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Abstract

Spectral clustering views the similarity matrix as a weighted graph, and partitions the data by 

minimizing a graph-cut loss. Since it minimizes the across-cluster similarity, there is no need 

to model the distribution within each cluster. As a result, one reduces the chance of model 

misspecification, which is often a risk in mixture model-based clustering. Nevertheless, compared 

to the latter, spectral clustering has no direct ways of quantifying the clustering uncertainty 

(such as the assignment probability), or allowing easy model extensions for complicated data 

applications. To fill this gap, we propose the Bayesian forest model as a generative graphical 

model for spectral clustering. This is motivated by our discovery that the posterior connecting 

matrix in a forest model has almost the same leading eigenvectors, as the ones used by normalized 

spectral clustering. To induce a distribution for the forest, we develop a “forest process” as a 

graph extension to the urn process, while we carefully characterize the differences in the partition 

probability. We derive a simple Markov chain Monte Carlo algorithm for posterior estimation, 

and demonstrate superior performance compared to existing algorithms. We illustrate several 

model-based extensions useful for data applications, including high-dimensional and multi-view 

clustering for images.
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1 Introduction

Clustering aims to partition data y1, … , yn into disjoint groups. There is a large literature 

ranging from various algorithms such as K-means and DBSCAN (MacQueen, 1967; Ester et 

al., 1996; Frey and Dueck, 2007) to mixture model-based approaches [reviewed by Fraley 

and Raftery (2002)]. In the Bayesian community, model-based approaches are especially 

popular. To roughly summarize the idea, we view each yi as generated from a distribution 

K ⋅ ∣ θi , where θ1, … , θn  are drawn from a discrete distribution ∑k = 1
K wkδθk* ⋅ , with wk as the 
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probability weight, and δθk* as a point mass at θk
*. With prior distributions, we could estimate 

all the unknown parameters (θk
*’s, wk’s, and K) from the posterior.

The model-based clustering has two important advantages. First, it allows important 

uncertainty quantification such as the probability for cluster assignment ci, Pr ci = k ∣ yi , as 

a probabilistic estimate that yi comes from the kth cluster ci = k θi = θk
* . Different from 

commonly seen asymptotic results in statistical estimation, the clustering uncertainty does 

not always vanish even as n ∞. For example, in a two-component Gaussian mixture model 

with equal covariance, for a point yi at nearly equal distances to two cluster centers, we 

would have both Pr ci = 1 ∣ yi  and Pr ci = 2 ∣ yi  close to 50% even as n ∞. For a recent 

discussion on this topic as well as how to quantify the partition uncertainty, see Wade and 

Ghahramani (2018) and the references within. Second, the model-based clustering can be 

easily extended to handle more complicated modeling tasks. Specifically, since there is a 

probabilistic process associated with the clustering, it is straightforward to modify it to 

include useful dependency structures. We list a few examples from a rich literature: Ng et 

al. (2006) used a mixture model with random effects to cluster correlated gene-expression 

data, Müller and Quintana (2010); Park and Dunson (2010); Ren et al. (2011) allowed 

the partition to vary according to some covariates, Guha and Baladandayuthapani (2016) 

simultaneously clustered the predictors and use them in high-dimensional regression.

On the other hand, model-based clustering has its limitations. Primarily, one needs to 

carefully specify the density/mass function K, otherwise, it will lead to unwanted results and 

difficult interpretation. For example, Coretto and Hennig (2016) demonstrated the sensitivity 

of the Gaussian mixture model to non-Gaussian contaminants, Miller and Dunson (2018) 

and Cai et al. (2021) showed that when the distribution family of K is misspecified, the 

number of clusters would be severely overestimated. It is natural to think of using more 

flexible parameterization for K, in order to mitigate the risk of model misspecification. 

This has motivated many interesting works, such as modeling K via skewed distribution 

(Frühwirth-Schnatter and Pyne, 2010; Lee and McLachlan, 2016), unimodal distribution 

(Rodríguez and Walker, 2014), copula (Kosmidis and Karlis, 2016), mixture of mixtures 

(Malsiner-Walli et al., 2017), among others. Nevertheless, as the flexibility of K increases, 

the modeling and computational burdens also increase dramatically.

In parallel to the above advancements in model-based clustering, spectral clustering has 

become very popular in machine learning and statistics. Von Luxburg (2007) provided 

a useful tutorial on the algorithms and a review of recent works. On clustering point 

estimation, spectral clustering has shown good empirical performance for separating non-

Gaussian and/or manifold data, without the need to directly specify the distribution for 

each cluster. Instead, one calculates a matrix of similarity scores between each pair of data, 

then uses a simple algorithm to find a partition that approximately minimizes the total 

loss of similarity scores across clusters (adjusted with respect to cluster sizes). This point 

estimate is found to be not very sensitive to the choice of similarity score, and empirical 

solutions have been proposed for tuning the similarity and choosing the number of clusters 

(Zelnik-Manor and Perona, 2005; Shi et al., 2009). There is a rapidly growing literature of 

frequentist methods on further improving the point estimate [ Chi et al. (2007); Rohe et al. 
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(2011); Kumar et al. (2011); Lei and Rinaldo (2015); Han et al. (2021); Lei and Lin (2022); 

among others], although, in this article, we focus on the Bayesian perspective and aim to 

characterize the probability distribution.

Due to the algorithmic nature, spectral clustering cannot be directly used in model-based 

extension, or produce uncertainty quantification. This has motivated a large Bayesian 

literature. There have been several works trying to quantify the uncertainty around the 

spectral clustering point estimate. For example, since the spectral clustering algorithm can 

be used to estimate the community memberships in a stochastic block model, one could 

transform the data into a similarity matrix, then treat it as if generated from a Bayesian 

stochastic block model (Snijders and Nowicki, 1997; Nowicki and Snijders, 2001; McDaid 

et al., 2013; Geng et al., 2019). Similarly, one could take the Laplacian matrix (a transform 

of the similarity used in spectral clustering) or its spectral decomposition, and model it in a 

probabilistic framework (Socher et al., 2011; Duan et al., 2023).

Broadly speaking, we can view these works as following the recent trend of robust Bayesian 

methodology, in conditioning the parameter of interest (clustering) on an insufficient statistic 

(pairwise summary statistics) of the data. See Lewis et al. (2021) for recent discussions. 

Pertaining to Bayesian robust clustering, one gains model robustness by avoiding putting 

any parametric assumption on within-cluster distribution K ⋅ ∣ θk
∗ ; instead, one models the 

pairwise information that often has an arguably simple distribution. Recent works include 

the distance-based Pólya urn process (Blei and Frazier, 2011; Socher et al., 2011), Dirichlet 

process mixture model on Laplacian eigenmaps (Banerjee et al., 2015), Bayesian distance 

clustering (Duan and Dunson, 2021a), generalized Bayes extension of product partition 

model (Rigon et al., 2023).

This article follows this trend. Instead of modeling yi’s as conditionally independent (or 

jointly dependent) from a certain within-cluster distribution K ⋅ ∣ θk* , we choose to model yi as 

dependent on another point yj that is close by, provided yi and yj are from the same cluster. 

This leads to a Markov graphical model based on a spanning forest, a graph consisting of 

multiple disjoint spanning trees (each tree as a connected subgraph without cycles). The 

spanning forest itself is not new to statistics. There has been a large literature on using 

spanning trees and forests for graph estimation, such as Meila and Jordan (2000); Meilă 

and Jaakkola (2006); Edwards et al. (2010); Byrne and Dawid (2015); Duan and Dunson 

(2021b); Luo et al. (2021). Nevertheless, a key difference between graph estimation and 

graph-based clustering is that — the former aims to recover both the node partition and 

the edges characterizing dependencies, while the latter only focuses on estimating the node 

partition alone (equivalent to clustering). Therefore, a distinction of our study is that we will 

treat the edges as a nuisance parameter/latent variable, while we will characterize the node 

partition in the marginal distribution.

Importantly, we formally show that by marginalizing the randomness of edges, the point 

estimate on the node partition is provably close to the one from the normalized spectral 

clustering algorithm. As the result, the spanning forest model can serve as the probabilistic 

model for the spectral clustering algorithm — this relationship is analogous to the one 

between the Gaussian mixture model and the K-means algorithm (MacQueen, 1967). 
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Further, we show that treating the spanning forest as random, as opposed to a fixed 

parameter (that is unknown), leads to much less sensitivity in clustering performance, 

compared to cutting the minimum spanning tree algorithm (Gower and Ross, 1969). On 

the distribution specification on the node and edges, we take a Bayesian non-parametric 

approach by considering the forest model as realized from a “forest process” — each cluster 

is initiated with a point from a root distribution, then gradually grown with new points from 

a leaf distribution. We characterize the key differences in the partition distribution between 

the forest and classic Pólya urn processes. This difference also reveals that extra care should 

be exerted during model specification when using graphical models for clustering.Lastly, by 

establishing the probabilistic model counterpart for spectral clustering, we show how such 

models can be easily extended to incorporate other dependency structures. We demonstrate 

several extensions, including a multi-subject clustering of the brain networks, and a high-

dimensional clustering of photo images.

2 Method

2.1 Background on Spectral Clustering Algorithms

We first provide a brief review of spectral clustering algorithms. For data y1, …, yn, let Ai, j ≥ 0
be a similarity score between yi and yj, and denote the degree Di, i = ∑j ≠ iAi, j. To partition the 

data index 1, …, n  into K sets, V = V 1, …, V K , we want to solve the following problem:

min
V

∑
k = 1

K ∑i ∈ V k, j ∉ V k Ai, j

∑i ∈ V k Di, i
.

(1)

This is known as the minimum normalized cut loss. The numerator above represents the 

across-cluster similarity due to cutting V k off from the others; and the denominator prevents 

trivial solutions of forming tiny clusters with small ∑i ∈ V k Di, i.

This optimization problem is a combinatorial problem, hence has motivated approximate 

solutions such as spectral clustering. To start, using the Laplacian matrix L = D − A with 

D the diagonal matrix of Di, i’s, and the normalized Laplacian N = D−1/2LD−1/2, we can 

equivalently solve the above problem via:

min
V

tr Z′ν NZν ,

where ZV: i, k = 1 i ∈ V k Di, i/ ∑i ∈ V k Di, i. It is not hard to verify that Z′VZV = IK. We can 

obtain a relaxed minimizer of Z :Z′Z = IK, by simply taking Z as the bottom K eigenvectors 

of N (with the minimum loss equal to the sum of the smallest K eigenvalues). Afterward, 

we cluster the rows of Z into K groups (using algorithms such as the K-means), hence 

producing an approximate solution to (1).
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To clarify, there is more than one version of the spectral clustering algorithms. An alternative 

version to (1) is called “minimum ratio cut”, which replaces the denominator ∑i ∈ V k Di, i

by the size of cluster V k . Similarly, continuous relaxation approximation can be obtained 

by following the same procedures above, except for clustering the eigenvectors of the 

unnormalized L. Details on comparing those two versions can be found in Von Luxburg 

(2007). In this article, we focus on the one based on (1) and the normalized Laplacian matrix 

N. This version is also commonly referred to as “normalized spectral clustering”.

2.2 Probabilistic Model via Bayesian Spanning Forest

The next question is if there is some partition-based generative model for y, that has the 

maximum likelihood estimate (or, the posterior mode in the Bayesian framework) almost the 

same as the point estimate from the normalized spectral clustering.

We found an almost equivalence in the spanning forest model. A spanning forest model is 

a special Bayesian network that describes the conditional dependencies among y1, … , yn. 

Given a partition V = V 1, … , V K  of the data index 1, … , n , consider a forest graph 

ℱV = T1, … , Tk , with each Tk = V k, Ek  a component tree (a connected subgraph without 

cycles), V k the set of nodes and Ek the set of edges among V k. Using ℱV and a set of root 

nodes ℛV = 1*, … , K*  with k* ∈ V k, we can form a graphical model with a conditional 

likelihood given the forest:

ℒ V, ℱV, ℛV, θ = ∏
k = 1

K
r yk*; θ ∏

i, j ∈ Tk

f yi ∣ yj; θ ,

(2)

where we refer to r · ; θ  as a “root” distribution, and f · ∣ yj; θ  as a “leaf” distribution; and 

we use θ to denote the other parameter; and we use simplified notation i,  j ∈ G to mean 

that i, j  is an edge of the graph G. Figure 1 illustrates the high flexibility of a spanning 

forest in representing clusters. It shows the sampled ℱ based on three clustering benchmark 

datasets. Note that some clusters are not elliptical or convex in shape. Rather, each cluster 

can be imagined as if it were formed by connecting a point to another nearby. In the 

Supplementary Materials S4.8, we show two different realizations of spanning forest.

Remark 1. To clarify, the point estimation on a spanning forest (as some fixed and unknown 
graph) has been studied (Gower and Ross, 1969). However, a distinction here is that we 
consider V as the parameter of interest, but the edges and roots ℱV, ℛV  as latent variables. 

The performance differences are shown in the Supplementary Materials S4.6.

The stochastic view of ℱV, ℛV  is important, as it allows us to incorporate the uncertainty 

of edges and avoids the sensitivity issue in the point graph estimate. Equivalently, our 

clustering model is based on the marginal likelihood that varies with the node partition V:

ℒ y; V, θ = ∑
ℱV, ℛV

ℒ y; V, ℱv, ℛv, θ ∏ ℱV, ℛV ∣ V ,
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(3)

where Π ℱV, ℛV ∣ V  is the latent variable distribution that we will specify in the next 

section. We can quantify the marginal connecting probability for each potential edge i, j :

Mi, j ≔ Pr FV ∋ i, j ∝ ∑
V

∑
ℱV, ℛV

1 i, j ∈ FV ℒ y; V, ℱV, ℛV, θ Π ℱV, ℛV V .

(4)

Similar to the normalized graph cut, there is no closed-form solution for directly maximizing 

(3). However, closed-form does exist for (4) (see Section 4). Therefore, an approximate 

maximizer of (3), V, can be obtained via computing the matrix M and searching for K
diagonal blocks (after row and column index permutation) that contain the highest total 

values of Mi, j’s. Specifically, we can extract the top leading eigenvectors of M and cluster 

the rows into K groups.

This approximate marginal likelihood maximizer produces almost the same estimate as the 

normalized spectral clustering does. This is because the two sets of eigenvectors are almost 

the same. Further, it is important to clarify that such closeness does not depend on how the 

data are really generated. Therefore, to provide some numerical evidence, for simplicity, we 

generate yi from a simple three-component Gaussian mixture in ℝ2 with means in (0, 0), 

(2, 2), (4, 4) and all variances equal to l2. Figure 2 compares the eigenvectors of the matrix 

M and the normalized Laplacian N (that uses f and r to specify A, with details provided 

in Section 4). Clearly, these two are almost identical in values. Due to this connection, the 

clustering estimates from spectral clustering can be viewed as an approximate estimate for 

V in (3).

We now fully specify the Bayesian forest model. For simplicity, we now focus on continuous 

yi ∈ ℝp. For ease of computation, we recommend choosing f as a symmetric function 

f yi ∣ yj; θ = f yj ∣ yi; θ , so that the likelihood is invariant to the direction of each edge; and 

choose r as a diffuse density, so that the likelihood is less sensitive to the choice of a node as 

root. In this article, we choose a Gaussian density for f and Cauchy for r.

f yi ∣ yj; θ = 2πσi, j
−p/2exp −

yi − yj 2
2

2σi, j
,

r yi; θ = Γ 1 + p /2
γpπ 1 + p /2

1
1 + yi − μ 2

2/γ2 1 + p /2 .

(5)

where σij > 0 and γ > 0 are scale parameters. As the magnitudes of distances between 

neighboring points may differ significantly from cluster to cluster, we use a local 

parameterization σi,  j = σiσj, and will regularize σ1, … , σn  via a hyper-prior.
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Remark 2. In (5), we effectively use Euclidean distances yi − yj 2. We focus on Euclidean 

distance in the main text, for the simplicity of presentation and to allow a complete 
specification of priors. One can replace Euclidean distance with some others, such as 
Mahalanobis distance and geodesic distance. We present a case of high-dimensional 
clustering based on geodesic distance on the unit-sphere in the Supplementary Materials 

S1.1.

2.3 Forest Process and Product Partition Prior

To simplify notations as well as to facilitate computation, we now introduce an auxiliary 

node 0 that connects to all roots 1*, … , K* . As the result, the model can be equivalently 

represented by a spanning tree rooted at 0:

T = V T, ET ,
V T = 0 ∪ V 1 ∪ … ∪ V K, ET = 0, 1* , … , 0, K* ∪ E1 ∪ … ∪ EK .

In this section, we focus on the distribution specification for T. The distribution, denoted by 

Π T ,  Π T  can be factorized according to the following hierarchies: picking the number of 

partitions K, partitioning the nodes into V 1, … , V K , forming edges Ek and picking one root 

k* for each V k. To be clear on the nomenclature, we call Π ℱV, ℛV V  as the “latent variable 

distribution”, Π0 V  as the “partition prior”.

Π T = Π0(K)Π0 V 1, … , V K ∣ K
Π0 V

∏
k = 1

K
Π Ek ∣ V k Π k∗ ∣ Ek, V k

Π ℱV, ℛV V

.

(6)

Remark 3. In Bayesian non-parametric literature, Π0 K Π0 V 1, … , V K ∣ K  is known as the 

partition probability function, which plays the key role in controlling cluster sizes and 
cluster number in model-based clustering. However, when it comes to graphical model-
based clustering (such as our forest model), it is important to note the difference — for each 
partition V k, there is an additional probability Π Ek, k* ∣ V k  due to the multiplicity of all 

possible subgraphs formed between the nodes in V k.

For simplicity, we will use discrete uniform distribution for Π Ek, k* ∣ V k . Since there are 

nk
nk − 2 + possible spanning trees for nk nodes [(x)+ = x if x > 0, otherwise 0], and nk possible 

choice of roots. We have Π Ek, k* ∣ V k = nk
− nk − 1 .

We now discuss two different ways to complete the distribution specification. We first take 

a “ground-up” approach by viewing T as from a stochastic process where the node number 

n could grow indefinitely. Starting from the first edge e1 = 0,  1 , we sequentially draw new 

edges and add to T, from
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ei ∣ e1, …ei − 1 ∑
j = 1

i − 1
πj

i δ j, i ⋅ + πi
i δ 0, i ⋅ ,

yi ∣ j, i 1 j ≥ 1 f ⋅ ∣ yj + 1 j = 0 r ⋅ ,

(7)

with some probability vector π1
i , … , πi

i  that adds up to one. We refer to (7) as a forest 

process. The forest process is a generalization of the Pólya urn process (Blackwell and 

MacQueen, 1973). For the latter, ei = j,  i  would make node i take the same value as node j, 
yi = yj [although in model-based clustering, one would use notation θi = θj, and yi K ⋅ ∣ θi ]; 

ei = 0,  i  would make node i draw a new value for yi from the base distribution. Due to this 

relationship, we can borrow popular parameterization for πj
i  from the urn process literature. 

For example, we can use the Chinese restaurant process parameterization πj
i = 1/ i − 1 + α

for j = 1, … , i − 1 , and πi
i = α/ i − 1 + α  with some chosen α > 0. After marginalizing over 

the order of i and partition index [see Miller (2019) for a simplified proof of the partition 

function], we obtain:

Π T = αKΓ α
Γ α + n ∏

k = 1

K
Γ nk nk

− nk − 1 .

(8)

Compared to the partition probability prior in the Chinese restaurant process, we have an 

additional nk
− nk − 1  term that corresponds to the conditional prior weight of for each possible 

k*,  Ek  given a partition V k.

To help understand the effect of this additional term on the posterior, we can imagine 

two extreme possibilities in the conditional likelihood given a V k. If the conditional 

ℒ yi: i ∈ V k k*, Ek  is skewed toward one particular choice of tree k*, Ek  [that is, 

ℒ yi: i ∈ V k k*, Ek  is large when k*, Ek = k*, Ek , but is close to zero for other values of 

k*, Ek ], then nk
− nk − 1  acts as a penalty for a lack of diversity in trees. On the other hand, if 

ℒ yi: i ∈ V k k*, Ek  is equal for all possible k*, Ek ’s, then we can simply marginalize over 

k*, Ek  and be not be subject to this penalty [since ∑ k∗, Ek nk
− nk − 1 = 1].

Therefore, we can form an intuition by interpolating those two extremes: if a set of data 

points (of size nk) are “well-knit” such that they can be connected via many possible 

spanning trees (each with a high conditional likelihood), then it would have a higher 

posterior probability of being clustered together, compared to some other points (of the 

same size nk) that have only a few trees with high conditional likelihood.

With the “ground-up” construction useful for understanding the difference from the classic 

urn process, the distribution (8) itself is not very convenient for posterior computation. 

Therefore, we also explore the alternative of a “top-down” approach. This is based on 
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directly assigning a product partition probability (Hartigan, 1990; Barry and Hartigan, 1993; 

Crowley, 1997; Quintana and Iglesias, 2003) as

Π0 V 1, … , V K ∣ K =
∏k = 1

K nk
nk − 1

∑all  V 1
∗, … , V K

∗ ∏k = 1
K V k

∗ V k
∗ ∣ − 1 ,

(9)

where the cohesion function nk
nk − 1  effectively cancels out the probability for each k*, Ek . To 

assign a prior for K, we assign a probability

Π0 K ∝ λK ∑
all  V 1

*, … , V k
*

∏
k = 1

K
V k

* V k
* V k

* − 1 ,

supported on K ∈ 1, …, n  with λ > 0, with Π Ek, k* ∣ V k = nk
− nk − 1 , multiplying the terms 

according to (6) leads to

Π T ∝ λK,

(10)

which is similar to a truncated geometric distribution and easy to handle in posterior 

computation, and we will use this from now on. In this article, we set λ = 0.5.

Remark 4. We now discuss the exchangeability of the sequence of random variables 
generated from the above forest process. The exchangeability is defined as the 
the invariance of distribution Π X1 = x1, … Xn = xn = Π X1 = xπ1, … Xn = xπn  under any 

permutation π1, … , πn  (Diaconis, 1977). For simplicity, we focus on the joint distribution 

with θ as given, and hence omit θ here. There are three categories of random variables 
associated with each node i: the first drawn edge j, i  that points to a new node i (whose 
sequence forms T = V, Ek, k* k = 1

K ), the cluster assignment of a node ci (whose sequence 

forms V), and the data point yi. It is not hard to see that, since each component tree encodes 

an order among i:ci = k , the joint distribution of the data and the forest Π y1, … , yn, T  is 

not exchangeable. Nevertheless, as we marginalize out each Ek, k*  to form the clustering 

likelihood ℒ y; V  in (3), and all priors Π0 V  presented in this section only depend 

on the number and sizes of clusters, the joint distribution of the data and cluster labels 
Π y1, c1 , … , yn, cn = ℒ y; V Π0(V) is exchangeable, with its form provided soon in (14). 

Lastly, we see that Π y1, … , yn  is exchangeable after marginalizing over V.

2.4 Hyper-priors for the Other Parameters

We now specify the hyper-priors for the parameters in the root and leaf densities. To avoid 

model sensitivities to scaling and shifting of the data, we assume that the data have been 

appropriately scaled and centered (for example, via standardization), so that the marginally 
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Ey ≈ 0 and E y . ,  j − Ey . ,  j 2
2 ≈ 1 for j = 1, … , p. To make the root density r ·  close to a small 

constant in the support of the data, we set μ = 0 and γ2 Inverse‐Gamma 2, 1 .

For σi,  j in the leaf density f yi ∣ yj; σi, j , in order to likely pick an edge i, j  with j as a close 

neighbors of i (that is, i,  j  with small yi − yj 2), we want most of σi, j = σiσj to be small. 

We use the following hierarchical inverse-gamma prior that shrinks each σi, while using a 

common scale hyper-parameter βσ to borrow strengths among σi, s,

βσ exp ησ , ησ Inverse‐Gamma aσ, ξσ ,
σi

iidInverse‐Gamma bσ, βσ for i = 1, … , n,

where ησ is the scale parameter for the exponential. To induce a shrinkage effect a priori, 

we use aσ = 100 and ξσ = 1 for a likely small ησ hence a small βσ. Further, we note that the 

coefficient of variation Var σi ∣ βσ /E σi ∣ βσ = 1/ bσ − 2; therefore, we set bσ = 10 to have 

most of σi near E σi ∣ βσ = βσ/ bσ − 1  in the prior. We use these hyper-prior settings in all the 

examples presented in this article.

In addition, Zelnik-Manor and Perona (2005) demonstrate good empirical performance in 

spectral clustering via setting σi to a low order statistic of the distances to yi. We show a 

model-based formalization with similar effects in the Supplementary Materials S5.

2.5 Model-based Extensions

Compared to algorithms, a major advantage of probabilistic models is the ease of building 

useful model-based extensions. We demonstrate three directions for extending the Bayesian 

forest model. Due to the page constraint, we defer the details and numeric results of these 

extensions in the Supplementary Materials S1.1, S1.2 and S1.3.

Latent Forest Model: First, one could use the realization of the forest process as latent 

variables in another model ℳ for data y1, … , yn ,

z1, … , zn ForestModel T; θz , y1, … , yn ℳ z1, … , zn; θy ,

where θz and θy denote the other needed parameters. For example, for clustering high-

dimensional data such as images, it is often necessary to represent each high-dimensional 

observation yi by a low-dimensional coordinate zi (Wu et al., 2014; Chandra et al., 2023). 

In the Supplementary Materials, we present a high-dimensional clustering model, using an 

autoregressive matrix Gaussian for ℳ and a sparse von Mises-Fisher for the forest model.

Informative Prior-Latent Variable Distribution: Second, in applications it is 

sometimes desirable to have the clustering dependent on some external information x, such 

as covariates (Müller et al., 2011) or an existing partition (Paganin et al., 2021). From a 

Bayesian view, this can be achieved via taking an x-informative distribution:
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T Π ⋅ ∣ x , y1, … , yn ForestModel T; θ .

In the Supplementary Materials, we illustrate an extension with a covariate-dependent 

product partition model [PPMx, Müller et al. (2011)] into the distribution of T.

Hierarchical Multi-view Clustering: Third, for multi-subject data y1
s , … , yn

s  for 

s = 1, … , s, we want to find a clustering for every s. At the same time, we can borrow 

strength among subjects, by letting subjects share some similar partition structure on a 

subset of nodes (while differing on the other nodes). This is known as multi-view clustering. 

On the other hand, a challenge is that a forest is a discrete object subject to combinatorial 

constraints, hence it would be difficult to partition the nodes freely while accommodating 

the tree structure. To circumvent this issue, we propose a latent coordinate-based distribution 

that gives a continuous representation for T s .

Consider a latent zi
s ∈ ℝd for each node i = 1, … , n, we assign a joint prior–latent variable 

distribution for z s  and T s :

Π z(s), T(s) ∝ λk T(s) ∏
i, j ∈ T s : i ≥ 1, j ≥ 1

exp −
zi

s − zj
s

2
2

2ρ ∏
i = 1

n
∑

k = 1

κ
vi, kexp − zi

s − ηk
*

2
2

2σz
2 ,

vi, 1, … , vi, κ Dir(1/κ, … , 1/κ) for i = 1, … n,
y1

(s), … , yn
(s) Forest Model T(s) for s = 1, … S,

(11)

where vi,  1, … , vi, κ are the weights that vary with i and ∑k = 1
κ̃ vi, k = 1, ρ > 0, and z s ∈ ℝn × d

is the matrix form. Equivalently, the above assigns each node a location parameter ηi
s , drawn 

from a hierarchical Dirichlet distribution with shared atoms η1
*, … , ηκ

*  and probability 

v . , 1, … , v . , κ  (Teh et al., 2006). Further, one could let ηk
* vary over node according to some 

functional using a hybrid Dirichlet distribution (Petrone et al., 2009).

Using a Gaussian mixture kernel on zi
s , we can now separate zi

s ’s into several groups 

that are far apart. To make the parameters identifiable and have large separations between 

groups, we fix ηk
*’s on the d-dimensional integer lattice 0,  1,  2 d with d = 2 (hence κ = 9); 

and we use σz
2 = 0.01 and ρ = 0.001 in this article.

Remark 5. To clarify, our goal is to induce between-subject similarity in the node partition, 
not the tree structure. For example, for two subjects s and s′, when zi

s  and zi
s′  are both near 

ηk
* for all i ∈ C, then both the spanning forest T s  and T s′  will likely cluster the nodes in C

together, even though Tk
s  and Tk

s′  associated with V k ⊃ C may be different.
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3 Posterior Computation

3.1 Gibbs Sampling Algorithm

We now describe the Markov chain Monte Carlo (MCMC) algorithm. For ease of notation, 

we use an n + 1 × n + 1  matrix S, with Si,  j = log f yi ∣ yj; θ , S0,  i = Si,  0 = log r yi; θ + log λ
(for convenience, we use 0 to index the last row/column), Si, i = 0, and AT to represent the 

adjacency matrix of T. We have the posterior distribution

Π T, θ ∣ y ∝ exp tr S θ AT /2 ∏0 θ .

(12)

Note the above form conveniently include the prior term for the number of clusters, λK, via 

the number of edges adjacent to node 0.

Our MCMC algorithm alternates in updating T and θ, hence is a Gibbs sampling algorithm. 

To sample T given θ, we take the random-walk covering algorithm for weighted spanning 

tree (Mosbah and Saheb, 1999), as an extension of the Andrei–Broder algorithm for 

sampling uniform spanning tree (Broder, 1989; Aldous, 1990). For this article to be self-

contained, we describe the algorithm below. The above algorithm produces a random sample 

T following the full conditional Π T ∣ θ,  y  proportional to (12). It has an expected finish 

time of O n log n . Although some faster algorithms have been developed (Schild, 2018), we 

choose to present the random-walk covering algorithm for its simplicity.

Algorithm 1

Random-walk covering algorithm for sampling the augmented tree T

Start with V T = 0  and ET = ∅, and set i 0:

while V T ≠ n + 1do

Take a random walk from i to j with probability Pr j ∣ i = exp Si,  j θ
∑j: j ≠ iexp Si,  j θ .

ifj ∉ V Tthen

Add j to V T. Add i,  j  to ET.

Update i j.

We sample σi using the following steps,

ησ ∣ . Inverse‐Gamma 1 + aσ, βσ + ξσ

βσ ∣ . Gamma 1 + nbσ, ∑
i = 1

n 1
σi

+ 1
ησ

−1
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σi ∣ . Inverse‐Gamma
p∑j1 (i, j) ∈ T

2 + bσ, ∑
j: (i, j) ∈ T

yi − yj 2
2

2σj
+ βσ

To update γ, we use the form of the multivariate Cauchy as a scale mixture of N μ, γ2uγ,  iIp

over uγ,  i Inverse‐Gamma 1/2, 1/2 . We can update via

uγ, i Inverse‐Gamma 1 + p
2 , 1

2 +
yi − μ 2

2

2γ2 ,

γ2 Inverse‐Gamma 2 + Kp
2 , σy

2 + ∑
i: 0, i ∈ T

yi − μ 2
2

2uγ, i
.

We run the MCMC algorithm iteratively for many iterations. And we discard the first half of 

iterations as burn-in.

Remark 6. We want to emphasize that the Andrei–Broder random-walk covering algorithm 
(Broder, 1989; Aldous, 1990; Mosbah and Saheb, 1999) is an exact algorithm for sampling 
a spanning tree T. That is, if θ were fixed, each run of this algorithm would produce 
an independent Monte Carlo sample T Π T ∣ θ, y . Removing the auxiliary node O from 
T will produce K disjoint spanning trees. This augmented graph technique is inspired by 
Boykov et al. (2001).

In our algorithm, since the scale parameters in θ are unknown, we use Markov chain 
Monte Carlo that updates two sets of parameters, (i) θ t + 1 ∣ T t  and (ii) T t + 1 ∣ θ t + 1  from 

iteration t  to t + 1 . Therefore, rigorously speaking, there is a Markov chain dependency 
between T  t  and T t + 1  induced by θ t + 1 . Nevertheless, since we draw T in a block via the 

random-walk covering algorithm, we empirically find that T  t + 1  and T  t  are substantially 

different. In the Supplementary Materials S4.4, we quantify the iteration-to-iteration graph 
changes, and provide diagnostics with multiple start points of T  0 , θ 0 .

3.2 Posterior Point Estimate on Clustering

In the field of Bayesian clustering, for producing point estimate on the partition, it 

had been a long-time practice to simply track pr ci = k ∣ y , then take the element-wise 

posterior mode over k as the point estimate for c i. Nevertheless, this was shown to be 

sub-optimal due to that: (i) label switching issue causes unreliable estimates on pr ci = k ∣ y ; 

(ii) the element-wise mode can be unrepresentative of the center of distribution for 

c1, …, cn  (Wade and Ghahramani, 2018). These weaknesses have motivated new methods 

of obtaining point estimate of clustering, that transform an n × n pairwise co-assignment 

matrix pr ci = cj ∣ y all i,  j  into an n × K assignment matrix (Medvedovic and Sivaganesan, 

2002; Rasmussen et al., 2008; Molitor et al., 2010; Wade and Ghahramani, 2018). More 

broadly speaking, minimizing a loss function based on the posterior sample (via some 

estimator or algorithm) is common for producing a point estimate under some decision 

theory criterion. For example, the posterior mean comes as the minimizer of the squared 

error loss; in Bayesian factor modeling, an orthogonal Procrustes-based loss function is 
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used for producing the posterior summary of the loading matrix from the generated MCMC 

samples (Aßmann et al., 2016).

We follow this strategy. There have been many algorithms that one could use. For a recent 

survey, see Dahl et al. (2022). In this article, we use a simple solution of first finding the 

mode of K from the posterior sample, then doing a K-rank symmetric matrix factorization 

on pr ci = cj ∣ y all i, j  and clustering into K groups, provided by RcppmL package (DeBruine 

et al., 2021).

4 Theoretical Properties

4.1 Convergence of Eigenvectors

We now formalize the closeness of the eigenvectors of matrices N and M (shown in Section 

2.2), by establishing the convergence of the two sets of eigenvectors as n increases.

To be specific, we focus on the normalized spectral clustering algorithm using the similarity 

Ai,  j = exp Si,  j , with Si,  j = log f yi ∣ yj; θ , S0,  i = Si, 0 = log r yi; θ + log λ. On the other hand, for 

the specific form, f yi ∣ yj  can be any density satisfying f yi ∣ yj, θ = f yj ∣ yi,  θ ,  r yi; θ
can be any density satisfying r yi; θ > 0. For the associated normalized Laplacian N, we 

denote the first K bottom eigenvectors by ϕ1, … , ϕK, which correspond to the smallest K
eigenvalues.

Let M be the matrix with Mi, j = pr T ∋ i,  j ∣ y,  θ  for i ≠ j and Mi, i = 0. The Kirchhoff’ s
tree theorem (Chaiken and Kleitman, 1978) gives an enumeration of all T ∈ T ,

∑
T ∈ T

∏
i, j ∈ T

exp Si, j = (n + 1)−1 ∏
ℎ = 2

n + 1
λ ℎ L

(13)

where L is the Laplacian matrix transform of the similarity matrix A; λ ℎ  denotes the ℎth 

smallest eigenvalue. Differentiating its logarithmic transform with respect to Si, j,

Mi, j = Pr T ∋ (i, j) ∣ y =
∑T ∈ T , (i, j) ∈ T ∏ i′, j′ ∈ Texp Si′, j′

∑T ∈ T ∏ i′, j′ ∈ Texp Si′, j′
=

∂∑i = 2
n + 1log λ(i)(L)

∂Si, j
.

Let Ψ1, … , ΨK be the top K eigenvectors of M, associated with eigenvalues ξ1 ≥ ξ2 ≥ … ≥ ξK, 

and ξK > ξK + 1 ≥ ξK + 2 ≥ … ≥ ξn + 1. And we can compare with the K leading eigenvectors of 

−N ∈ ℝn × n, ϕ1, … , ϕK. Using Ψ1:K and ϕ1:K to denote two n + 1 × K matrices, we now 

show they are close to each other.

Theorem 1. There exists an orthonormal matrix R ∈ ℝK × K and a finite constant ϵ > 0,

Ψ1:K − ϕ1:KR F ≤ 40 K(n + 1)
ξK − ξK + 1

max
i, j

1 + ϵ Di
−1/2 − Dj

−1/2 2Ai, j ,
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with probability at least 1 − exp −n .

Remark 7. To make the right-hand side go to zero, a sufficient condition is to have all 

Ai, j/Di, i = O n−κ  with κ > 1/2. We provide a detailed definition of the bound constant ϵ in the 

Supplementary Materials S2.

To explain the intuition behind this theorem, our starting point is the close relationship 
between Laplacian and spanning tree models — multiplying both sides of Equation (13) 

by (n + 1)− n − 1  shows that the non-zero eigenvalue product of the graph Laplacian L is 
proportional to the marginal probability of n data points from a spanning forest-mixture 
model. Starting from this equality, we can write the marginal inclusion probability matrix 
of T as a mildly perturbed form of the normalized Laplacian matrix. Intuitively, when two 
matrices are close, their eigenvectors will be close as well (Yu et al., 2015).

Therefore, under mild conditions, as n ∞, the two sets of leading eigenvectors converge. 

In the Supplementary Materials S4.7, we show that the convergence is very fast, with the 

two sets of leading eigenvectors becoming almost indistinguishable starting around n ≥ 50.

Besides the eigenvector convergence, we can examine the marginal posterior Π V ∣ θ,  y , 

which is proportional to

ℒ y; V, θ Π0 V = Π0 K, V 1, … , V K ∏
k = 1

K
∑

i ∈ V k

r yi ∏
k = 1

K
nk

−1 ∏
ℎ = 2

nk
λ ℎ Lk ,

(14)

where Lk is the unnormalized Laplacian matrix associated with matrix Ai,  j i ∈ V k,  j ∈ V k. 

Imagine that if we put all indices in one partition V 1 = 1, …, n , then Π V ∣ θ, y  would 

be very small due to those close-to-zero eigenvalues. Applying this deduction recursively 

on subsets of data, it is not hard to see that a high-valued Π V ∣ θ,  y  would correspond 

to a partition, wherein each V k has λ ℎ Lk  away from 0 for any ℎ ≥ 2. Further, since 

nk
−1∏ℎ = 2

nk λ(ℎ) Lk = Lk + J /nk
2 , a permutation in 1, …, n  corresponds to congruent and 

simultaneous permutations of rows and columns of each Lk, which does not change each 

determinant. Therefore, the joint distribution of Π y1, c1 , … , yn, cn  is exchangeable.

4.2 Consistent Clustering of Separable Sets

We show that clustering consistency is possible, under some separability assumptions when 

the data-generating distribution follows a forest process. Specifically, we establish posterior 

ratio consistency, as the ratio between the maximum posterior probability assigned to other 

possible clustering assignments to the posterior probability assigned to the true clustering 

assignments converges to zero almost surely under the true model (Cao et al., 2019).

To formalize the above, we denote the true cluster label for generating yi by ci
0 (subject 

to label permutation among clusters), and we define the enclosing region for all possible 

yi:ci
0 = k as Rk

0 for k = 1, … , K0 for some true finite K0. And we refer to R0 = R1
0, … , RK0

0
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as the “null partition”. By separability, we mean the scenario that R1
0, …, RK0

0  are disjoint 

and there is a lower-bounded distance between each pair of sets. As alternatives, regions 

R = R1, … , RK  could be induced by c1, … , cn  from the posterior estimate of T. For 

simplicity, we assume the scale parameter in f is known and all equal σi, j = σ0, n.

Number of clusters is known. We first start with a simple case when we have fixed K = K0. 

For regularities, we consider data as supported in a compact region X, and satisfying the 

following assumptions:

• (A1, diminishing scale) σ0, n = C′(1/logn)1 + i for some t > 0 and C′ > 0.

• (A2, minimum separation) inf
x ∈ Rk

0, y ∈ Rk′
0

x − y 2 > Mn, for all k ≠ k′ with some 

positive constant Mn > 0 such that Mn
2/σ0, n = 8 m0 log n  for all i,  j  and is known 

for some constant m0 > p/2 + 2.

• (A3, near-flatness of root density) For any n, ϵ1 < r y < ϵ2 for all y ∈ X.

Under the null partition, Π T ∣ y  is maximized at T = TMST, R0, which contains K0 trees with 

each Tk being the minimum spanning tree (denoted by subscript “MST”) within region Rk
0. 

Similarly, for any alternative R,  Π T ∣ y  is maximized at the T = TMST, R.

Theorem 2. Under (A1, A2, A3), we have Π TMST, R ∣ y /Π TMST, R0 ∣ y 0 almost surely, 

unless Ri
0 ⊆ Rξ i  for some permutation map ξ · .

Number of clusters is unknown: Next, we relax the condition by having a K not necessarily 

equal to K0. We show the consistency in two parts for 1) K < K0, and 2) K > K0 separately. In 

order to show posterior ratio consistency in the second part, we need some finer control on 

r y :

• (A3’) The root density satisfies m1e−M /2σ0, n ≤ r y ≤ m2e−M /2σ0, n
 for some 

m1 < m2.

In this assumption, we essentially assume the root distribution to be flatter with a larger n. 

Then we have the following results.

Theorem 3. 1) If K < K0, under the assumptions (A1, A2, A3), we have 

Π TMST, R |y /Π TMST, R0 ∣ y 0 almost surely.

2) If K > K0, under the assumptions (A1, A2, A3’), we have Π TMST, R ∣ y /Π TMST, R0 ∣ y 0
almost surely.

The above results show posterior ratio consistency. Furthermore, when the true of clusters is 

known, the ratio consistency result can be further extended to show clustering consistency, 

which is proved in the Supplementary Materials S3.
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5 Numerical Experiments

To illustrate the capability of uncertainty quantification, we carry out clustering tasks on 

those near-manifold data commonly used for benchmarking clustering algorithms. In the 

first simulation, we start with 300 points drawn from three rings of radii 0.2, 1 and 2, 

with 100 points from each ring. Then we add some Gaussian noise to each point to create 

a coordinate near a ring manifold. We present two experiments, one with noises from 

N 0, 0.052I2 , and one with noises N 0, 0.12I2 . As shown in Figure 3, when these data are 

well separated (Panel a, showing posterior point estimate), there is very little uncertainty on 

the clustering (Panel b), with the posterior co-assignment Pr ci = cj ∣ y  close to zero for any 

two data points near different rings. As noises increase, these data become more difficult to 

separate. There is a considerable amount of uncertainty for those red and blue points: these 

two sets of points are assigned into one cluster with a probability close to 40% (Panel d). We 

conduct another simulation based on an arc manifold and two point clouds (Panels e-h), and 

find similar results. Additional experiments are described in the Supplementary Materials 

S4.2.

In the Supplementary Materials S4.1 and S4.3, we present some uncertainty quantification 

results, for clustering data that are from mixture models. We compare the estimates with 

the ones from Gaussian mixture models, which could correspond to correctly/erroneously 

specified component distribution. Empirically, we find that the uncertainty estimates on 

Pr ci = cj ∣ y  and Pr K ∣ y  from the forest model are close to the ones based on the true 

data-generating distribution; whereas the Gaussian mixture models suffer from sensitivity in 

model specification, especially when K is not known.

6 Application: Clustering in Multi-subject Functional Magnetic Resonance 

Imaging Data

In this application, we conduct a neuroscience study for finding connected brain regions 

under a varying degree of impact from Alzheimer’s disease. The source dataset is resting-

state functional magnetic resonance imaging (rs-fMRI) scan data, collected from S = 166
subjects at different stages of Alzheimer’s disease. Each subject has scans over n = 116
regions of interest using the Automated Anatomical Labeling (AAL) atlas (Rolls et al., 

2020; Shi et al., 2021) and over p = 120 time points. We denote the observation for the sth 

subject in the ith region by yi
s ∈ ℝp.

The rs-fMRI data are known for their high variability, often characterized by a low intraclass 

correlation coefficient (ICC), 1 − σwithin‐‐group
2 /σtotal

2 , as the estimate for the proportion of total 

variance that can be attributed to variability between groups (Noble et al., 2021). Therefore, 

our goal is to use the multi-view clustering to divide the regions of interest for each subject, 

while improving our understanding of the source of high variability.

We fit the multi-view clustering model to the data, by running MCMC for 5, 000 iterations 

and discarding the first 2, 500 as burn-in. As shown in Figure 4, the hierarchical Dirichlet 

distribution on the latent coordinates induces similarity between the clustering of brain 
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regions among subjects on a subset of nodes, while showing subtle differences on the other 

nodes. On the other hand, some major differences can be seen in the clusterings between 

the healthy and diseased subjects. Using the latent coordinates (at the posterior mean), we 

quantify the distances between z s  and z s′  for each pair of subjects s ≠ s′. As shown in 

Figure 5(a), there is a clear two-group structure in the pairwise distance matrix formed by 

z s − z s′
F, and the separation corresponds to the first 64 subjects being healthy (denoted 

by s ∈ g1) and the latter 102 being diseased (denoted by s ∈ g2).

Next, we compute the within–group variances for these two groups, using 

∑s ∈ gl zi
(s) − ∑s ∈ gl zi

(s)/ gl F
2 / gl , for l = 1 and 2, and plot the variance over each region of 

interest i on the spatial coordinate of the atlas. Figure 5(b) and (c) show that, although both 

groups show some degree of variability, the diseased group shows clearly higher variances 

in some regions of the brain. Specifically, the paracentral lobule (PCL) and superior 

parietal gyrus (SPG), dorsolateral superior frontal gyrus (SFGdor), and supplementary 

motor area (SMA) in the frontal lobe show the highest amount of variability. Indeed, 

those regions are also associated with very low ICC scores [Figure 5(e)] calculated 

based on the variance of zi
s , with pooled estimates σtotal, i

2 = ∑s zi
s − ∑szi

s /S F
2 /S and 

σwithin‐‐group, i
2 = ∑l = 1

2 ∑s ∈ gl zi
s − ∑s ∈ gl zi

s / gl F
2 /S On the other hand, some regions such as 

the hippocampus (HIP), parahippocampal gyrus (PHG), and superior occipital gyrus (SOG) 

show relatively lower variances within each group, hence higher ICC scores.

To show more details on the heterogeneity, we plot the latent coordinates associated with 

those ROIs using boxplots. Since each zi
s  is in two-dimensional space, we plot the linear 

transform zi
s = zi, 1

s + zi, 2
s . Interestingly, those 8 ROIs with high variability still seem quite 

informative for distinguishing the two groups (Figure 5(f)). To verify, we concatenate those 

latent coordinates and form an S × 16 matrix, and fit them in a logistic regression model 

for classifying the healthy versus diseased states. The Area Under the Curve (AUC) of the 

Receiver Operating Characteristic is 86.6%. On the other hand, when we fit the 6 ROIs with 

low variability in logistic regression, the AUC increases to 96.1%.

An explanation for the above results is that Alzheimer’s disease does different degrees of 

damage in the frontal and parietal lobes (see the two distinct clusterings in Figure 4 (c) and 

(d)), and the severity of the damage can vary from person to person. On the other hand, the 

hippocampus region (HIP and PHG), important for memory consolidation, is known to be 

commonly affected by Alzheimer’s disease (Braak and Braak, 1991; Klimova et al., 2015), 

which explains the low heterogeneity in the diseased group. Further, to our best knowledge, 

the high discriminability of the superior occipital gyrus (SOG) is a new quantitative finding, 

that could be meaningful for a further clinical study.

For validation, without using any group information, we concatenate those zi
s ’s over all 

i = 1, …, 116 and form an S × 232 matrix and use lasso logistic regression to classify the two 

groups. When 12 predictors are selected (as a similar-size model to the one above using 6 

ROIs), the AUC is 96.4%. Since zi
s ’s are obtained in an unsupervised way, this validation 

result shows that the multi-view clustering model produces meaningful representation for 
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the nodes in this Alzheimer’s disease data. We provide further details on the clusterings, 

including the number of clusters, and the posterior co-assignment probability matrices in the 

Supplementary Materials S4.5.

7 Discussion

In this article, we present our discovery of a probabilistic model for popular spectral 

clustering algorithms. This enables straightforward uncertainty quantification and model-

based extensions through the Bayesian framework. There are several directions worth 

exploring. First, our consistency theory is conducted under the condition of separable sets, 

similar to Ascolani et al. (2022). For general cases with non-separable sets, clustering 

consistency (especially on estimating K) is challenging to achieve; to our best knowledge, 

existing consistency theory only applies to data generated independently from a mixture 

model (Miller and Harrison, 2018; Zeng et al., 2023). For data generated dependently via 

a graph, this is still an unsolved problem. Second, in all of our forest models, we have 

been careful in choosing densities with tractable normalizing constants. One could relax 

this constraint by using densities f yi ∣ yj, θ = αfgf yi ∣ yj; θ  and r yi; θ = αrgr yi; θ , with g some 

similarity function, and αf, αr  potentially intractable. In these cases, the forest posterior 

becomes ∏ T ∣ ⋅ ∝ λαr/αf
K∏(0, i) ∈ Tgr yi; θ ∏(i, j) ∈ Tgr yi ∣ yj; θ . Therefore, one could 

choose an appropriate λ = λαr/αf (equivalent to choosing some value of λ), without knowing 

the value of αf or αr; nevertheless, how to calibrate λ still requires further study. Third, a 

related idea is the Dirichlet Diffusion Tree (Neal, 2003), which considers a particle starting 

at the origin, following the path of previous particles, and diverging at a random time. The 

data are collected as the locations of particles at the end of a time period. Compared to 

the forest process, the diffusion tree process has the conditional likelihood given the tree 

invariant to the ordering of the data index, which is a stronger property compared to the 

marginal exchangeability of the data points. Therefore, it is interesting to further explore the 

relationship between those two processes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Three examples of clusters that can be represented by a spanning forest.
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Fig. 2. 
Comparing the eigenvectors of a marginal connecting probability matrix M and the ones of 

normalized Laplacian N.
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Fig. 3. 
Uncertainty quantification in clustering data generated near three manifolds. When data 

are close to the manifolds (Panels a,e), there is very little uncertainty on clustering in 

low Pr ci = cj ∣ j  between points from different clusters (Panels b,f). As data deviate more 

from the manifolds (Panel c,g), the uncertainty increases (Panels d,h). And in Panel g, the 

point estimate shows a two-cluster partitioning, while there is about 20% of probability for 

three-cluster partitioning.
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Fig. 4. 
Results of brain region clustering (lateral view) for four subjects taken from the healthy and 

diseased groups. The multi-view clustering model allows subjects to have similar partition 

structures on a subset of nodes, while having subtle differences on the others (Panels a and 

b, Panels c and d). At the same time, the healthy subjects show less degree of variability in 

the brain clustering than the diseased subjects.
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Fig. 5. 
Using the latent coordinates to characterize the heterogeneity within the subjects.
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