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Abstract
In the age of long read sequencing, genomics researchers now have access to accurate repetitive DNA sequence (including satellites) that, due to the 
limitations of short read-sequencing, could previously be observed only as unmappable fragments. Tools that annotate repetitive sequence are now 
more important than ever, so that we can better understand newly uncovered repetitive sequences, and also so that we can mitigate errors in bioinfor
matic software caused by those repetitive sequences. To that end, we introduce the 1.0 release of our tool for identifying and annotating locally repeti
tive sequence, ULTRA Locates Tandemly Repetitive Areas (ULTRA). ULTRA is fast enough to use as part of an efficient annotation pipeline, produces 
state-of-the-art reliable coverage of repetitive regions containing many mutations, and provides interpretable statistics and labels for repetitive regions.
Availability and implementation: ULTRA is released under an open source license, and is available for download at https://github.com/ 
TravisWheelerLab/ULTRA.

1 Introduction
1.1 Background
1.1.1 Tandem repeats
Biological sequences are complex and full of subtle patterns; how
ever, one of the most common patterns is not subtle at all: tandem 
repeats. Tandem repeats are a class of biological sequences that, 
for various reasons (Li et al. 2002, Iyer et al. 2015, Zhang et al. 
2020, Zattera and Bruschi 2022), consist of multiple adjacent cop
ies of some core repetitive unit. “AACAACAACAACAACAACA 
ACAAC” is an example of a short tandem repeat composed of an 
“AAC” unit repeated 8 times. Tandem repeats are easy to identify 
when their repetitive pattern is well conserved, but as a repetitive 
region ages and accrues mutations, the clarity of its repetitive pat
tern decays. For instance, “AACAACAATATCAATAACAACA 
ACAGCAAC” (found by ULTRA at location 61461 in T2T- 
CHM13v2.0 chromosome 1) was likely a once pristine “AAC” 
repeat, but after only a few substitutions, the repetitive pattern has 
become less obvious. Insertions and deletions further obfuscate re
petitive patterns, and old tandem repeats that have experienced 
many mutations are frequently difficult or impossible to annotate 
with high confidence.

An assortment of repeat expansion mechanisms is respon
sible for the various classes of tandem repeats. Short tandem 
repeats (Jeffreys et al. 1985) are primarily caused by replica
tion slippage (Levinson and Gutman 1987, Zhang et al. 
2020) and have small repetitive units from 1 to 6 bp, which 
can repeat to span up to hundreds of bp (Fan and Chu 2007, 
Gymrek 2017). Minisatellites (Wyman and White 1980) are a 
larger sort of tandem repeat, having units between 6–60 bp 
and occupying regions as large as 20 kb (Bennett 2000). 

Satellite repeats (Kit 1961) are found in heterochromatin and 
can be millions of base pairs in length, having repetitive peri
ods that range from a few bases to a few thousand bases 
(Garrido-Ramos 2017). Higher-order repeats (Willard and 
Waye 1987) are a subclass of satellite repeats that have repet
itive units that are themselves composed complex and shifting 
patterns of satellite repeats (Garrido-Ramos 2017).

Tandem repeats of all sorts have long been studied for rea
sons of scientific intrigue and also due to their effects on hu
man health. As a brief (and incomplete) survey: they 
contribute to protein and RNA function (Richards et al. 1993, 
Kajava 2012, Trigiante et al. 2021), they are involved in gene 
regulation (Nakamura et al. 1998, Gemayel et al. 2010), they 
influence the evolution and maintenance of centromeres and 
telomeres (Plohl et al. 2008, Melters et al. 2013), and they 
play a role in genetic diseases (Richards et al. 1993, Sutherland 
and Richards 1995, Tang et al. 2017, Hannan 2018).

1.1.2 Bioinformatic challenges caused by tandem repeats
Historically, locally repetitive regions of DNA caused prob
lems with assembly (Staden 1980, Nagarajan and Pop 2013) 
because they are often longer than the sequence reads pro
duced by early generations of sequencers (Pop et al. 2002). 
This challenge has been largely resolved thanks to advances 
in long-read sequencing (McCarthy 2010, Jain et al. 2016, 
Wenger et al. 2019), which produces reads that are long and 
accurate enough to enable assembly of centromeric satellite 
DNA, as exemplified by the first “complete” human refer
ence genome, T2T-CHM13 (Altemose et al. 2022, Nurk 
et al. 2022).
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Despite these gains, tandem repeats still pose substantial 
problems for bioinformatic analysis. Consider homology 
search with tools like BLAST (Altschul et al. 1990) and 
HMMER (Eddy 2011); these tools provide a means to esti
mate the probability that two sequences are evolutionarily re
lated to one another (i.e. homologous). Briefly, these tools 
work by measuring the similarity between two sequences and 
then estimating how often that level of similarity is expected 
to occur by chance (Pagni and Jongeneel 2001). Tandem 
repeats occur far more frequently than expected by the sim
plistic random models used in homology search tools, and as 
a result, they are a frequent source of false positive search 
results. For example, consider the short tandem repeat 
“ATATATATATATATATATATATATATATATAT”. With 
naive notions of random chance we would expect this exact 
sequence to occur once every 1:8×1017 nucleotides (assum
ing 60% AT richness), corresponding to a 6 in 107 chance of 
the sequence being found in the human genome. However, in 
human [T2T-CHM13v2 (Nurk et al. 2022)] chromosome 1, 
there are 624 nonoverlapping occurrences of that exact tan
dem repeat (as found with “grep -oi”), and 3998 nonover
lapping occurrences of the tandem tandem repeat with 5 or 
fewer substitutions (found using “ugrep -oi -Z �5” on 
T2T-CHM13v2 Chr 1 with newlines removed). The majority 
of these “AT” repeats are not similar to one another because 
of homology, but because of independent replication slippage 
events that happen to produce similar short tandem repeats. 
Regardless of true homology, when a query sequence that 
contains the “AT” repeat from above is searched against hu
man chromosome 1, that search will yield false positive hits 
for each nonhomologous “AT” repeat. The problem is not 
limited to sequences that contain perfect or near perfect tan
dem repeats—even highly decayed tandem repeats can and 
do induce high scoring false positive search results (Wheeler 
et al. 2013).

1.1.3 Reducing repeat-caused error
The most common way to alleviate bioinformatic error 
caused by tandem repeats is through masking (Frith 2011a; 
Kiełbasa et al. 2011). A strategy called hard-masking uses a 
tandem repeat annotation tool to find and then mask (hide) 
tandem repeats from all downstream analysis by replacing 
the repetitive letters with the ambiguous letter N (for DNA) 
or X (for protein).

An alternative approach, called soft-masking, aims to im
prove sensitivity relative to hard-masking. Under soft- 
masking, repetitive sequence is not hidden completely but is 
instead marked as repetitive, typically by making repetitive 
sequence lower-case in the representative sequence file. Some 
homology search tools ignore soft-masked regions during the 
phase of identifying alignment seeds, then allow repetitive se
quence to be used while creating a final sequence alignment 
(Frith 2011a).

The problem with both hard-masking and soft-masking is 
that one must choose some threshold of repetitiveness (i.e. re
petitive annotation score) to decide what should be masked and 
what should not be masked. Low thresholds mask too much 
and result in reduced annotation sensitivity (Frith et al. 2010). 
High thresholds mask too little, allowing low-scoring decayed 
repeats to cause false positive hits (Wheeler et al. 2013). One po
tential strategy for reducing errors caused by tandem repeats is to 
not mask at all, but to instead better incorporate models of repeti
tiveness directly into the annotation process (N�an�asi et al. 2014). 

Such an approach could proceed by either directly including 
repetitiveness in the process of identifying and scoring of align
ment, or by competing repeat annotations against alignment- 
based annotations (Carey et al. 2021). Both of these 
approaches demand probabilistic models that produce inter
pretable scoring statistics.

1.2 Repeat annotation tools
There is a plethora of tools used to find tandem repeats 
(Benson 1999, Kurtz and Schleiermacher 1999, Sharma et al. 
2004, Price et al. 2005, Jorda and Kajava 2009, Frith 2011b, 
Smit et al. 2013–2015, Ruiz-Ruano et al. 2016, Beier et al. 
2017) each tool with a unique set of strengths and weak
nesses. Throughout this paper we will compare our tool, 
ULTRA, against two tools in particular: TRF (Benson 1999) 
and tantan (Frith 2011b).

The venerable TRF is the most widely used de novo repeat- 
finding tool. TRF first searches for well conserved tandem 
repeat candidates, and then proceeds with a self-alignment 
algorithm that further extends the repeat annotation while also 
producing informative annotation labels describing the repeti
tive pattern and all mutations that occur throughout each 
observed tandem repeat.

tantan is based on a hidden Markov model (HMM) for re
petitive sequence, and employs the Forward-Backward algo
rithm (Stratonovich 1965) to assign a numeric value to each 
letter in the target sequence representing the probability of 
the letter being a part of a tandem repeat. tantan is blazingly 
fast and can be tuned to provide greater sensitivity and specif
icity compared to TRF. Due to its design focus on the repeti
tive nature of individual letters, it does not aim to assign 
scores or labels to repetitive regions, and thus produces less 
descriptive repeat annotations than does TRF.

In an earlier conference paper, we described a prototype 
implementation of our HMM-based repeat annotation tool, 
ULTRA Locates Tandemly Repetitive Areas (ULTRA) 
(Olson and Wheeler 2018). Our goal in developing ULTRA 
is that it will improve sensitivity and specificity relative to 
other tools (particularly in the context of high levels of muta
tion), provide statistically meaningful annotation scores, cre
ate consistent and interpretable characterization of repetitive 
patterns, be easily re-parameterized for specific genomes, and 
provide a stable and easy user experience. Here, we introduce 
the user-ready 1.0 release of ULTRA and demonstrate its 
repeat labeling and scoring output. We also compare its 
performance to TRF and tantan, and show that it produces 
high genome coverage with low false labeling rate.

2 Methods
2.1 ULTRA’s hidden Markov model
2.1.1 Repetitive and nonrepetitive states
ULTRA models tandem repeats using a hidden Markov 
model (HMM—for an introduction to HMMs, see (Eddy 
2004, Stamp 2004)). ULTRA’s HMM (Fig. 1) uses a single 
state to represent nonrepetitive sequence, and a collection of 
repetitive states that each model different repetitive periodici
ties. The nonrepetitive state is blind to context and its emis
sion distribution approximately represents how frequently 
letters are expected to occur in nonrepetitive background 
sequence. In contrast, each repetitive state is context-sensitive 
(Yoon and Vaidynathan 2004), meaning that the repetitive 
emission distribution depends on prior observations. 
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A period p repetitive state at position t has a greater chance 
of repeating the letter that was observed at position t −p than 
emitting a mismatching (nonrepetitive) letter. Importantly, 
the repetitive emission distribution only depends on the indi
vidual letter at position t − p and is otherwise unaware 
of context.

2.1.2 Insertion and deletion states
Substitution mutations are modeled by the emission distribu
tion of repetitive states. An individual substitution will cause 
a slight decrease in annotation score, but because it does not 
affect the overall repetitive pattern, it will not dramatically 
impact the overall repeat annotation. On the other hand, 
insertions and deletions (indels) cause a temporary offset in 
repetitive pattern and can result in a large reduction in repeat 
annotation score that may be significant enough to grossly 
change the overall repeat annotation. Consider the follow
ing example:

The inserted letters “cg” are effectively nonrepetitive (i.e. pe
riod 0) because they are independent of the repetitive pattern. 
The insertion also causes a temporary offset in repetitive pat
tern, and if the indel is not accounted for, then the period p 
repetitive state will accumulate as many as p unde
served mismatches.

ULTRA’s HMM models indel events with period-specific 
indel states that account not only for inserted and deleted let
ters, but also for the temporary offset in repetitive pattern 
caused by indels (see Fig. 2). ULTRA uses three types of 
states to model indels. I-states represent insertion events and 
are modeled as emitting a letter with disregard for the current 
repeat pattern. D-states are silent states that are modeled as 
omitting a letter in the repeat pattern. ULTRA uses J-states 
to model the offset that occurs for the p letters that follow an 
indel. More specifically, each I-state and D-state connects to 

a unique chain of p J-states that lead from the I-state or 
D-state back to the original period p repetitive state. During 
repeat annotation, an entire J-state chain can be updated 
efficiently without computing or storing values for individual 
J-states; this optimization is akin to updating a moving aver
age based on which values have changed instead of simply 
recomputing the entire average. For a more complete descrip
tion of this optimization see our earlier conference extended 
abstract (Olson and Wheeler 2018). (Note that ULTRA’s 
HMM is similar to the one used in tantan, supplemented by 
these additional indel states to explicitly model the effects of 
insertions and deletions. tantan optionally models indels, but 
uses complete shifts in repetitive period without requiring 
return to the original repetitive period.)

Modeling all possible patterns of indel events while keep
ing track of the temporary offset in repetitive pattern caused 
by those events would result in an intractably large HMM. 
Instead of modeling all possible patterns, ULTRA only mod
els up to i consecutive insertions and up to d consecutive dele
tions where, by default, i¼ d¼ 10. Anecdotally, we find that 
more complex indel patterns can frequently be well approxi
mated by ULTRA’s basic model of consecutive indels, and 
empirically we find that modeling consecutive indels provides 
improved annotation performance relative to modeling no 
indels at all.

2.2 Viterbi annotation
2.2.1 Basic viterbi
To annotate repeats in a length n string S, ULTRA finds 
regions of S that are well represented by repetitive states and 
then marks those regions as being repetitive. The problem of 
finding the sequence of HMM states with the greatest proba
bility of producing an observed string is known as the decod
ing problem, and ULTRA solves that problem using the 
Viterbi algorithm (Viterbi 1967). Let Σ be the model alphabet 
(e.g. in DNA, Σ¼ fA, C, G, Tg), M be the collection of m 
ULTRA HMM states (including nonrepetitive, repetitive, I, 
D, and J states), T 2 Rm×m be the transition probabilities, 
and E 2 RjΣj

2×m be the emission probabilities; we will use the 
shorthand Et;v to refer to the probability of state v emitting 

Figure 1. ULTRA’s HMM. The cloud shaped nodes represent a collection of states modeling both tandem repeats and also insertion/deletion events (see 
Section 2.2.1). Self-transition edges have not been drawn but do exist for the nonrepetitive and repetitive states. Similar to tantan, ULTRA models large 
period repeats as being less common than small period repeats through a decay parameter, λ. For a model allowing maximum period k, the probability of 
transitioning from the start state to a period p repetitive state is γp ¼ λp �

Pk
i¼1ðλ

i Þ. All labeled parameters can be adjusted (see the user-guide at https:// 
github.com/TravisWheelerLab/ULTRA).

Sequence: ...ATACCGG AcgTACCGG ATACCGG...
Naive Look-back: ...0.7777777 777777777 7777777...
Naive Matches: ...þþþþþþþ þ- - - - - - - - -þþþþþþ...
Correct Look-back: ...0.7777777 700999999 9777777...
Correct Matches: ...þþþþþþþ þ- -þþþþþþ þþþþþþþ...
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the letter St 2 Σ at position t. Viterbi works by creating a ma
trix, P 2 Rn×m, i.e. filled using the following recurrence: 

Pt;v  

0 t ¼ 0; v 6¼ 0
1 t ¼ 0; v ¼ 0
maxu2MPt − 1;uTu;vEt;v 0< t≤n

8
><

>:
(1) 

Let v� be state with the greatest value in Pn, i.e. 
v� ¼ argmaxu2MPn;u. The probability inside Pn;v� will be the 
probability of a most likely path through M, i.e. the Viterbi 
path. The Viterbi path can then be recovered by re-tracing 
the transitions which led to v� at index n [see (Stamp 2004) 
for a more complete description of Viterbi].

2.2.2 ULTRA viterbi
ULTRA’s Viterbi implementation replaces emission probabil
ities with the ratio of model emission probability relative to 
the background frequency of letters, E0. We refer to 
ULTRA’s Viterbi matrix as P0. 

P0t;v  

0 t ¼ 0; v 6¼ 0
1 t ¼ 0; v ¼ 0

maxu2MP0t − 1;uTu;v
Et;v

Et;0
0< t≤n

8
>>><

>>>:

(2) 

The effects of using relative emission likelihood are greatest 
in highly biased sequence composition, and enable ULTRA 
to better differentiate repeating letters that occur by random 
chance (because the letters are very common) from repeating 
letters that are part of a tandem repeat. Importantly, 
ULTRA’s usage of relative emission likelihood inside of 
Viterbi produces very different results from using basic 
Viterbi followed by a composition-bias adjustment; in testing 
we observed that using relative likelihood of emissions 
greatly improved ULTRA’s overall accuracy.

One downside to using relative emission likelihood is that it 
is more difficult to predict how adjustments to the background 
emission rate parameters will affect repeat annotation. In future 
updates to ULTRA we wish to improve the interpretability of 
ULTRA’s background probability rate, but until then we sug
gest that users take advantage of the –tune subprogram 

(described in Section Tuning), which automatically optimizes 
ULTRA’s emission probabilities for a given input sequence.

2.2.3 Using the viterbi path to annotate repeats
After the Viterbi path, V ¼ fv0;v1; . . .;vng, has been calcu
lated, it is then used to annotate tandem repeats. A substring 
with range ðtstart; tendÞ will be annotated as repetitive when all 
of the positions in the range are identified by the Viterbi path 
as having been emitted by a repetitive state (or its associated 
indel states). In other words, a region is labeled as repetitive 
when 8t 2 ftstart; . . . ; tendg;vt 6¼ 0. After a p period repeat has 
been found in the range ðtstart; tendÞ, it is then scored using the 
following equation: 

score ¼
Xtend

Pt¼tstart

logðTvt − 1;vtÞþ log
EvðtÞ
E0ðtÞ

� �� �

¼ logðP0pðtendÞÞ− logðP0pðtstartÞÞ

(3) 

Because repetitive states in ULTRA look backwards but 
not forwards, the first p letters of a repeat will not be part of 
the Viterbi path. ULTRA remedies this problem by reporting 
the starting location for repeats as tstart −p instead of tstart.

2.3 Repeat splitting
“ACACACACACACGCGCGCGCGCGCGC” is a tandem 
repeat that changes from an “AC” pattern to a “GC” pattern; 
because repetitive states in ULTRA’s repeat model only com
pare the letter at position t to the letter at position ðt − pÞ, 
ULTRA only observes a single mismatch when the pattern 
changes and is therefore unaware of the change in pattern. 
To annotate pattern changes such as this, ULTRA performs a 
post processing repeat splitting step. We refer to locations 
where a change in pattern occurs as repeat splits, and we refer 
to the segments of repetitive sequence isolated by repeat splits 
as subrepeats.

ULTRA’s repeat splitting process (see Fig. 3) begins by 
assigning profile-indices to letters in the sequence. The profile- 
indices are used to keep track of how letters in the repetitive 
sequence relate to the repetitive pattern. For example, the 
sequence “CATCATCAgTCATCAT” is assigned the indices “1 
2 3 1 2 3 1 2 � 3 1 2 3 1 2 3”. ULTRA then slides two adjacent 
windows along the tandem repeat and uses the sequence and 

Figure 2. Top: The collection of states used to model insertions that occur within a p ¼ 5 tandem repeat (a similar collection of states is used to model 
deletions). Each state’s look-back is shown within parentheses. Bottom: A p ¼ 5 tandem repeat that contains a length 3 insertion. The letters from the 
insertion are explained by a path through 3 I-states with look-back ¼ ð0Þ, followed by a chain of J-states with look-back ¼ 3þ5¼ ð8Þ.
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profile indices to build window-specific repeat-profiles, L and 
R. Each window must be at least (by default) 15 letters long 
and at least (by default) 5 repeat units. The window profiles are 
stored as matrices; a period p repeat with an alphabet Σ will 
have a corresponding profile matrix of size p× jΣj. Each Li;c 

and Ri;c cell holds the frequency with which letter c is observed 
at profile-index i in the window. The repetitive content of L is 
then compared against the repetitive content of R by calculating 
the Jensen-Shannon divergence (Jeffreys 1946, Lin 1991): 

JSDðLjjRÞ ¼ −
1
2

Xp

i¼1

X

c2M

Li;c log
Ri;c

Li;c

� �

þRi;c log
Li;c

Ri;c

� �

(4) 

ULTRA slides the two repeat profile windows across the 
entire repetitive sequence and iteratively calculates the JSD at 
each position in the repetitive sequence. A small JSD implies 
that both windows contain similar repetitive content and can 
be well represented as a single repetitive region. Alternatively, 
a large JSD means that the left and right windows contain 
dissimilar repetitive content. ULTRA identifies local peaks in 
JSD, and when the value of a peak exceeds a threshold (3.5 
by default), the corresponding position is marked as a repeat 
split. After splits have been marked, the repetitive patterns 
are calculated for each subrepeat.

In cases where an undetected indel has occurred, the profile 
indices will be incorrectly assigned resulting in a large JSD 
even when the repetitive pattern has not actually changed. 
ULTRA accounts for this possibility by comparing neighbor
ing subrepeats to ensure the subrepeats have different repeti
tive patterns. When two neighboring subrepeats have the 
same (possibly rotated) repetitive pattern (such as “GTTG” 
and “GGTT”), the repeat split is removed and the two subre
peats are merged back into a single subrepeat. The final 
annotations output by ULTRA describe the overall repetitive 
region as well as the subrepeats that make up the region. 
Repeats and subrepeats are named with an alphabetically 
sorted version of their repetitive pattern (e.g. the pattern 
“GGTT” from Fig. 3 is alphabetically smaller than rotations 
“GTTG,” “TTGG,” and “TGGT”).

2.4 Calculating P-values
It is possible to base repeat annotations directly on scores, by 
establishing some score threshold τ and identifying a 

candidate region as repetitive if its ULTRA score exceeds τ. 
But sequence annotation is more robust when scores can be 
interpreted in a likelihood framework; this is common for 
alignment-based annotation, where each alignment with 
score s is assigned a P-value (and multiple-test-adjusted E- 
value) that corresponds to the probability of observing a 
score ≥ s in an alignment of two unrelated sequences. 
ULTRA similarly computes a P-value for each annotated re
gion by learning the distribution of scores observed in ran
dom (nonrepetitive) sequence.

ULTRA was used (with default settings) to annotate repeti
tive regions in 1 GB of randomly generated 50% AT-rich se
quence. We then fit exponential distribution parameters 
(location ¼ μ, and scale ¼ σ) to the distribution of annotation 
scores observed in the 1GB random sequence. Letting ω 
be the fraction of letters annotated as repetitive, and s be 
the ULTRA annotation score of a labeled repetitive 
region, the P-value of that region can be calculated 
as P � valueðscoresÞ ¼ ω expððμ − sÞ=σÞ.

The –pval flag will instruct ULTRA to convert annotation 
scores to P-values. We note that changes in ULTRA’s model 
parameters or changes in sequence composition can greatly 
effect the location, scale, and repeat frequency parameters 
that should be used to produce P-values. In a future release, 
we plan to automatically extract location, scale, and repeat 
frequency during tuning (see Section 2.6). Until then, users 
may modify P-value parameters with the –ploc, –pscale, 
and –pfreq options.

2.5 Windowed viterbi
Applying Viterbi to a length n sequence using an HMM with 
m states requires storing values in an n×m matrix. The size 
of that matrix can be a limiting factor when analyzing large 
sequences with large models. To reduce the amount of mem
ory required, ULTRA splits an input sequence into overlap
ping windows and then applies Viterbi to each window 
independently. Dividing the target sequence into windows 
has the added benefit of enabling parallel computing of 
repeats across distinct windows. Using overlapping windows 
introduces the possibility of tandem repeats that occur in the 
overlapping region of windows being annotated multiple 
times. To avoid redundant repeat annotation, ULTRA will 
search for and then merge overlapping repeats when they are 
equal in repetitive period.

Figure 3. A period 4 repeat with two subrepeats (“AAAC” and “GGTT”), each containing multiple substitutions. To find the change in pattern, ULTRA 
slides two adjacent windows along the sequence and creates profiles representing the repetitive content within the windows. The repetitive profiles of 
two adjacent windows are compared against each other using JSD. This figure shows the local window profiles (with profile frequencies displayed as bar 
charts) and the corresponding JSD for three different positions. The first pair of window profiles contains similar repetitive content resulting in a small 
JSD; the last profile pair also yields a small JSD. The middle windows contain different repetitive content, resulting in a large JSD that passes ULTRA’s 
splitting threshold. Both the repetitive region as a whole and also the repetitive region’s subrepeats are included in ULTRA’s final annotation.
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ULTRA automatically adjusts the size of sequence win
dows and the amount of overlap between windows based on 
the number of states ULTRA’s HMM is using; when using a 
large collection of states the window size is decreased (in or
der to reduce memory usage) and when using a small collec
tion of states the window size is increased (to improve 
runtime). Window size and overlap size can also be manually 
adjusted with the –winsize and –overlap options. Users 
can see how much memory ULTRA is expected to consume 
by using the –mem flag.

2.6 Tuning
There is tremendous diversity in tandem repeat patterns be
tween different organisms. To achieve the highest annotation 
quality, ULTRA’s parameters need to be tuned according to 
the genome being annotated. In ULTRA, parameter tuning is 
performed automatically when used with the –tune flag. 
Tuning works by running ULTRA many times on the input 
sequence, each time using a different set of candidate parame
ters. ULTRA then selects the parameter set that provides the 
greatest annotation coverage while remaining under an esti
mated false discovery rate threshold (10% by default).

To estimate the false discovery rate of a particular parame
ter set, ULTRA’s tuning routine measures ULTRA’s annota
tion coverage on a locally shuffled version of the input 
sequence. ULTRA’s local shuffling is done inside the se
quence windows used by windowed Viterbi (see Section 
Windowed Viterbi). Local shuffling retains local variability 
in sequence composition, as is observed in isochores 
(Bernardi et al. 1985, Eyre-Walker and Hurst 2001, 
Costantini and Musto 2017), but removes all biologically 
caused tandem repeats. By chance, the shuffled sequence will 
still contain some repetitive content, but tandem repeats that 
occur in shuffled sequence are expected to be rare and low- 
scoring relative to the original (biological) input sequence. 
After ULTRA has used candidate parameters to annotate 
both the input sequence and the shuffled input sequence, it 
then estimates the false discovery rate as repetitive coverage 
in the shuffled sequence divided by the repetitive coverage in 
the original input sequence.

ULTRA allows users to change what parameter configura
tions will be tested during tuning. –tune explores 18 differ
ent parameter configurations, –tune_medium explores 40, 
and –tune_large explores 252. Users can also provide 
their own candidate parameter configurations using the 
–tune_file option. By default, ULTRA reduces the run
time of tuning by disabling indel states. After indel-free iden
tification of good parameters, ULTRA is re-run with indels 
enabled. This approach can sometimes lead to selection of 
parameters that produce higher-than-expected false discovery 
rate once the indel model is enabled in the final run; to bypass 
this risk, indel states can be enabled during tuning with the 
–tune_indel flag.

3 Results
3.1 Coverage
We quantify the accuracy of ULTRA, TRF, and tantan by 
measuring each tool’s coverage and estimated false coverage 
for the genomes listed in Table 1. In order to estimate false 
coverage, we ran each tool on a window-shuffled version of 
each genome. Specifically, we used the esl-shuffle tool from 
HMMER’s (Eddy 2011) easel library, applying the “-w 

20000” flag to shuffle 20 kb chunks so that regional GC 
compositional variability would be retained while also re
moving (through shuffling) biologically caused tandem 
repeats. We use annotation coverage of the shuffled genomes 
to estimate the false coverage of the unshuffled genomes.

Figure 4 shows each tool’s annotation coverage for each 
genome using default settings (for TRF we used “2 7 7 80 10 
30<max repeat period > -l 12”, as suggested in the TRF 
user guide). We also report results achieved with settings op
timized for each organism; these settings were identified by 
performing a parameter grid search (see below). Finally, we 
show coverage for ULTRA using the “–tune” subprogram, 
which causes ULTRA to perform an automated grid search 
(described in Section Tuning). The exact coverage values and 
selected (optimized) parameters can be found in 
Supplementary Tables S1–S8.

For the optimized coverage experiments, we created a grid 
of parameters for each tool (see Table 2), and then for each 
genome, we selected the parameters that produced the highest 
coverage with an estimated false discovery rate of 10% 
or less.

By default, tantan will annotate repetitive sequence even if 
there are fewer than two full repeat units, causing tantan to 
sometimes use a large repeat period to annotate noncontigu
ous repetitive content (i.e. content that is not tandemly repeti
tive). To make tantan’s results more consistent with ULTRA 
and TRF, we used “tantan -f4” for all coverage experi
ments, which (among other things) causes tantan to filter out 
repeat annotations that are less than two repetitive units in 
length. We also measured tantan’s performance without -f4 
and compare it against ULTRA with comparable settings 
(–min_unit 0) and found that “ULTRA –min_unit 0” has 
greater coverage than tantan without the -f4 flag, with simi
lar relative results (see Supplementary Figs S1–S4).

For both default settings and optimized settings, ULTRA 
produces greater coverage than TRF and tantan. For most 
genomes, ULTRA also had the smallest FDR with the notable 
exception being Plasmodium falciparum, caused by the 
genome’s highly biased 80.7% AT-rich composition, which is 
far from ULTRA’s default composition expectation. For 
many genomes, using ULTRA with –tune produced a larger 
FDR compared to ULTRA (default), especially in the period 
500 coverage experiments. The increased FDR while tuning 
is primarily caused by –tune disabling indel states during 
tuning; for best results we suggest users use –tune_indel.

3.2 Repeat score distribution
When using repeat masking strategies, one must choose a 
score threshold that will determine which regions will and 
will not be masked. Understanding the distribution of anno
tation scores in random sequence allows researchers to make 
statistically informed decisions about which score threshold 

Table 1. Genomes used for coverage experiments.

Organism Strain/version GC %

Mycobacterium 
tuberculosis

H37Rv (AL123456.2) (Cole 
et al. 1998)

65.6%

Neurospora crassa NC12 (Galagan et al. 2003) 48.2%
Zea Maize B73-REFERENCE-NAM-5.0  

(Hufford et al. 2021)
46.7%

Homo sapien T2T-CHM13v2.0 (Nurk 
et al. 2022)

40.8%

Plasmodium falciparum ASM276v2 (Gardner et al. 2002) 19.3%
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they should use, and may enable more sophisticated repeat- 
error mitigation than mere masking [such as competing anno
tations based on score density or associated statistical values 
(Carey et al. 2021)]. Additionally, if a tool is incapable of 
producing well behaving score distributions when annotating 
random sequence, then it is likely that the tool will provide 
inconsistent scores to biological tandem repeats, resulting in 
lower quality repeat masking.

Figure 5 shows the score distributions of ULTRA, tantan, 
and TRF when run on 10 GB of randomly generated 60% 
AT-rich sequence. We ran all three tools using default settings 
and a maximum detectable repeat period of 100. Its 

important to note that while ULTRA and TRF produce 
scores for each tandem repeat annotation, tantan instead pro
duces probabilities (Forward-Backward derived posterior 
marginals) for individual letters.

ULTRA’s score distribution decays smoothly and exponen
tially, while TRF’s scores decay chaotically. tantan’s proba
bility distribution cannot be compared directly to the scores 
produced by ULTRA or TRF because they represent 
letter-specific probabilities of being part of some tandem 
repeat instead of tandem repeat annotation scores, but we 
note that tantan’s posterior marginal distribution decays 
very smoothly.

Figure 4. Coverage and estimated false coverage for ULTRA, tantan, and TRF. The top chart show coverage when using a maximum repeat period of 10 
and the bottom chart show coverage when using a maximum repeat period of 500. Plain bars indicate default parameters and textured bars indicate grid- 
search optimized parameters. We also include results using ULTRA –tune (with default settings). The estimated false discovery rate (FDR) is displayed 
below each bar. Note that in some case, there is no parameter choice that achieves <10% FDR; in these cases, no bar is presented, and the FDR value is 
listed as —.

Table 2. Parameter grids for optimized coverage experiments.a

Tool Parameter Values

ULTRA −-at AT richness 0.3, 0.4, 0.5, 0.6, 0.7
−m  Repeat match probability (Pr [St¼ St–p]) 0.6, 0.7, 0.9

tantan −r  Repeat start probability 0.005, 0.1
−s  Repeat annotation threshold 0.50, 0.85
-m  Substitution matrix (default) 50% GC richness substitution matrix,

78% AT richness substitution matrix,
78% GC richness substitution matrix.

TRF “2 7 7 80 10 30 < max repeat period > -l 12”
“2 5 5 80 10 30 < max repeat period > -l 12”.

a ULTRA’s grid is composed of 15 total parameter combinations, tantan’s grid has 12 parameter combinations, and TRF grid has 2 different 
configurations, one from the TRF user guide, and one from Frith (2011b).
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3.3 Repeat splitting accuracy
Repeat splitting (described in Section 2.2.3) allows ULTRA 
to find and annotate changes in repetitive pattern. Figure 6 
shows ULTRA’s repeat splitting accuracy for repetitive peri
ods 1 through 10 under substitution rates between 0 and 0.5. 
To measure repeat splitting accuracy, we generated artificial 
repetitive sequences that contained two subrepeats. 
Sequences were made by first selecting a repeat period be
tween 1 and 10, and then creating two repeat units (such as 
“AACC” and “ACGT”) that shared no >50% similarity. 
The similarity restriction considers all rotations of the repeti
tive units; e.g. “ACCGG” and “GGAGG” would not be a 
valid pair of subrepepeat patterns because “ACCGG” rotated 
two letters to the right is “GGACC”, which shares >50% 
similarity with “GGAGG”.

We then generated two perfect tandem repeats of length 
500, one for each repetitive unit. We concatenated the two 
perfect tandem repeats, creating one sequence of length 1000. 
We then mutated the sequence using a substitution rate rang
ing between 0 and 0.5, where each mutated letter is equally 
likely to mutate to any other letter. For each combination of 
repeat period and substitution rate, we generated 5000 
sequences and then ran ULTRA on each sequence. We quan
tify ULTRA’s repeat splitting accuracy as the fraction of 
sequences in which ULTRA found a single change in repeti
tive pattern that was within 10 nucleotides of the true change 
in repeat pattern. Figure 6 demonstrates that ULTRA’s re
peat splitting is generally accurate for repetitive sequence 
with a substitution rate of 30% or less. This suggests that it 
may be appropriate to report repeat units for subrepeats 

estimated to contain sequence identity >70%, and to other
wise report a core “ambiguous” repeat unit for the en
tire block.

3.4 Computational resources
Table 3 shows memory usage and runtime while processing 
the T2T genome (3.2 GB) with ULTRA, TRF, and tantan. 
All analysis was performed on 2.4 GHz XE2242 CPUs with 
94 cores and 512 GB of RAM. TRF with a maximum detect
able repeat period of 10 failed to process all T2T chromo
somes without crashing despite efforts to adjust the “−l” 
option and increase TRF’s allocated memory. ULTRA is the 
only tool capable of multithreading, and all of ULTRA’s 
analysis was performed using 16 threads. ULTRA’s memory 
footprint can linearly be decreased by reducing the number of 
threads used.

4 Discussion
Here, we have introduced our open-source tool for identify
ing and labeling repetitive DNA: ULTRA (https://github. 
com/TravisWheelerLab/ULTRA), in hopes that it both aids 
the study of tandem repeats and also helps reduce the bioin
formatic problems caused by tandem repeats. A prototype 
implementation of ULTRA was used during the development 
of T2T-CHM13 (Altemose et al. 2022) and the 1.0 version of 
ULTRA will soon be integrated into RepeatMasker (Smit 
et al. 2013–2015) (replacing TRF). We plan to continue sup
porting and improving ULTRA and have already strategized 
algorithmic tweaks and model changes that will further 

Figure 5. Annotation score distributions. Using each tool to label 10 GB of 60% AT-rich random sequence, the left and right plots show per-repeat score 
distributions for ULTRA and TRF, respectively. The middle plot shows the distribution of emphtantan per-letter probabilities of being part of a repetitive 
region. Horizontal axis corresponds to score/probability values and the vertical axis corresponds to value frequency. The exponential decay of ULTRA 
enables reliable P-value estimates.

Figure 6. Repeat splitting accuracy versus sequence substitution rate.
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increase ULTRA’s speed, sensitivity, and specificity. We also 
highlight that ULTRA 1.0 supports only DNA and RNA 
sequences; support for protein sequences will be added in a 
future release.

The patterns of tandem repeats are complex and far from 
fully understood. Higher order repeats are particularly com
plex, and there is great need for methods that characterize 
their hierarchical structure and repetitive patterns. As we 
continue supporting and developing ULTRA we hope to ex
pand upon the descriptive annotations currently provided by 
ULTRA so that repetitive sequence can be better character
ized and better understood.
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