. 2  Ancestral state reconstruction of Z-DNA density across 154 avian species. The phylogenetic tree illustrates the evolutionary relationships 
among the avian species, with branch colors representing the estimated Z-DNA density. The color gradient from green to red indicates varying 
Z-DNA densities, ranging from low (red) to high (blue) values, with specific density values noted by the color scale at the bottom (76.72 to 240.08 
motifs per Mb)
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between genome size and Z-DNA density. In contrast, 
passerine birds show a moderate positive correlation 
(R² = 0.3439, p = 6.342 × 10−7), indicating a more pro-
nounced increase in Z-DNA density with increasing 
genome size. These findings suggest that different evo-
lutionary pressures or functional roles may influence 
Z-DNA density between passerines and non-passer-
ines, with passerines showing a stronger association.

All 154 species were included in the PGLS analysis 
of STR density and genome size. Conversely, the analy-
sis reveals a minimal correlation between genome size 
and STR density across all groups (Fig. S5a). The pas-
serines show a weak positive correlation (R² = 0.08513, 
p = 0.0142235), while overall birds and non-passer-
ines exhibit no significant relationships (R² = 0.01382, 
p = 0.07821  and  R² = −0.007905, p = 0.609420, respec-
tively). This indicates that STR density is not substantially 

influenced by genome size, highlighting the need to con-
sider other factors in determining STR density.

There were 153 species, including 95 non-passerine 
birds and 58 passerine birds, in the PGLS analysis of 
Z-DNA density and body mass. Body mass shows mini-
mal influence when examining the relationship between 
body mass and Z-DNA density across bird groups (Fig. 
S4a). The overall birds display a weak positive correlation 
(R² = 0.09769, p = 4.957 × 10−5), while non-passerines 
and passerines exhibit no significant relationships (R² 
= 0.04387, p = 0.02339 and R² = −0.01746, p = 0.8833, 
respectively). These results suggest that body mass is not 
a significant determinant of Z-DNA density in birds.

There were 121 species, including 79 non-passerine 
birds and 42 passerine birds, in the PGLS analysis of 
Z-DNA density and egg mass. The relationship between 
egg mass and Z-DNA density also varies among bird 

Fig. 3  Phylogenetic linear regression analysis showing the relationship between Z-DNA density and (a) genome size and (b) egg mass in avian 
species. Blue dots represent non-Passeriformes species, while pink dots represent Passeriformes species. Values are green for moderate correlations, 
while weak correlations are red

(See figure on next page.)
Fig. 4  Phylogenetic linear regression between Z-DNA and adjusted developmental periods. a Egg mass adjusted incubation time. b Adult 
body mass adjusted incubation time. c Egg mass adjusted fledging time. d Adult body mass adjusted fledging time. e Egg mass adjusted 
developmental time. f Adult body mass adjusted developmental time. The blue spots indicate the non-Passeriformes species and the pink spots 
indicate the Passeriformes species. Each column within the rows represents different bird groups: all birds (left), non-Passeriformes (middle), 
and Passeriformes (right). Blue dots indicate non-Passeriformes species, while pink dots represent Passeriformes species. The R² values and p-values 
provided in each plot indicate the strength and significance of the relationships, respectively. The dashed lines represent the regression lines, 
illustrating the trend of the relationships between Z-DNA density and the corresponding traits. Values are green for moderate correlations, 
while weak correlations are red
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Fig. 4  (See legend on previous page.)
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groups (Fig.  3b). For the overall bird group, there is a 
positive correlation (R² = 0.1145, p = 8.716 × 10−5), with 
non-passerines showing a more pronounced correlation 
(R² = 0.124, p = 0.0008542) and passerines showing no 
significant correlation (R² = −0.01426, p = 0.5189). This 
suggests that egg mass may have an influence on Z-DNA 
density, particularly in non-passerines, potentially due to 
specific evolutionary factors.

There were 127 species, including 81 non-passerine 
birds and 46 passerine birds, in the PGLS analysis of 
Z-DNA density and developmental duration (Fig. S4d). 
Across all birds, the correlation is weak and negligible 
(R² = 0.03286, p = 0.02322), with non-passerines and 
passerines (R² = 0.03159, p = 0.06108 and R² = 0.03639, 
p = 0.1075 respectively) showing a similar trend. These 
findings suggest that developmental duration is not a reli-
able predictor of Z-DNA density in birds.

There were 127 species, including 81 non-passerine 
birds and 46 passerine birds, in the PGLS analysis of 
Z-DNA density and body mass-adjusted developmental 
time. The analysis shows varying correlations between 
body mass-adjusted developmental time and Z-DNA 
density (Fig.  4f ). The overall birds have a negative cor-
relation (R² = 0.1108, p = 7.778 × 10−5), non-passer-
ines show a weak negative correlation (R² = 0.09516, 
p = 0.00295), and passerines show no substantial correla-
tion (R² = −0.003019, p = 0.3575). This suggests that body 
mass-adjusted developmental time does not significantly 
influence Z-DNA density in passerines. There were 121 
species, including 79 non-passerine birds and 42 passer-
ine birds, in the PGLS analysis of Z-DNA density and egg 
mass-adjusted developmental time. Similarly, the rela-
tionship between egg mass-adjusted developmental time 
and Z-DNA density show some correlations (Fig.  4e). 
Overall birds have a negative correlation (R² = 0.1378, 
p = 1.645 × 10−5), non-passerines also have a negative 
correlation (R² = 0.1384, p = 0.0004336), and passerines 
have no significant correlation (R² = 0.01563, p = 0.2062). 
These findings suggest an impact of egg mass-adjusted 
developmental time on Z-DNA density.

There were 127 species, including 81 non-passerine 
birds and 46 passerine birds, in the PGLS analysis of 
Z-DNA density and incubation duration. Incubation 
duration correlates poorly with Z-DNA density across 
bird groups (Fig. S4b). Overall birds and non-passer-
ines exhibit weak positive correlations (R² = 0.06223, 
p = 0.002711 and R² = 0.04846, p = 0.02706, respectively), 
while passerines show no correlation (R² = −0.01487, 
p = 0.56242). This indicates that incubation duration has 
a negligible effect on Z-DNA density.

There were 127 species, including 81 non-passer-
ine birds and 46 passerine birds, in the PGLS anal-
ysis of Z-DNA density and body mass-adjusted 

incubation duration. Correlations between body mass-
adjusted incubation duration and Z-DNA density are 
weak (Fig.  4b). The passerines show negligible correla-
tions (R² = −0.01479, p = 0.5603). At the same time, over-
all birds and non-passerines exhibit a slightly stronger 
negative correlation (R² = 0.09995, p = 0.000173 and R² 
= 0.09043, p = 0.003693, respectively). The influence 
of body mass-adjusted incubation duration on Z-DNA 
density appears minimal (Fig.  4b). There were 121 spe-
cies, including 79 non-passerine birds and 42 passerine 
birds, in the PGLS analysis of Z-DNA density and egg 
mass-adjusted incubation duration. Egg mass-adjusted 
incubation duration shows negative correlations with 
Z-DNA density across bird groups, suggesting a minimal 
impact on Z-DNA density (Fig. 4a). Stronger correlations 
are observed in overall birds and non-passerines (R² = 
0.1236, p = 4.546 × 10−5 and R² = 0.1287, p = 0.0006862, 
respectively). In contrast, the passerines show negligible 
correlations (R² = −0.007923, p = 0.4153).

There were 127 species, including 81 non-passerine 
birds and 46 passerine birds, in the PGLS analysis of 
Z-DNA density and fledging duration. Fledging dura-
tion shows varying correlations with Z-DNA density 
(Fig. S4c). Overall birds and non-passerines exhibit no 
significant correlations (R² = 0.01379, p = 0.099 and 
R² = 0.02334, p = 0.09187, respectively), while the pas-
serines show weak negative correlations (R² = 0.0731, 
p = 0.03855). The data suggest that Z-DNA density 
slightly decreases with longer fledging durations in 
passerines.

There were 127 species, including 81 non-passerine 
birds and 46 passerine birds, in the PGLS analysis of 
Z-DNA density and body mass-adjusted fledging dura-
tion. The analysis shows varying correlations between 
body mass-adjusted fledging duration and Z-DNA den-
sity (Fig.  4d). Overall birds have a negative correlation 
(R² = 0.1155, p = 5.478 × 10−5), non-passerines show a 
weak negative correlation (R² = 0.08084, p = 0.005821), 
and the passerines show no significant correlation (R² = 
0.01452, p = 0.2039). There were 121 species, including 79 
non-passerine birds and 42 passerine birds, in the PGLS 
analysis of Z-DNA density and egg mass-adjusted fledg-
ing duration. Similar correlations are shown between 
egg mass-adjusted fledging duration and Z-DNA density 
(Fig. 4c). Overall birds have a negative correlation (R² = 
0.1382, p = 1.595 × 10−5), non-passerines show a weak 
negative correlation (R² = 0.08726, p = 0.004749), and 
passerines show no significant correlation (R² = 0.04633, 
p = 0.0914).

Our analysis found no correlation between STR density 
or genome size and the phenotypes investigated. While 
significant relationships were identified between Z-DNA 
density and developmental time and varying correlations 
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with factors like egg mass and body mass across different 
bird groups, STR density showed no meaningful associa-
tion with genome size or the phenotypes studied. These 
results highlight the absence of any substantial correla-
tion between STR density or genome size and the pheno-
typic traits examined (Table S3-4, Figures S5-9).

Positional frequency of Z‑DNA in birds
To understand promoter-Z-DNA associations com-
prehensively, we measured the positional frequency 
in 153 avian species, defined as the total number of 
Z-DNA motifs at each nucleotide position within 10 kb 
upstream of the start codon. This method allows us 
to identify regions where Z-DNA motifs are concen-
trated, providing insights into their potential regulatory 
roles. Our analysis shows that the regions immediately 
upstream of the start codon, particularly within the 
first 1 kb, often have a higher concentration of Z-DNA 
motifs than the remaining 9 kb upstream (Fig. S10 and 
supplementary files). Friedman test showed a signifi-
cant different of Z-DNA number between each region 
(Friedman chi-squared = 1066.1, d.f. = 10, p-value < 2.2 
× −10−16). Pairwise p-value between the first 1 kb and 
other regions from Nemenyi’s all-pairs comparisons 
tests also showed that the Z-DNA number within 1 kb 

from start codon was significantly higher than other 
regions (Fig.  5 and table  S8). This suggests that proxi-
mal promoter regions are particularly enriched with 
Z-DNA motifs, which could have important implica-
tions for transcriptional regulation.

Our Gene Ontology (GO) analysis of 74 avian species 
revealed a significant enrichment of genes associated 
with DNA or RNA binding activities among the top 
5% Z-DNA-rich promoter regions (see supplementary 
files). This suggests that Z-DNA motifs may play criti-
cal roles in regulating genes involved in nucleic acid 
interactions, such as transcription factors, RNA poly-
merases, and other proteins that bind directly to DNA 
or RNA to control gene expression and RNA process-
ing. Additionally, genes involved in kinase activity were 
significantly enriched in Z-DNA-rich regions (see sup-
plementary files). Kinases are essential enzymes that 
regulate various cellular processes through phosphoryl-
ation, including signal transduction pathways, cell cycle 
regulation, and metabolic control. Z-DNA motifs near 
these genes suggest a potential regulatory mechanism 
whereby Z-DNA formation could influence kinase tran-
scription, affecting numerous cellular functions and 
responses to environmental stimuli.

Fig. 5  Z-DNA number in different regions upstream from a start codon. Boxplots show the first quartile, median and third quartile of Z-DNA 
number in each region. Black dots show the outlier of each region
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Another prominent category identified in the GO anal-
ysis included genes related to translation regulation (see 
supplementary files). These genes are involved in pro-
tein synthesis, encoding ribosomal proteins, and trans-
lation initiation and elongation factors. The enrichment 
of Z-DNA motifs in their promoter regions suggests 
that Z-DNA may play a role in fine-tuning the expres-
sion of genes critical for maintaining translational fidel-
ity and efficiency, which is crucial for cellular growth and 
adaptation.

Discussion
Z‑DNA density in avian genomes
Birds are notable for having the smallest genomes among 
amniotes, with relatively slight variation in genome size 
across different species [60, 61]. This characteristic dis-
tinguishes them from other groups, such as reptiles and 
mammals. The significant reduction in genome size and 
transposable element density in birds began after their 
evolutionary divergence from crocodilians [62]. This 
reduction likely occurred before the evolution of flight, 
suggesting that a smaller genome may have provided 
adaptive advantages, possibly related to increased meta-
bolic efficiency and optimized cellular function during 
the development of flight [63]. Since the common ances-
tor of modern birds, genome size has decreased, although 
slower.

In addition to having small genomes, birds exhibit 
low densities of Z-DNA compared to non-avian reptiles 
and mammals. Z-DNA is a left-handed helical form of 
DNA that can form under physiological conditions and 
is often associated with transcriptionally active regions 
of the genome [5, 64, 65]. Despite the overall low den-
sity of Z-DNA in birds, there is considerable variation in 
Z-DNA density among different bird species. This vari-
ation suggests that other bird species may have evolved 
distinct regulatory mechanisms and genome organiza-
tion strategies involving Z-DNA. The presence and den-
sity of Z-DNA could influence gene expression patterns 
and genomic stability, contributing to the diverse pheno-
typic traits observed among bird species.

Birds’ small genome size and low Z-DNA density may 
be linked to their unique physiological and ecological 
adaptations. A compact genome may reduce the energy 
and time required for DNA replication and transcrip-
tion, crucial for sustaining high metabolic activities, 
such as those needed for flight. Additionally, the varia-
tion in Z-DNA density among bird species could reflect 
adaptive responses to different environmental pressures 
and lifestyle requirements. The evolutionary trajectory 
of genome size reduction and Z-DNA’s low but vari-
able density in birds underscores the complex relation-
ship between genomic architecture and avian adaptive 

strategies. Understanding these dynamics provides 
deeper insights into avian species’ molecular evolution 
and functional genomics.

Our findings suggest that Z-DNA density in birds is 
influenced by several factors, including developmental 
time, genome size, and egg mass, but not significantly by 
body mass. The varying correlations among bird groups 
indicate that Z-DNA may play different regulatory roles 
depending on specific evolutionary pressures and ecolog-
ical adaptations. Understanding the dynamics of Z-DNA 
density in birds offers valuable insights into avian species’ 
molecular evolution and functional genomics. Future 
research should experimentally validate these associa-
tions and explore the underlying mechanisms driving 
these correlations. This could involve studying specific 
genes and regulatory pathways influenced by Z-DNA and 
examining how changes in Z-DNA density impact phe-
notypic diversity and ecological adaptation. By elucidat-
ing the roles of Z-DNA in gene regulation, we can better 
understand the evolutionary pressures shaping avian 
genomes and the potential impact of Z-DNA on bird 
biology and evolution.

In the phylogeny presented in Fig. 2, a distinct cluster 
of passerine birds exhibits a higher density of Z-DNA 
motifs. Notably, species such as Ammospiza caudacuta 
(Saltmarsh Sparrow), Ammospiza nelsoni (Nelson’s Spar-
row), Melospiza georgiana (Swamp Sparrow), Melospiza 
melodia (Song Sparrow), and Passerculus sandwichensis 
(Savannah Sparrow), which are part of this cluster, are 
predominantly adapted to marshy or coastal habitats 
[66]. These environments subject the species to unique 
ecological pressures, including fluctuating tidal levels, 
high predation risk, and the need for precise timing in 
breeding cycles to avoid environmental hazards. Such 
factors likely drive specific genomic adaptations, includ-
ing increased Z-DNA density in regulatory regions.

For instance, saltmarsh species like the Saltmarsh 
Sparrow have evolved mechanisms to withstand regu-
lar flooding, which may impose selective pressures on 
their genomes. These pressures could influence genomic 
traits such as Z-DNA motif distribution, gene regula-
tion, and genome size, facilitating key developmental 
and metabolic processes needed to thrive in these chal-
lenging environments. Conversely, Artemisiospiza belli 
(Bell’s Sparrow), which inhabits dry, open landscapes 
[66], exhibits a lower Z-DNA density, possibly reflecting 
different ecological and evolutionary demands compared 
to the marsh-adapted species. Melozone crissalis (Cali-
fornia Towhee) is an exception within that cluster, which 
exhibits a higher Z-DNA density despite living in drier, 
shrub-dominated landscapes [66]. This suggests that the 
California Towhee may have inherited a pre-existing 
increase in Z-DNA density from their common ancestor, 
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evolving unique genomic adaptations that distinguish it 
from other desert species regarding Z-DNA density.

Z‑DNA in gene regulation
The elevated frequency of Z-DNA motifs within the 1 kb 
region upstream of the start codon underscores the sig-
nificance of these structures in transcriptional regulation 
[49, 67]. Z-DNA formation in these regions can affect 
chromatin accessibility and the binding affinity of tran-
scription factors [68–70]. The conformational changes 
induced by Z-DNA can alter the interaction between 
DNA and the transcriptional machinery, potentially 
enhancing or repressing gene expression [5, 71–73].

The concentration of Z-DNA motifs in proximal pro-
moter regions suggests these areas may serve as regula-
tory hotspots. Z-DNA could facilitate the formation of 
specific chromatin structures or interact with Z-DNA-
binding proteins, such as ADAR1 and ZBP1, which are 
involved in transcriptional regulation [74]. These interac-
tions can act as molecular switches, turning genes on or 
off in response to various signals.

The preferential localization of Z-DNA motifs in criti-
cal regulatory regions highlights their potential role 
in evolutionary processes. Regions with high Z-DNA 
density may be under positive selection, driving adap-
tive changes in gene regulation. Variations in Z-DNA 
motif density and distribution can result in distinct gene 
expression patterns, contributing to the phenotypic 
diversity observed among different species [21]. Com-
paring the positional frequency of Z-DNA motifs across 
species could shed light on the evolutionary conservation 
of these regulatory elements. Species facing similar envi-
ronmental pressures might exhibit convergent evolution 
in the density and positioning of Z-DNA motifs in pro-
moter regions, reflecting shared adaptive strategies.

Enriching Z-DNA motifs in genes involved in funda-
mental processes, such as nucleic acid binding, kinase 
activity, and translation regulation, also suggests an evo-
lutionary advantage. Genes under robust regulatory con-
trol may benefit from the added regulatory complexity 
provided by Z-DNA motifs [49, 67, 75, 76]. This complex-
ity could allow for rapid adaptation to changing environ-
ments, conferring a selective advantage to organisms 
with such regulatory architectures.

Z-DNA structures are also implicated in various dis-
eases, including cancer, neurological disorders, and 
genetic diseases [5, 20, 77, 78]. The formation of these 
structures can lead to genomic instability, mutations, 
and altered gene expression, contributing to disease 
pathogenesis. Understanding the roles of Z-DNA struc-
tures in health and disease could provide insights into 
potential therapeutic targets [5, 77, 79]. Drugs and 
small molecules explicitly targeting these structures are 

being explored for their potential in treating diseases 
associated with genomic instability and aberrant gene 
regulation.

Z‑DNA and phenotypic diversity
Z-DNA-induced deletions in regulatory regions have 
been implicated in the repeated loss of pelvic fins in stick-
leback populations, illustrating how Z-DNA contributes 
to phenotypic diversity and adaptation [28]. However, the 
role of Z-DNA in promoting phenotypic diversity is not 
limited to sticklebacks. Studies have shown that Z-DNA-
forming sequences are often associated with large-scale 
deletions in mammalian cells [18]. These deletions can 
lead to significant phenotypic changes by removing or 
altering regulatory elements and coding regions. Z-DNA-
induced genomic instability may thus be a crucial mecha-
nism contributing to genetic diversity and the evolution 
of new traits in natural populations.

The impact of Z-DNA-induced genomic instability 
extends beyond mammals [21]. It has also been impli-
cated in the evolution of various traits in other verte-
brates. These large-scale deletions and the resulting 
genetic variations underscore the widespread influence 
of Z-DNA on evolutionary processes. Z-DNA-prone 
regions often serve as hotspots for genetic variation, 
driving adaptive evolution and the emergence of new 
phenotypic traits.

Z-DNA’s role as a critical driver of phenotypic diver-
sity is rooted in its ability to induce genomic instabil-
ity, facilitating large-scale deletions that can profoundly 
affect gene expression [80, 81]. By removing or altering 
regulatory elements and coding regions, Z-DNA-induced 
deletions can lead to significant changes in the genetic 
landscape, promoting the development of new traits and 
enhancing genetic diversity within populations [21].

The recurrent involvement of Z-DNA-prone regions 
in adaptive evolution underscores their importance in 
the evolutionary dynamics of animals. These regions are 
often associated with critical genetic changes that ena-
ble species to adapt to new environments or conditions. 
By serving as focal points for genetic variation, Z-DNA 
regions contribute to the evolutionary plasticity of organ-
isms, allowing them to develop novel traits and enhance 
their survival and reproductive success.

Understanding the role of Z-DNA in phenotypic diver-
sity provides valuable insights into the molecular mecha-
nisms underlying evolution. It highlights the dynamic 
nature of genomes and the complex processes that drive 
genetic variation and evolutionary change. By studying 
Z-DNA and its effects on genomic stability, we can bet-
ter understand how genetic diversity arises and how new 
traits evolve in natural populations.
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Other Non‑B DNA
Non-B DNA structures, such as G-quadruplexes, cruci-
forms, and triplex DNA, play significant roles in genomic 
regulation, stability, and evolutionary processes [21, 77, 
82, 83]. These structures interact extensively with the 
epigenetic landscape, affecting DNA methylation, his-
tone modifications, and chromatin remodeling [82]. Such 
interactions are crucial for understanding the complex 
regulatory networks that control gene expression and 
maintain genome stability. By facilitating mutations, 
recombination, and genomic rearrangements, non-B 
DNA structures contribute to genetic diversity and evo-
lutionary processes [6, 77, 82], essential for organisms’ 
adaptation to changing environments and developing 
new traits. These structures add layers of complexity and 
regulation beyond the canonical B-DNA form, enhancing 
phenotypic diversity and adaptability.

G-quadruplexes are four-stranded DNA structures 
formed by guanine-rich sequences commonly found in 
telomeres, promoter regions, and other genomic loca-
tions [84–86]. They play critical roles in regulating gene 
expression by influencing the binding of transcription 
factors. In telomeres, G-quadruplexes help protect chro-
mosome ends from degradation and fusion, thereby 
maintaining genomic stability [87–89]. Their therapeutic 
potential is currently being explored in cancer treatment, 
as stabilizing G-quadruplexes can inhibit cancer cell 
proliferation [90–95]. Future research aims to identify 
G-quadruplex-forming sequences across different spe-
cies and develop high-throughput methods to study their 
dynamics in vivo [96–98].

Cruciform DNA structures form when palindromic 
sequences create hairpin loops, resulting in a cross-
shaped configuration [99–101]. These structures initiate 
DNA replication and regulate DNA repair processes by 
acting as signals for protein binding [99, 100, 102]. While 
cruciform structures can promote genetic diversity 
through genomic rearrangements, they can also poten-
tially cause genomic instability [21]. Understanding this 
balance is crucial for insights into genome maintenance 
and evolution. Future research directions may include 
investigating the formation and resolution of cruciform 
DNA under various conditions and visualizing these 
structures in live cells.

Triplex DNA involves a third DNA strand binding to 
the major groove of a B-DNA duplex, forming a triple-
stranded structure [103–105]. This can interfere with 
transcription factor binding, thereby regulating gene 
expression [106]. Triplex DNA also affects recombination 
and genomic rearrangements, contributing to genetic 
diversity and evolution [21]. Its therapeutic poten-
tial in gene editing and regulation is significant [21]. Its 
therapeutic potential in gene editing and regulation is 

substantial [104, 107–109], with future studies focusing 
on triplex DNA’s stability and formation conditions in 
different genomic contexts.

Technological advancements, such as single-molecule 
imaging, high-throughput sequencing, and CRISPR-
based tools [110–115], enhance our ability to study 
non-B DNA structures. High-throughput sequencing 
technologies, such as ChIP-seq and ATAC-seq, can map 
the distribution of Z-DNA motifs and associated chro-
matin features across the genome [116–118]. These tech-
nologies allow for precise manipulation and observation 
of these structures in live cells, providing deeper insights 
into their functions. Targeting non-B DNA structures 
offers promising therapeutic avenues for treating various 
diseases, including cancer, genetic disorders, and neuro-
degenerative diseases. Drugs and molecules that specifi-
cally interact with these structures could modulate gene 
expression and genomic stability in a controlled manner.

Understanding the roles of various non-B DNA struc-
tures, including Z-DNA, provides a comprehensive 
view of the molecular mechanisms underlying genomic 
regulation, stability, and evolution. These structures 
play critical roles in gene expression, genome stability, 
and the generation of phenotypic diversity, highlighting 
their importance in the dynamic nature of genomes and 
organisms’ evolutionary processes. Continued research 
and technological advancements will uncover the diverse 
functions of non-B DNA structures and their potential 
applications in medicine and biotechnology.

Conclusion
This study offers significant insights into the role of 
Z-DNA in avian genomes, particularly regarding its 
impact on genomic stability, gene regulation, and pheno-
typic diversity. Our analysis reveals that Z-DNA motifs 
are predominantly located in promoter regions, suggest-
ing a potential role in regulating gene expression. The 
variation in Z-DNA density across different bird species 
indicates that these structures may contribute to species-
specific regulatory mechanisms and evolutionary adap-
tations. We identified a negative correlation between 
Z-DNA density and developmental time in birds, sug-
gesting that species with shorter developmental periods 
tend to have higher Z-DNA densities. This finding high-
lights the potential role of Z-DNA in influencing the tim-
ing and regulation of development in avian species.

Additionally, the association between Z-DNA density 
and traits such as body mass, egg mass, and genome 
size underscores the complex interactions between 
genome architecture and phenotypic characteristics. 
The enrichment of Z-DNA motifs in genes involved 
in nucleic acid binding, kinase activity, and transla-
tion regulation suggests that Z-DNA may play a crucial 
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role in fine-tuning the expression of genes essential for 
maintaining cellular functions and responding to envi-
ronmental changes. The potential for Z-DNA to induce 
genomic instability, leading to large-scale deletions or 
rearrangements, further underscores its role in facili-
tating phenotypic diversity and adaptive evolution.

Overall, this study highlights the importance of 
Z-DNA as a dynamic element in the avian genome, 
contributing to gene expression regulation, genomic 
stability maintenance, and the generation of pheno-
typic diversity. Future research should experimentally 
validate these associations and explore the specific 
molecular mechanisms through which Z-DNA influ-
ences avian biology. Understanding these dynamics will 
provide deeper insights into the evolutionary processes 
that shape bird genomes and their adaptation to diverse 
ecological niches.
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