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endophytes contribute to coexistence stability 
and saponin accumulation in Panax species
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Abstract 

Fungal communities inhabiting plant tissues are complex systems of inter-species interactions, consisting of both the 
“abundant biosphere” and “rare biosphere”. However, the composition, assembly, and stability of these subcommuni-
ties, as well as their contributions to productivity remain unclear. In this study, the taxonomic and functional com-
position, co-occurrence, and ecological assembly of abundant and rare fungal subcommunities in different tissues 
of three Panax species were investigated. Abundant subcommunities were dominated by potential plant pathogens 
belonging to Microbotryomycetes, while saprotrophic fungi like Agaricomycetes and Mortierellomycetes were more 
prevalent in rare subcommunities. The rare taxa played a central role in upholding the stability of the fungal networks 
as driven by Dothideomycetes and Sordariomycetes. Homogeneous selection played a larger role in the assembly 
of abundant fungal subcommunities compared to the rare counterparts, which was more dominated by stochasti-
cally ecological drift in all plant species. Rare biospheres played a larger role in the accumulation of saponin compared 
to their abundant counterparts, especially in the leaf endosphere, which was mainly affected by environmental 
factors (Mg, pH, OC, and etc.). Furthermore, we found that rare species belonging to unidentified saprotrophs were 
associated with saponin formation. This study provides hypotheses for future experiments to understand mechanisms 
accounting for the variations in the composition and function of rare fungal subcommunities across different Panax 
species.

Introduction
Plants form complex symbiotic relationships with a wide 
variety of endophytic fungi, which inhabit their tissues 
(e.g., leaves and roots) across diverse plant lineages [71, 
76]. These symbiotic associations are essential for plant 
fitness by affecting nutrient absorption and stress toler-
ance of the host species [59]. Although there has been 
significant research on the mechanisms driving the 
assembly and stability of plant-associated mycobiota and 
their effects on plant immune responses and productiv-
ity, most of these studies primarily focused on rhizos-
phere habitats [17, 56]. Given that endophytes play direct 
roles in leaf and root metabolisms, a deeper understand-
ing of endophytic fungal communities is critical for plant 
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health and ecology [4, 9, 81]. However, the assembly of 
fungal communities within the complex endophytic eco-
system remains underexplored, particularly in medicinal 
plants that are rich in a range of secondary metabolites 
[82].

In various ecosystems, including plant tissues, fungal 
communities typically comprise a few dominant species 
and a multitude of low-abundance species, referred to as 
the “rare biosphere” [41]. Differences in distribution pat-
terns and functional traits have been observed between 
abundant and rare microbial taxa [55]. Past research indi-
cates that both abundant and rare fungal subcommuni-
ties in plant-associated niches can significantly influence 
host-related ecological processes and functions. Gener-
ally, abundant fungi have effects on plant reproductive 
output [21] and influence the temporal dynamics of veg-
etation successional patterns [1], while rare species are 
important for maintaining the stability of crop mycobiota 
and ecosystem functions [34, 77]. For instance, studies 
have found that Basidiomycota was always classified into 
rare biosphere within plants, which have the potential 
to produce antimicrobials [60, 69]. A recent study dem-
onstrated that a collection of rare species interacts with 
prevalent, inheritable fungal endophytes to affect plant 
performance [25]. Researchers also found that the rela-
tive contribution of deterministic processes to rare abun-
dant species was larger in the root endosphere than the 
leaf endosphere, which might be caused by a complex 
environment underground [77]. It is, therefore, crucial to 
understand the underlying mechanisms supporting the 
taxonomic and functional compositions, host-microbe-
environment interactions, as well as microbiome assem-
bly of abundant and rare mycobiota in plant habitats.

Understanding the relative contributions of determin-
istic and stochastic processes to microbial community 
assembly remains a fundamental challenge in microbial 
ecology [52]. Deterministic processes drive community 
assembly through directed ecological selection, such as 
environmental filtering and species interactions. Con-
versely, stochastic processes involve random community 
changes resulting from birth, death, and dispersal [66]. 
Some studies have found that rare subcommunities could 
be more influenced by stochastic processes compared to 
abundant subcommunities, possibly potentially attrib-
uted to their vulnerability to ecological drift as a result of 
low abundance [31, 46, 82]. Other research suggests that 
stochastic processes may play a larger role in the assem-
bly of abundant subcommunities, potentially due to their 
extensive environmental adaptability [26, 32]. Recently, 
a new framework called iCAMP (Infer Community 
Assembly Mechanisms by Phylogenetic-bin-based null 
model) was introduced to assess the relative importance 
of assembly processes in shaping microbial diversity and 

dynamics, focusing on specific groups defined by phy-
logenetic distance [52]. This framework is essential for 
exploring assembly mechanisms in microbial commu-
nities subjected to environmental variations. It may be 
worthwhile to mention that the results of these models 
can be used to design experiments testing these assem-
bly hypotheses. Additionally, the co-occurrence of taxa, 
analyzed through ecological network construction, are 
crucial deterministic drivers of community assembly, 
offering insights into community interactions and coex-
istence [5, 17, 36]. By scrutinizing the topologies of net-
works, a more profound comprehension of community 
interactions can be attained [42]. However, studies focus-
ing on the community assembly and network structures 
of abundant and rare fungal subcommunities in plant tis-
sues are still limited [77].

The cultivated Panax ginseng (PG), P. quinquefolium 
(PQ), and P. notoginseng (PN) are representative peren-
nials within the important medical Panax genus. The 
main medicinal feature of Panax is ginsenosides (tetra-
cyclic triterpenoid saponins), which can play a great role 
in treating cardiovascular disease, diabetes mellitus, can-
cers, stress, and immunostimulation [37]. As the quin-
tessential secondary metabolites of the esteemed Panax 
genus, saponins have garnered extensive acclaim for their 
pivotal role as the principal bioactive constituents under-
pinning the pharmacological prowess of Panax species. 
These saponins are widely regarded as a cornerstone of 
the plant’s defense arsenal against pathogens and her-
bivorous threats, whose lineage-specific nature suggests 
a remarkable evolutionary trajectory, hinting at a period 
of rapid biosynthetic adaptation amidst the ancient “con-
flict” between flora and potential interlopers [3, 18]. The 
relationships between Panax-associated mycobiota and 
saponin diversification have been explored in previous 
studies. For example, saponins may play a key role in the 
co-evolution of mycobiota and Panax genus [81], and 
low-efficiency phyllosphere fungal networks could drive 
saponin accumulation in leaves as feedback [80].

Above all, there exhibit complex and intimate rela-
tionships between saponins and fungal endophytes, 
while responses of abundant and rare endophytic fungal 
subcommunities to environmental selection, and their 
potential contributions to saponin biosynthesis, remain 
largely unexplored. In this study, we analyze the abun-
dant and rare fungal subcommunities within the root 
endosphere and leaf endosphere of these three Panax 
species, focusing on their diversity, coexistence, ecologi-
cal assembly, as well as links to saponin accumulation. 
Our goals are to (1) identify variations in the taxonomic 
and functional compositions of abundant and rare fun-
gal subcommunities; (2) reveal the distinct roles of these 
subcommunities in maintaining potential community 
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interaction structures; (3) quantify the contributions of 
specific ecological processes to the assembly of abundant 
and rare subcommunities; and (4) uncover the poten-
tial contributions of these subcommunities to saponin 
accumulation.

Materials and methods
Sampling
Plant and soil samples were collected in PG, PQ, and 
PN fields at the main producing regions. The loca-
tions of PG and PQ farmlands were in Baishan City, 
Jilin Province, northeast China, and the locations of PN 
were in Wenshan Prefecture, Yunnan Province, south-
east China (Table S1). These sampling fields are sited in 
the Daodi areas, which are regarded as the most suit-
able areas for the growing and saponin accumulation of 
the three Panax species. The sampling time of the three 
Panax species ranged from September 2019 to October 
2019, which was at the end of the root growth stage of all 
plants [81]. To prevent the effect of alien microbes, plant 
individuals were all planted in fields as seeds instead of 
transplanting, and were managed according to Good 
Agricultural Practice [78, 79].

Three fields were chosen for the three plant species, 
each of which was cultivated for 2 years, 3 years, and 4 
years, since plant growth stage plays critical roles in 
shaping plant–microbe interactions [79]. A total of nine 
1.5 × 2  m2 plots across each field were selected as rep-
licates. Unlike the genotypes of model plants or crops, 
PG, PQ, and PN are heterozygous germplasm. There are 
significant genetic differences among individuals, which 
may hinder the discovery of regularities. Ten healthy 
plants in each plot were randomly selected and mixed as 
one sample to reduce the impact of genetic heterogene-
ity of plants on the results. Plants were dug out gently 
with a sterilized shovel, and the soil loosely attached to 
the root was removed as the rhizosphere soil (RS). Steri-
lized 2-mm meshes were used to remove plant roots and 
other plant materials in RS samples, and the rest of the 
small plant residues were picked out manually using ster-
ilized gloves. To avoid environmental interference, the RS 
samples were shifted to the laboratory within 2 h after 
homogenized. The samples were used to determine phys-
icochemical properties.

After the plants were separated and thoroughly washed 
to eliminate surface residues, the root samples were sub-
jected to surface disinfection by immersion in 70% etha-
nol for 1 min, 5% sodium hypochlorite for 5 min, and 70% 
ethanol for 1 min [73]. Then, the samples were washed 
four times with sterile ultrapure water. After cutting into 
small pieces using sterile scissors and grounded into 
powder with liquid nitrogen to avoid metabolic conver-
sions, root samples were stored at − 80 °C to determine 

endophytic spectrum (RE) and saponin content [79]. The 
method described in Zhang et  al. [77–83] was followed 
to eliminate the phylloplane fungi from leaf surfaces. 
Afterward, leaves were immersed in 75% ethanol for 1 
min initially; then treated with 3.25% sodium hypochlo-
rite for 3 min; further immersed in 75% ethanol for 30 s; 
finally rinsed four times using sterile ultrapure water. To 
abolish metabolic conversions in tissues, the sterilized 
leaves were pulverized using liquid nitrogen and stored 
at − 80 °C as endophyte profiling (LE) for saponin meas-
urement. A total of 162 samples were acquired from 324 
plants: three plant species (PG, PQ, and PN) × 3 growth 
years (2 y, 3 y, and 4 y) × two compartments (RE and 
LE) × nine plots (replicates) = 162 samples. It is important 
to acknowledge that the plant specimens examined in 
this research were sourced from various fields, and thus, 
the potential impact of these field-specific variations on 
species distinctions cannot be entirely discounted.

Measurement of edaphic factors and plant saponins
The measurement of twelve edaphic factors was con-
ducted on all rhizosphere samples following previous 
studies [63, 86], including pH, organic carbon (OC), 
total nitrogen (TN), available phosphorus (AP), avail-
able potassium (AK), available sulfur (S), exchangeable 
calcium (Ca), magnesium (Mg), and particle size distri-
bution (PSD). According to clay proportion, the PSD was 
clay (< 0.002 mm), silt (0.002–0.02 mm), fine sand (Fsand, 
0.02–0.2 mm), and coarse sand (Csand, 0.2–2 mm).

The ginsenosides found in the Panax species are vari-
ous, but most of them are not abundant in nature. Here, a 
total of eight major types of saponins were measured with 
HPLC (Waters, USA) using a Zorbax SB-AQ C18 column 
(Agilent Technologies, United States) [73], including gin-
senosides Rb1, Rb2, Rc, Rd, Re, Rg1, and F1 as well as 
notoginsenoside R1 [35, 73]. In brief, 0.2 g of plant tissue 
powder that had been dried was combined with 15 ml of 
pure ethanol. The mixture was homogenized using a vor-
tex mixer and then sonicated for half an hour at 25 °C. 
After frozen at − 20 °C for one hour, the mixture was cen-
trifugated at 10,000 × g for 10 min. The supernatant was 
collected and filtered through a membrane with a pore 
size of 0.22 μm. An Agilent C18 column was employed to 
separate various types of saponins. The column tempera-
ture was set at 35 °C and the flow rate was maintained 
at 1 ml min−1. Elution was performed using two mobile 
phases: acetonitrile (A) and ultrapure water (B). The elu-
tion process followed a gradient pattern as described 
below: at the beginning of 12 min, B concentration 
decreased by 81%; from 12 to 70 min, B concentration 
further reduced from 81 to 64%; from 71 to 76 min, B 
concentration increased back from 64 to 81%; finally, 
until completion at the 76-min mark, B concentration 
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remained constant at 81%. The retention time and stand-
ard curve for each saponin were determined by analyzing 
their respective standard substances.

DNA extraction and amplicon sequencing
Genomic DNA was extracted from samples using the 
FastDNA SPIN Kit for Soil (MoBio Laboratories, Inc., 
USA). For ITS gene amplification, each 25 μl PCR reac-
tion containing 12.5 μl Premix Taq DNA polymerase 
(Takara, China), 0.5 μl (200 nM) each primer, 2 μl tem-
plate DNA (~ 5 ng μl−1), and 9.5 μl PCR-grade water. The 
PCR amplifications (performed in triplicate for each sam-
ple) were carried out using the following program: 2 min 
initial denaturation at 94 °C, 30 cycles of 30 s at 94 °C, 
30 s at 55 °C, and 45 s at 72 °C, with a final 10-min elon-
gation at 72 °C. Primer pair ITS1F/ITS2R was utilized 
for conducting polymerase chain reaction [32], followed 
by sequencing on the Illumina MiSeq PE300 platform 
(Shanghai Biozeron Co., Ltd., China). This primer pair 
can effectively avoid host contamination and has been 
widely used in plant-associated mycobiota profiling. 
Then, we completed the whole process of bioinformat-
ics analysis independently as follows: Low-quality reads 
and adaptors in raw sequences were removed using the 
fastp software (default parameters) [10]. The meticu-
lously cleaned data were subsequently processed through 
the cutting-edge cutadapt software, which meticulously 
excised primer sequences andused stringent parameters: 
“–errors 0.13 || –overlap 5” [44]. These refined sequences 
were then seamlessly imported into QIIME2 through the 
dedicated import plugin. The dada2 denoise-paired com-
mand was executed with precise parameters: “-p-trunc-
len-f 220 || -p-trunc-len-r 220” to generate amplicon 
sequence variants (ASVs) and remove singletons and 
chimeras [7]. For taxonomy annotation, the QIIME2 
platform’s classify-sklearn method was utilized, leverag-
ing a Bayes-trained classifier based on the comprehensive 
UNITE database (version V16.10.2022) with its default 
settings [49]. Our dataset was meticulously pruned to 
exclude unclassified ASVs. Additionally, to ensure purity, 
the remaining ASVs were rigorously inspected for poten-
tial plant DNA contamination through blast analysis.

Data analysis
All samples were rarefied based on the lowest sequence 
depth 12,412 sequences for fungi to minimize the impact 
of read-count variation from the different samples. ASVs 
were classified as abundant or rare according to their 
relative abundances in each treatment. In the present 
research, we established relative abundance thresholds 
at 0.01% for infrequent taxa and 1% for frequent taxa, 
categorizing all ASVs into six distinct groups (AAT, 
CAT, MT, ART, CRT, CRAT) based on recent literature 

[39]. The specific categories are delineated as follows: (1) 
consistently frequent taxa (AAT) are those OTUs with a 
prevalence of 1% or more across all samples; (2) consist-
ently infrequent taxa (ART) are those OTUs with a prev-
alence less than 0.01% across all samples; (3) moderately 
frequent taxa (MT) are those OTUs with a prevalence 
ranging between 0.01 and 1% across all samples; (4) con-
ditionally infrequent taxa (CRT) are those OTUs with a 
prevalence below 1% overall but less than 0.01% in cer-
tain samples; (5) conditionally frequent taxa (CAT) are 
those taxa with a prevalence of 0.01% or more across all 
samples and 1% or more in some samples, but never less 
than 0.01%; and (6) conditionally infrequent and frequent 
taxa (CRAT) are those OTUs whose prevalence varies 
from rare (< 0.01%) to frequent (≥ 1%). For further analy-
sis, we artificially grouped the AAT, CAT, and CRAT as 
abundant taxa. This amalgamation of the three categories 
(AAT, CAT, and CRAT) was termed “Abundant subcom-
munity” to prevent confusion. We also grouped the CRT 
and CRAT as “Rare subcommunities”. These thresholds 
for the definition of abundant and rare ASVs were speci-
fied in previous studies [11, 68, 74].

Fungal biodiversity
Alpha diversities of the fungal subcommunities were esti-
mated by calculating the Richness and Shannon index 
using the “vegan” package in R [52]. The β-diversities of 
the fungal abundant and rare subcommunities were esti-
mated based on the Bray–Curtis distance matric, which 
represents the taxonomic dissimilarities, and were calcu-
lated using the vegan package in R. To compare the vari-
ations between subcommunities, the β dispersion of both 
abundant and rare communities were also calculated 
using vegan [52]. The description of environmental fac-
tors on β-diversity based on Bray–Curtis was evaluated 
using a distanced-based linear model and forward selec-
tion procedure and shown using the Constrained Anal-
ysis of Principal Coordinates (CAP) since constrained 
analysis considers not only the response variables but 
also the explanatory variables during the dimensional-
ity reduction process. Variables with strong collinearity 
(Spearman ρ2 > 0.9) were ignored before the evaluation. 
Principal Coordinate analysis (PCoA) was used to rep-
resent the community variation in subcommunities. The 
Pearson’s correlation coefficients relationships of micro-
bial diversities and phyla with environmental factors 
were assessed using Pearson correlation method.

Network analysis
Network analysis was used to depict the co-occurrence 
pattern within a complex community. The co-occurrence 
network analysis was carried out on RE and LE samples 
after combining the abundant and rare subcommunities. 
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A valid co-occurrence was defined as a statistically sig-
nificant correlation between ASVs, with a spearman’s 
correlation coefficient |r|> 0.6 and P < 0.01 [76]. The P 
values have been adjusted for multiple testing using the 
Benjamini-Hochberg’s FDR method. Topological proper-
ties of the network, including the graph density, shortest 
path length, and clustering coefficient, as well as proper-
ties of nodes, were calculated, such as the node degree, 
betweenness centrality, closeness centrality, and eigen-
vector centrality to infer the ability of each node to alter 
the abundance of other species and the structure of the 
community. Closeness centrality is a measure of the aver-
age shortest distance from each vertex to each other ver-
tex [24]. Nodes with high closeness centrality values were 
identified as key species in co-occurrence networks (van 
der Heijden and Hartmann, 2016). Eigenvector centrality 
was also taken into consideration since it could take into 
account both the number of connections of each node 
and its importance in terms of influence within the net-
work (Ruhnau, 2000). Statistical analysis and display of 
the networks were conducted with the “gephi 0.9.2” soft-
ware [87]. The module is defined as a consortium com-
prising a group of microbes with relatively high levels of 
interaction, through which they can actively execute spe-
cific dominant functions [15]. The role of each node was 
determined based on its Zi degree (connection to other 
nodes within the same module) and Pi degree (connec-
tion to nodes in other modules) [23, 80]. Following the 
suggested thresholds for Zi and Pi degrees, nodes were 
classified into four subcategories: peripherals (Zi ≤ 2.5 
and 0 ≤ Pi ≤ 0.62), connectors (Zi ≤ 2.5 and Pi > 0.62), 
module hubs (Zi > 2.5 and Pi ≤ 0.62), and network 
hubs(Zi > 2.5 and Pi > 0.62). Networks with more connec-
tors than module hubs were regarded to have strong sta-
bility [17].

Assembly
There exist two crucial and complementary mechanisms 
that regulate the formation of microbial communities: 
deterministic mechanisms (niche-based theory), where 
environmental filtering and diverse biological interac-
tions govern the patterns of microbial communities; and 
stochastic mechanisms (neutral theory), which highlight 
the significance of probabilistic dispersal and ecological 
drift [8, 13, 70]. To ensure the result of ecological patterns 
was robust, three models were conducted in community 
assembly: the phylogenetic model—iCAMP calculation, 
as well as a taxonomic model—the Sloan NCM, and the 
normalized stochasticity ratio (NST). Considering that 
the iCAMP calculation shows higher accuracy compared 
to those from the entire community-based approach, it 
was conducted using the iCAMP package in R to explore 
the assembly of subcommunities [52]. A total of five 

assembly mechanisms were identified according to the 
iCAMP, which can be classified into stochastic processes 
(e.g., dispersal limitation: DL, homogenizing dispersal: 
HD, and drift: DR) and deterministic processes (e.g., 
homogeneous selection: HoS and heterogeneous selec-
tion: HeS). To quantify the contributions of these ecolog-
ical processes, the iCAMP first separated the observed 
taxa into various groups (i.e., bins) based on their phylo-
genetic relationships. Afterward, the process controlling 
each bin was identified according to the null model analy-
sis of the phylogenetic diversity characterized by beta Net 
Relatedness Index (βNRI) and taxonomic β-diversities 
using modified Raup–Crick metric (RC). The high vari-
ability of fungal ITS would affect the accuracy of the beta 
nearest taxon index (βNTI) by preventing the alignment 
of distant taxa, but not affecting the accuracy of βNRI 
[22]. The quantification of the contributions of ecologi-
cal processes includes two steps: (i) Taxa were classified 
into different groups (called bins according to their phy-
logenetic relationships, (ii) The null model analysis of the 
phylogenetic diversity marked by beta Net Relatedness 
Index (βNRI) and taxonomic β-diversities with modified 
Raup–Crick metric (RC) was used to identify the assem-
bly process of each bin. In detail, the relative contribu-
tion of HoS process and HeS process was categorized 
according to βNRI < − 1.96 and βNRI > 1.96, separately. 
For the left pairwise comparisons, pairs |βNRI|≤ 1.96 
and RC < 0.95 were classified into HD process, and those 
with βNRI ≤ 1.96 and RC > 0.95 were defined as DL pro-
cess. Finally, the remaining pairs with βNRI ≤ 1.96 and 
RC ≤ 0.95 were classified into the DR process.

The Sloan NCM was subsequently used for subcom-
munities to identify the relative contribution of sto-
chastic processes to the assembly with the proportion 
of predicted relationships between ASVs in the local 
community. The NST was further applied to evaluate 
the microbial community assembly [51]. The relative 
importance of deterministic and stochastic processes can 
be quantified by the index NST with 50% as the bound-
ary point between more deterministic (NST < 50%) and 
more stochastic (NST > 50%). Moreover, the normalized 
stochasticity ratio (NST) was employed to assess the 
assembly of microbial communities. This index (NST) 
could effectively quantify the relative contribution of 
deterministic and stochastic processes, with 50% serv-
ing as a critical threshold. Values below 50% indicate a 
greater deterministic process, whereas those exceeding 
50% suggest a more stochastic process in the community 
assembly.

Functional prediction
The putative function of the fungal ASVs was esti-
mated by FUNGuild [48], a database linking the fungal 
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community with function at the ecological guild level. 
Main trophic types and guilds were classified by FUN-
Guild. Only highly probable and probable guilds with 
identified trophic modes were used in further analysis.

Results
Different taxonomic and functional compositions 
between rare and abundant subcommunities
A total of 1239 (PG), 954 (PQ), and 1528 (PN) fungal 
ASVs were detected in the RE, and 1666 (PG), 2946 (PQ), 
2555 (PN) fungal ASVs were detected in the LE, respec-
tively, and there were more rare ASVs than abundant 
ASVs detected in all the three Panax species (Table  1). 
On the local level, the relative abundance of abundant 
fungal ASVs ranges from 90.71 to 95.99% for all samples 
of PG and PQ, 14 folds higher than the abundance of rare 
ASVs (4.01–9.29%) (Table  S2). For PN, the abundance 
of rare ASVs in the RE and LE were 45.22% and 45.68%, 
respectively (Table  S2). However, the abundant ASVs 
in the RE and LE of PN accounted for only 54.78% and 
8.87% of the whole communities, much lower than those 
in PG and PQ (Table S2). The richness index showed that 
in the RE, the number of rare ASVs was only a few more 
than abundant ASVs (6.67–66.26% higher), while in the 
LE, the ratios of rare/abundant ASV numbers were larger 
than 2 folds (Table S3).

For the community composition, Leotiomycetes and 
Sordariomycetes were more abundant in the RE than 
the LE (significant within the PQ and PN species), while 
more depleted of Dothideomycetes and Themellomycetes 
(Fig. 1a, b; Table S4; P < 0.05). Differential analysis showed 
that relative abundances of ASVs in rare and abundant 
subcommunities differed a lot on class level (Fig.  1a, b; 
Table  S4). In the LE, Agaricomycetes, Eurotiomycetes 
and Sordariomycetes were more abundant in rare than 
in abundant subcommunities, while Microbotryomy-
cetes and Dothideomycetes were the opposite. In the RE, 
Agaricomycetes, Eurotiomycetes and Mortierellomycetes 
were more abundant in the rare subcommunities (Fig. 1a, 

b; Table S5). According to the composition of guild abun-
dance, the trophic types and functional potential were 
similar in the LE and the RE (Fig. 1c). Differential analysis 
indicated that the relative abundance of undefined sapro-
trophs was higher in the rare than the abundant counter-
parts, and the difference was significant in the LE of PG 
and PQ (Fig. 1c; P < 0.05). Potential plant pathogens were 
more dominant in abundant than the rare counterparts 
in all groups, though it was only significant in the RE of 
PQ (Fig. 1c; P < 0.05). Based on the top 5 abundant spe-
cies in each subcommunity, some species were found to 
be dominant generally in specific habitats. For example, 
in the RE, Plectosphaerella_cucumerina and Leptospha-
eria_sp were dominant in the abundant subcommunity, 
while Exophiala_sp._Ppf18 was abundant in the rare sub-
community (Fig. S1). In the LE, Rhodotorula_glutinis and 
Sporidiobolus_sp. were dominant in abundant and rare 
subcommunities, separately (Fig. S1). These results indi-
cated that the abundant and rare subcommunities exhib-
ited significant differences in terms of both community 
compositions and trophic types.

Rare taxa drive fungal co‑occurrence patterns in Panax 
species
The networks for mycobiotas in the RE and LE of three 
Panax species were individually constructed and their 
topological properties were examined (Fig.  2). The net-
work sizes showed that the LE networks (nodes: 806–
1451; edges:4802–23,120) were larger than those in the 
RE (nodes: 455–737; edges:1763–5725) with more nodes 
and edges, and the occurrence of rare species was larger 
than abundant species, especially in the LE (Fig.  2a, b; 
Table S6). The closeness and eigenvector of rare species 
were larger than those of abundant species in all net-
works except for the RE network of PG (P < 0.001) (Fig. 
S2), which should be caused by taxa that occur in few 
samples. Based on the connectivity within and among 
modules (Zi and Pi, respectively), nodes can be catego-
rized into four topological roles: peripherals, connectors, 
module hubs, and network hubs (Fig.  2c, d). No net-
work hubs were observed in any of the networks in the 
RE and LE. The majority of nodes (61.31%) belonged to 
the peripheral category in all networks followed by con-
nectors (33.50%), while only 5.19% of nodes belonged 
to module hubs (Fig. 2c, d; Table S7). The proportion of 
abundant species classified as peripherals exceeded those 
categorized as connectors and module hubs in the LE. 
Furthermore, The large proportion of connectors com-
pared to module hubs indicates that these networks were 
strongly stable. It was also found that Sordariomycetes 
and Dothideomycetes were dominant in connectors and 
module hubs in all networks, most of which belonged 
to rare species (Table S8). To emphasize the interaction 

Table 1  Fungal ASVs detected in abundant and rare 
subcommunities in the leaf endophyte (LE) and root endophyte 
(RE) in the cultivated P. ginseng (PG), P. quinquefolium (PQ) and P. 
notoginseng (PN)

PG PQ PN

RE Abundant 98 74 92

Rare 1141 880 1436

Total 1239 954 1528

LE Abundant 31 46 20

Rare 1635 2900 2535

Total 1666 2946 2555
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between key taxa, we conducted an overall correlation 
analysis and the results showed that rare key taxa were 
more tightly linked to others compared to abundant taxa, 
and a majority of them were negative (Fig. S3; Table S9). 
Overall, rare taxa played an important role in maintain-
ing the stability of networks, particularly in the LE.

Rare and abundant subcommunities respond similarly 
to environmental changes
The Bray–Curtis distances were calculated to represent 
the community variations of abundant and rare subcom-
munities. According to the β dispersion, the rare sub-
communities exhibited more obvious variation compared 
to the abundant counterparts in all habitats (P < 0.001) 
except the RE in PN (Fig. S4; Table  S10). CAP analy-
sis was used to depict the contributions of soil proper-
ties to the variations of fungal subcommunities (Fig.  3; 

Table  S11). According to the CAP analysis, abundant 
and rare subcommunities showed similar responses to 
environmental changes, and Mg was an important fac-
tor in both abundant (explained variation: 8.72–49.71%) 
and rare (explained variation: 4.62–21.08%) subcommu-
nities (Table  S10). For the PG species, Ca is the second 
unignorable explanatory factor, while for PQ and PN spe-
cies, pH, OC, TN, as well as Clay, were additional key fac-
tors for explaining the subcommunities (Table S10). The 
results revealed that responses of rare and abundant sub-
communities to the indirect influence of physicochemical 
properties in the soil were parallel.

Assembly processes of rare and abundant subcommunities
The ecological assembly mechanisms of different fungal 
subcommunities were analyzed based on the iCAMP 
framework, as well as the null model and the neutral 
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model in each compartment. The relative importance of 
homogeneous selection in the assembly of rare subcom-
munities was weaker compared to the abundant counter-
parts (Fig. 4a), which was similar to differences between 
ecological processes of plant pathogens in abundant and 
rare subcommunities, and the differences were more 
pronounced in the LE than in the RE (Fig.  4b). Similar 
difference, however, was not detected in ecological pro-
cesses of undefined saprotrophs within abundant and 
rare subcommunities (Fig. S5). Moreover, proportions 
of assembly explained by homogenizing selection in LE 
were higher compared to RE within each plant species. 
The neutral model fitting results showed that the relative 
abundances and occupancy of both abundant and rare 
fungal taxa exhibited positive correlations, indicating the 
important role of neutral processes (Fig. 4c). Based on the 
ratio of ASVs within the model predictions, the results 
indicated that stochastic processes played a more promi-
nent role in shaping rare subcommunities in contrast 

to their influence on abundant counterparts. The NST 
indexes of rare subcommunities in the RE were signifi-
cantly higher than abundant counterparts, indicating that 
the assembly of rare subcommunities was more domi-
nated by stochastic processes than abundant subcommu-
nities in this habitat (Fig. 4d). In the LE, the deterministic 
effects in the assembly of abundant subcommunities 
were also larger compared to the rare counterparts. In 
summary, these results suggested the important role of 
stochastic processes in the assembly of rare and abun-
dant subcommunities.

Considering that various phylogenetic groups of fungi 
differ greatly in their responses to environmental varia-
tions, the assembly mechanisms, relative abundance and 
proportion of abundant species, plant pathogens and 
undefined saprotrophs, as well as community composi-
tions of the identified 37 phylogenetic bins were quanti-
fied as well, and the results are shown in Fig. 5. For most 
phylogenetic bins clustered by iCAMP, the proportion of 
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abundant species was larger than rare species, and the 
ecological processes were dominated by a deterministic 
assembly process. Besides, plant pathogens and unde-
fined saprotrophs were abundant in the bins, which are 
widely present across the fungi kingdom. The relative 
abundance of them was found to be higher than 50% in 
20 and 11 bins, separately. Bins in the LE of PG and PQ 
were more sensitive to environmental changes than in 
the RE, which was also more closely linked to the con-
centrations of saponin, especially those mainly belonging 
to Agaricomycetes, Leotiomycetes, and Sordariomycetes.

Effects of fungal indicators on saponin concentrations
Pearson’s correlation analysis was conducted to explore 
the interactions between fungal subcommunities and 
saponins (Fig. S6). Our results showed that only a few 
relationships were exhibited between saponins and the 
properties of communities in the RE, especially rare sub-
communities. However, more correlations were detected 
in the LE. For the PG species, some saponins (eg., R1 
and Re) showed highly significant positive relation-
ships with Shannon diversities and Richness of rare and 

abundant subcommunities, while other saponins (F1 and 
Rd) showed negative relationships. The effects of Shan-
non diversities of abundant and rare subcommunities on 
saponins were the opposite within the PQ species. For 
example, the diversity of abundant subcommunity was 
negatively linked to Rg1 and positively linked to Rb1, 
while the rare subcommunity was the opposite. Unlike 
the PG and PQ species, nearly no saponins in the LE of 
PN were associated with the diversities of abundant and 
rare subcommunities. Overall, rare subcommunities were 
more tightly linked to the accumulation of saponins in all 
three Panax species compared to the abundant counter-
parts, especially in the LE.

By relating abundant and rare taxa on class level and 
functional guilds to saponin contents and soil proper-
ties, we explored potential microbiological mechanisms 
of saponin production influenced by the environment 
(Figs.  6, S7). Significant correlations between saponin 
contents and fungal taxa, as well as functional guilds, 
were much more in the LE compared to the RE. For the 
LE, relative abundances of Agaricomycetes, Eurotiomy-
cetes and Microbotryomycetes in rare subcommunities 
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were sensitive to environmental factors and were 
tightly associated with saponin contents. Differently, in 
the RE, rare taxa showed few associations with sapo-
nin contents, though some of them (Agaricomycetes, 
Dothideomycetes, Eurotiomycetes, and Leotiomycetes) 
were strongly influenced by soil properties. The plant-
associated guilds (plant pathogens and endophytes) and 
undefined saprotrophs were linked to saponin accumu-
lation in abundant but not rare subcommunities. We 
also observed that the majority of positive relationships 
were evident in undefined saprotrophs (PG: 29.17%; 
PQ: 46.15%; PN: 100%) (Fig. 6). In summary, our results 
indicated the tight relationships between saponin accu-
mulation and specific rare and abundant taxa.

Discussion
Understanding the factors that shape the taxonomic and 
functional diversity of abundant and rare fungal sub-
communities in different tissues of Panax species is cru-
cial for predicting and managing fungal influences on 
plant growth and saponin biosynthesis. In this study, we 
explored the diversities, functional traits, co-occurrence 
structures, and ecological assembly patterns of both 
abundant and rare fungal subcommunities. Our find-
ings reveal several key insights: (i) abundant and rare 
subcommunities exhibit distinct community composi-
tions and guilds, with more pronounced differences in 
the leaf endosphere (LE); (ii) rare species assume more 
critical roles within the co-occurrence networks than 
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abundant species, highlighting their importance in main-
taining community stability; (iii) stochastic processes 
have a more significant impact on the assembly of the 
rare subcommunities compared to the abundant counter-
parts, and (iv) the microbial diversities of rare subcom-
munities are closely associated with variations in saponin 
concentrations.

Variations in community composition and functional 
guilds
Fungal communities have been shown to inhabit vari-
ous tissues of terrestrial plants and display tissue-spe-
cific distribution patterns. Despite the dominance of a 
limited subset of endophytic fungi across different sys-
tems [57], the vast majority of uncultured fungi could 
be detected with advances advancements in next-gen-
eration sequencing (NGS) technologies [50]. Prior stud-
ies in diverse ecosystems such as rivers, grasslands, and 
agricultural areas have demonstrated that abundant and 
rare fungal taxa often exhibit distinct distribution pat-
terns and functional traits [32, 84]. However, few studies 
have compared the distribution patterns of abundant and 
rare endophytic subcommunities. It has been observed 
that the α-diversity of endophytic fungal communi-
ties in plants experiences a reduction compared to the 
external environment due to host selection pressures 
such as host immune and plant exudates, with this selec-
tion being more pronounced in leaves than in roots [76]. 
We observed that the Shannon and Richness indices for 
rare subcommunities in the leaf endosphere (LE) were 
higher than those in the root endosphere (RE), contrary 
to indices in abundant subcommunities, suggesting that 
rare subcommunities are less responsive to host selection 
than abundant ones [77]. Another reason for the higher 
diversity in the LE might be that fungi can potentially 
spread much further and faster in the air as spores than 
through the soil as mycelium [62].

The evolutionary symbiosis of dominant taxa with 
the host can have significant ecological impacts, yet 
understanding the role of rare species in ecosystems 
remains challenging. In our study, abundant and rare 
fungal subcommunities exhibited substantial differ-
ences in taxonomic and functional compositions. For 
instance, abundant taxa in the leaf endophyte predomi-
nantly belong to Microbotryomycetes, which are gener-
ally identified as plant pathogens [47], whereas rare taxa 
from Agaricomycetes and Mortierellomycetes demon-
strated a saprobic lifestyle, coinciding with an enrich-
ment of undefined saprotrophs in rare subcommunities. 
Moreover, we found that abundant subcommunity domi-
nant species Plectosphaerella_cucumerina, Leptospha-
eria_sp and Rhodotorula_glutinis were specific plant 
pathogens, while rare subcommunity dominant species 

Exophiala_sp._Ppf18 and Sporidiobolus_sp. were spe-
cific undifined saprotrophs. Therefore, it is clear that dif-
ferences in the taxonomic and functional composition 
of abundant and rare subcommunities are consistent 
across various Panax species. However, fungal function 
(and microbial function in general) is highly context-
dependent and FunGUILD, further studies are demanded 
to classify functional fungi by using metagenomics and 
sequence similarity analysis and metabolomics. Con-
strained analysis of principal coordinates (CAP) demon-
strated that magnesium (Mg) was a key factor influencing 
all subcommunities. Previous research identified Mg as a 
crucial role in driving the root fungal community com-
position in foxtail millet (Setaria italica) [33]. Mg is also 
involved in several vital plant functions, such as chloro-
phyll synthesis, enzyme activity, and root development, 
which may be closely linked to the endophytic fungal 
community composition of Panax species [67]. In return, 
the endophytic fungal community might enhance Mg 
acquisition, thereby promoting plant growth [6].

More central topological role of rare taxa in co‑occurrence 
networks
There is growing evidence that the characteristics of 
ecological networks, which depict the potential inter-
relationships among coexisting organisms, can signifi-
cantly influence community responses to environmental 
changes [17, 64]. In our study, we discovered that nodes 
associated with rare subcommunities based on covaria-
tion in relative abundances possessed greater closeness 
and eigenvector centrality than those of abundant ampli-
con sequence variants (ASVs), indicating that these rare 
taxa are connected to a large number of nodes and could 
be considered hubs or mediators within ecological niches 
[83]. This suggests that the presence of rare species might 
be crucial for maintaining the stability of the fungal net-
work in plants. However, further experimental studies 
were demanded to verification the key role of rare spe-
cies. Typically, networks characterized by fewer module 
hubs and more connectors are better equipped to resist 
environmental disturbances and thus maintain commu-
nity stability [17]. In all examined networks, the propor-
tion of module hubs was significantly smaller than that of 
connectors, and most module hubs were represented by 
rare ASVs, suggesting that the network structure within 
the root endosphere (RE) and leaf endosphere (LE) 
driven by rare subcommunities is not hub-based.

The positive impact of the rare biosphere on com-
munity stability can be attributed to its ability to finely 
balance host growth and defense mechanisms [34]. Addi-
tionally, we observed a decrease in connectors and an 
increase in module hubs in the RE compared to the LE, 
implying lower ecological stability of fungal communities 
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in the RE. This may be driven by the more diverse 
resource availability and broader niches in the root envi-
ronment for microorganisms [16, 72]. We also found 
that nodes belonging to the Dothideomycetes and Sord-
ariomycetes were predominant in both module hubs and 
connectors, corroborating findings from a previous study 
[77]. Furthermore, the overall network of key species 
showed that ASV1, an abundant key taxon belonging to 
plant pathogenic Cladosporium_sp., was associated with 
many rare taxa, indicating the complex interplay between 
dominant and understudied species in shaping the eco-
system dynamics. These groups exhibit a high functional 
diversity, including roles as plant pathogens, endophytes, 
and epiphytes [30, 43]. These results further underscore 
the importance of rare taxa in plant mycobiota, particu-
larly regarding their significant contributions to the eco-
logical networks associated with plants.

Dominant host selection in shaping the abundant fungal 
subcommunities
In our research, abundant subcommunities were pre-
dominantly shaped by deterministic assembly processes, 
as evidenced by the application of Sloan’s Neutral Com-
munity Model (NCM), Neutral Species Turnover (NST) 
index, and the iCMAP framework. These findings align 
with previous research in reservoirs and oil-contami-
nated soils, which demonstrated that stochastic processes 
predominantly influence the assembly of rare commu-
nities [19, 31, 75]. Ecological drift has been identified to 
be positively correlated with microbial richness, particu-
larly when community sizes are small since a larger spe-
cies pool relative to the local community size increases 
the likelihood of species extinction [19]. Therefore, the 
higher richness of the rare biosphere compared to the 
abundant biosphere could explain the greater influence of 
ecological drift on rare subcommunity assembly.

Additionally, our results suggested that stochastic 
processes play a larger role in shaping rare plant patho-
genic communities compared to abundant communi-
ties. This distinction between the abundant and rare 
biospheres, alongside overall community dynamics, 
indicates a significant participation of plant pathogens 
in community assembly (eg., Rhodotorula_glutinis and 
Botrytis_cinerea). The prominent position of pathogens 
in our findings could be attributed to two factors: bal-
anced antagonism and saponin selection. According to 
the balanced antagonism hypothesis, fungal pathogens 
can thrive within the plant by evading the host’s defense 
mechanisms without inducing symptoms [61], allow-
ing for their asymptomatic coexistence with the host, as 
observed in our study [54]. Furthermore, as primary sec-
ondary metabolites in Panax tissues, saponins may influ-
ence the endophytic fungal community by disrupting 

the cell membranes of certain fungi and promoting the 
growth of others by providing carbon sources [40, 45]. 
Pathogens have been shown to degrade saponins into less 
toxic products, thereby avoiding cell membrane damage, 
as evidenced in studies on wheat, oats, and the P. notogin-
seng rhizosphere [40, 53]. Although iCAMP performed 
well in predicting the ecological processes, it still has 
limitations in dealing with the ‘drift’ part for the the lack 
of consideration for diversification. This is particularly 
important for rare species, as their distribution may be 
more heavily influenced by stochastic processes [52].

Potential microbial drivers of saponin accumulation
Saponins may act as chemical defenses against fungal 
infections at high concentrations, and could be induced 
by pathogen invasion attempts, serving as a feedback 
mechanism [58]. Thus, endophytic fungi can influence 
saponin composition, potentially promoting the rapid 
evolution of saponins in the ongoing conflict between 
plants and fungi [3, 18, 81]. For P. ginseng and P. quinque-
folium, links between microbial diversity and saponin 
concentrations were more pronounced in the leaf endo-
sphere (LE) than in the root endosphere (RE), highlight-
ing a substantial contribution of fungal subcommunities 
in the LE. Microbial α-diversity may influence saponin 
concentrations by affecting the functional diversity of 
the microbiome [20]. In contrast, only a few correlations 
were observed in P. notoginseng, which could be attrib-
uted to the distinct evolutionary symbioses between 
endophytic taxa and the host across different Panax spe-
cies, noting that PG and PQ are closely related allotetra-
ploid species [65, 81]. Another possible explanation is the 
environmental adaptation of these species; PN primarily 
inhabits the warmer mountain areas of Southwest China, 
while PG and PQ are found in the colder winter environ-
ments of Northeast Asia and North America [81]. More-
over, diversities within rare subcommunities were linked 
to saponin accumulation in the LE of all examined Panax 
species, suggesting that the rare biosphere might play a 
more significant role in saponin accumulation compared 
to the abundant biosphere. Earlier studies have also high-
lighted that rare taxa contribute importantly to plant 
protection and productivity by sustaining ecological mul-
tifunctionality [12, 28, 29, 77].

Our findings also underscore the vital roles of rare 
subcommunity-enriched taxa (Agaricomycetes, Euro-
tiomycetes, Sordariomycetes, and Mortierellomycetes) 
and their saprobic lifestyle in saponin accumulation. We 
propose that undefined saprotrophs might contribute 
to the form of saponins, and saponin production could 
also benefit for the survival of undefined saprotrophs in 
reverse in the Panax genus. Previous research has shown 
that saprophytes have a strong capacity to utilize small 
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molecular compounds and produce diverse secondary 
metabolites [14], which presents significant prospects for 
saponin production [2]. Agaricomycetes and Mortierel-
lomycetes were beneficial for plant growth by enhanc-
ing nutrient uptake or suppressing soil-borne pathogens 
[27, 45]. Although most positive links between undefined 
saprotrophs and saponin accumulation were observed 
in the abundant biosphere, our results demonstrated 
that undefined saprotrophs in the rare biosphere were 
more diverse and phylogenetic bins consisting of these 
rare undefined saprotrophs were positively correlated 
with saponin variation. From this, we conclude that the 
rare biosphere may influence saponin accumulation as a 
“regional species pool” for taxa, such as undefined sapro-
trophs, to enhance saponin production. Our results align 
with the role of rare communities in sustaining microbi-
ome function, as they are presumed to be highly resist-
ant to stress and functionally redundant [38, 85]. Overall, 
this study demonstrates the crucial role of rare species in 
saponin generation from both taxonomic and functional 
perspectives.

Conclusion
The taxonomic and functional compositions, co-occur-
rence patterns, and ecological assembly processes of 
fungal subcommunities exhibit distinct differences 
between abundant and rare taxa in the root and leaf tis-
sues of three cultivated Panax species. Undefined sap-
rotrophs, which were predominantly enriched in rare 
subcommunities, exhibited a strong association with the 
accumulation of saponins. Furthermore, positive associa-
tion-dominated inter-species interactions were predomi-
nantly maintained by rare species, which might lead to 
no hub-based patterns, particularly noticeable in the leaf 
endosphere (LE). The assembly of rare subcommunities 
could be more influenced by stochastic processes com-
pared to abundant subcommunities for its ability to coex-
ist with saponins effectively. This study provides insights 
into the differential distributions between the abundant 
and rare biospheres of fungi within plants, emphasizing 
the potentially essential role of rare species in sustaining 
ecological stability and enhancing saponin accumulation. 
Additionally, our findings offer valuable directions for 
future experimental studies to unravel the life strategies 
of endophytic fungi within Panax species. In the future, 
SynComs and metagenomics methods could be used to 
further validate our viewpoint.
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