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I M M U N O L O G Y

Systemic antibody responses against human 
microbiota flagellins are overrepresented in chronic 
fatigue syndrome patients
Thomas Vogl1,2,3*†, Iris N. Kalka1,2†, Shelley Klompus1,2, Sigal Leviatan1,2,  
Adina Weinberger1,2, Eran Segal1,2*

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with an unclear etiology 
and pathogenesis. Both an involvement of the immune system and gut microbiota dysbiosis have been implicated 
in its pathophysiology. However, potential interactions between adaptive immune responses and the microbiota 
in ME/CFS have been incompletely characterized. Here, we profiled antibody responses of patients with severe 
ME/CFS and healthy controls against microbiota and viral antigens represented as a phage-displayed 244,000 variant 
library. Patients with severe ME/CFS exhibited distinct serum antibody epitope repertoires against flagellins of 
Lachnospiraceae bacteria. Training machine learning algorithms on this antibody-binding data demonstrated 
that immune responses against gut microbiota represent a unique layer of information beyond standard blood 
tests, providing improved molecular diagnostics for ME/CFS. Together, our results point toward an involvement 
of the microbiota-immune axis in ME/CFS and lay the foundation for comparative studies with inflammatory bowel 
diseases and illnesses characterized by long-term fatigue symptoms, including post–COVID-19 syndrome.

INTRODUCTION
Patients with myalgic encephalomyelitis/chronic fatigue syndrome 
(ME/CFS) experience a lingering fatigue that can drastically impair 
their social and work life (1). ME/CFS affects approximately 1% of 
the population (2), appearing as a heterogeneous disease, with its 
etiology and pathogenesis still remaining elusive. Several biological 
processes ranging from energy production [e.g., metabolism (3) and 
mitochondrial dysfunction (4)] to neuroendocrinological aspects 
(5–7) have been implicated in ME/CFS. In addition, a potential involve-
ment of the gut microbiota, enteric dysbiosis, increased gut per-
meability, and bacterial translocation has been suggested by several 
studies [e.g., (8–11)].

Given the diverse set of symptoms experienced by patients with 
severe ME/CFS beyond a debilitating fatigue [including sleep problems, 
muscle/joint pains, sore throat, and digestive issues such as irritable 
bowel syndrome (12)], diagnosis is typically achieved by questionnaires 
rather than molecular markers (13). Therefore, different efforts have 
aimed at identifying biomarkers for CFS, including immune markers 
(14) such as blood cytokine levels (15, 16) as well as metabolic features 
[with some conclusions being controversially discussed (17–21)].

Several of these biomarkers, as well as similarities of ME/CFS 
symptoms to infections with pathogens (22), point toward an in-
volvement of the immune system and inflammation in the patho-
physiology of ME/CFS (23–29). It has been suggested that infections 
by viruses or bacteria can lead to immune dysregulation, manifest-
ing in the observed fatigue symptoms (13). Epstein-Barr virus infection 
has been associated with ME/CFS symptoms since the 1980s (30–33). 

Recently, SARS-CoV-2 (severe acute respiratory syndrome corona-
virus 2) has also been reported to cause persisting ME/CFS–like 
symptoms in a subset of recovered patients [termed as long corona-
virus disease 2019 (long COVID), post–COVID-19 syndrome, or chronic 
COVID syndrome] (34–38), with implications for studying “classical” 
ME/CFS (39). Increased translocation of intestinal bacterial species 
into systemic translocation (40) and elevated systemic antibody 
responses against bacterial lipopolysaccharide (LPS) in ME/CFS (41) 
could also point toward immune responses against gut microbiota 
as a potential trigger for disease development (10). Beyond microbes, 
a potential involvement of autoimmunity has also been discussed, 
as ME/CFS is associated with hypothyroidism and Sjögren’s syn-
drome (42, 43).

From a mechanistic perspective, recent works have highlighted 
antibody-producing B cells as a potential key branch of the adaptive 
immune system involved in the pathogenesis of ME/CFS (44, 45). 
Sato et al. (44) sequenced the B cell receptor (BCR) genes of patients 
with severe ME/CFS and noticed pronounced differences compared to 
healthy controls. Milivojevic et al. (45) leveraged an orthogonal plasma 
proteomic approach [ultra-performance liquid chromatography–
tandem mass spectrometry (UPLC-MS/MS)] pointing also toward an 
association between ME/CFS and the use of certain immunoglobulin 
(Ig) heavy variable genes. However, these BCR sequencing (BCR-seq) 
and UPLC-MS/MS approaches only report on the clonality and 
diversity of BCRs or fragments of serum antibodies, while the actual 
antigens recognized remain enigmatic.

Here, we have applied a high-throughput functional antibody assay 
[phage immunoprecipitation sequencing (PhIP-Seq) (46)] to com-
pare the Ig epitope repertoires of patients with severe ME/CFS and 
healthy controls against a library of 244,000 bacterial and viral epitopes 
(47). Patients with severe ME/CFS exhibited distinct serum antibody 
responses against flagellins of Lachnospiraceae bacteria, which could 
be leveraged alongside machine learning algorithms as potent diag-
nostic markers.
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RESULTS
PhIP-Seq assay and cohorts of patients with severe ME/CFS 
and healthy controls
Conventional serological methods such as enzyme-linked immuno-
sorbent assays (ELISAs) or peptide arrays allow analysis of hundreds 
or thousands of antigens in parallel (48), representing suitable strate-
gies to test antibody responses against larger sets of candidate antigens 
of interest. However, in ME/CFS, a wide range of viral and bacterial 
antigens (including species of the gut microbiota) have been specu-
lated to be involved (22–29), with the gut microbiota especially rep-
resenting a vast space of potential antigens [thousands of species, with 
each species encoding thousands of genes (49)].

Therefore, we leveraged a high-throughput antibody profiling 
technology, PhIP-Seq (46), to test for reactivity against 244,000 pep-
tide antigens (47) in a target-agnostic way (50). This antigen library 
encompasses diverse bacterial and viral antigens originating from 
pathogenic, probiotic, and commensal bacteria, including antigens 
selected from metagenomic sequencing [see (47) and Methods for 
details]. The library also includes all B cell antigens of pathogens 
from the Immune Epitope Database [IEDB, the largest resource for 
previously reported antigens (51)] as well as bacterial virulence fac-
tors from the Virulence Factor Database [VFDB (52)].

Methodologically, PhIP-Seq is based on the parallelized detection 
of antibody responses against phage-displayed antigens by immuno-
precipitation and a next-generation sequencing–based readout (Fig. 1A). 
Applications of this technology have provided unprecedented insights 
into antiviral (53–56) and antibacterial immune responses (57), in-
cluding detection of a breadth of serum antibody responses against 
gut microbiota (47).

We applied a PhIP-Seq workflow to compare the Ig epitope reper-
toires of 40 patients with severe ME/CFS and an equal number of 
matched healthy controls (Fig. 1B). Given the variability and un-
certainty in diagnosis of ME/CFS, our cohort was represented 
by severe ME/CFS cases uniformly assembled by the U.K. ME/CFS 
Biobank (UKMEB) (58). As antibody epitope repertoires are affected 
by age and sex (47), the 40 healthy controls were 1:1 matched to the 
ME/CFS cases to eliminate any bias (Fig. 1B). The healthy controls 
were recruited by the UKMEB, reducing potential biases related to 
geography or sample handling.

Anti-flagellin Ig responses are overrepresented in  
patients with severe ME/CFS
Comparing general metrics such as the number of overall antibody-
bound peptides or the diversity of the Ig epitope repertoires did not 
show any significant differences between patients with severe ME/CFS 
and healthy controls (Fig.  1C). Mann-Whitney-Wilcoxon tests 
indicated that the difference in both number of significantly bound 
peptides per individual and Shannon -diversity were not statistically 
significant (P > 0.3 and P > 0.9, respectively). In addition, no single 
peptides were bound at significantly different rates in patients with 
severe ME/CFS and healthy controls after false discovery rate cor-
rection (Fig. 1D, Fisher’s exact test for differences between the two 
groups). However, the majority of peptides, which were more frequently 
bound in patients with severe ME/CFS, originated from bacterial 
flagellins (Fig. 1D and table S1 for a full list).

To test whether these differences for antibody binding against 
flagellins are significantly different, we performed multiple statistical 
tests (Fig. 1, D to F). These tests were also extended beyond flagel-
lins to other subgroups of the antigen library to test, for example, 

whether pathogenic bacteria, metagenomic antigens, etc. are also over-
represented in patients with severe ME/CFS. First, by applying a t test 
on the ratio of patients with severe ME/CFS versus healthy controls 
for binding each peptide showed that the group of flagellins was sig-
nificantly overrepresented in patients with severe ME/CFS compared 
to healthy controls in comparison to all other peptides in the com-
plete library (Fig. 1D, P < 4 × 10−28). Next, we compared the healthy 
controls and the patients with severe ME/CFS by performing a rank 
sum test on the number of peptides that were signifyingly bound in 
each individual to evaluate whether other groups of antigens also 
showed differences, confirming the overrepresentation of flagellins 
by an alternative statistical approach (Fig. 1E). Overall, antibody 
responses against flagellins were much more significantly over-
represented in patients with severe ME/CFS versus healthy controls 
than any other antigen group (t test results summarized in Fig. 1F).

To summarize the results of all statistical tests, we found that anti-
body responses against the group of flagellins are significantly over-
represented in patients with severe ME/CFS versus healthy controls 
when compared to all other peptides (Fig. 1D). The same overrepresen-
tation of flagellins is evident when comparing pairs of antigen groups 
(Fig. 1E). Last, in Fig. 1F, results of rank sum (comparison of antibody 
responses of patients with severe ME/CFS and healthy controls for a 
specific group of antigens) are summarized.

Next, we studied the phylogenetic origin of the antibody-bound 
flagellins in greater detail. The overrepresented flagellins were fre-
quently originating from the order of Clostridiales and mostly the 
family of Lachnospiraceae (species such as Roseburia inulinivornas 
or Roseburia faecis) as well as some Eubacteriaceae (genus Eubacterium). 
In addition, some flagellins of Gammaproteobacteria (e.g., genera of 
Salmonella, Pseudomonas, and Escherichia) were more frequently 
bound by antibodies in patients with severe ME/CFS. A summary of 
the most frequently bound flagellins is shown in Fig. 2A, while a full 
list is provided in table S1. On average, antibody responses against 
these flagellins were 2.2-fold more frequent in patients with severe 
ME/CFS than in healthy controls (table S1). Some variants such 
as a Roseburia inulinivorans flagellin (peptide no. 129819) elicited 
antibody responses in 50% of patients with severe ME/CFS but only 
15% of healthy controls (3.3-fold overrepresentation). Frequently, two 
overlapping N-terminal peptides of the same protein were bound 
(such as peptide pairs #131885 and #73128, #131887 and #73214, or 
#126599 and #73399 shown in Fig. 2A).

Such overlaps can exist since, when designing our antigen library, 
we tiled larger proteins into adjacent peptides of 64 amino acids 
with overlaps of 20 amino acids (47). Hence, the observed antibody 
binding likely occurs against an epitope in the overlaps. Alignments 
of the peptides indeed showed a shared motif (Fig. 2, B and C, 
and fig. S1; by applying two different cutoffs), potentially recog-
nized by cross-reactive antibodies. We had previously observed 
cross-reactivity of human monoclonal antibodies against viral anti-
gens with a different PhIP-Seq library (59). Hence, the observed 
overrepresentation of Ig responses against flagellins in patients with 
severe ME/CFS is not necessarily triggered by exposure to all the 
observed bacterial species, but a subgroup or even a single species 
could suffice.

Machine learning on Ig epitope repertoires diagnoses 
severe ME/CFS
Given these distinct differences in antibody responses of patients 
with severe ME/CFS and healthy controls, we aimed to leverage these 
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Ig epitope repertoires for diagnostics. Identifying a representative 
set of differentially bound peptides, allowing separation of patients 
with severe ME/CFS from controls, could yield potent biomarkers. 
However, since our PhIP-Seq implementation detected thousands 
of enriched antibody-bound peptides, it would be challenging to 
manually select the ones with the greatest discriminatory potential. 
Therefore, we leveraged machine learning algorithms [gradient 
boosting regression (GBR) (60) and XGBoost (XGB) (61)] to select 
the optimal set of antibody responses yielding the highest diagnos-
tic accuracy.

As we had observed that some groups of antigens such as flagellins 
and proteins annotated from metagenomic sequencing showed 
greater differences in Ig epitope repertoires (Fig. 1), we ran the 
machine learning algorithms on the entire set of antibody-bound 
peptides, as well as the subgroups (Fig. 3, A and B, and table S2). 
Models trained on the subgroup of metagenomics data [area under 
the received operator curve (AUC) = 0.67; Fig. 3A] slightly surpassed 
analyses on all antigens (AUC = 0.66) as well as from the subgroup 
of flagellins (AUC = 0.59). The superior performance of metagenomic 
antigens compared to the entire library may be due to a removal of 
irrelevant features that may only increase noise and not contribute 

to the separation of patients with severe ME/CFS from healthy 
controls. We performed additional validations to rule out any bias 
of age or sex difference (fig. S2) as well as potentially greater per-
formance by other models (fig. S3).

Antigens selected from metagenomic sequencing appear to carry 
additional information beyond the flagellins that primarily appeared 
differentially bound when comparing raw Ig epitope repertoire 
differences (Figs. 1 and 2). To gain insights into additional antibody 
responses contributing to the separation between patients with severe 
ME/CFS and healthy controls, we performed a SHAP (SHapley 
Additive exPlanations) analysis (62) on the best-performing model 
(Fig. 3, C  and D). While many machine learning algorithms on their 
own represent a “black box,” making it difficult to understand factors 
contributing to model output, SHAP analysis allows for disentangle-
ment of the effect of single features on the prediction. As expected, 
several top-ranking peptides were flagellins from Clostridiales (Fig. 3C 
and table S4). Peptides from several surface proteins of bacteria from 
the phylum of Bacteroidetes (specifically the order of Bacteroidales) 
also ranked highly among contributing factors. While some of these 
proteins were poorly annotated, nearly all of them contained con-
served domains associated with surface exposure or secretion such 

Fig. 1. Analysis of antibody responses against 244,000 bacterial and viral peptide antigens indicates aberrant Igs against flagellins as the key difference be-
tween patients with severe ME/CFS and healthy controls. (A) PhIP-Seq (46) methodology to analyze serum antibody epitope repertoires against a diverse library (47) 
of peptide antigens. (B) Blood samples for antibody profiling were obtained from 40 patients with severe ME/CFS and an equal number of age- and sex-matched healthy 
controls. (C) The absolute number of antibody-bound peptides per patient and the diversity of Ig repertoires were not significantly different between patients with severe 
ME/CFS and healthy controls. See Methods for details on the statistics applied. (D) Antibody responses against bacterial flagellins are significantly [t(78) = 11.0, P = 4 × 10−28] 
overrepresented in patients with severe ME/CFS compared to healthy controls. Each dot represents a peptide, with its prevalence in the respective cohort plotted on the 
x and y axes. Bacterial flagellins as previously annotated (47) are marked. See table S1 for a detailed list. When applying Fisher’s exact test to test for the differences 
between patients with severe ME/CFS and healthy controls, no peptides were significantly enriched (after false discovery rate for the 20,694 peptides bound in at least 
one person of the cohort). (E and F) Bacterial flagellins represent the main antigen subgroup within the library that exhibits differential binding in patients with severe 
ME/CFS and healthy controls (see Methods for details). ns, not significant. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 1.00 × 10−04. n.a., not applicable.
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as peptide no. 94148 originating from a Por secretion system (PSS) 
protein, no. 150244 stemming from a protein containing a PSS 
C-terminal sorting domain, or several hydrolases for glycoside break-
down. Most of these proteins showed increased antibody binding in 
healthy individuals compared to patients with severe ME/CFS 
(Fig. 3D). A similar pattern was also evident for nonflagellin surface 
and secreted proteins of Clostridiales since also overrepresented in 
healthy controls to patients with severe ME/CFS were antibody 
responses against toxin A from Lachnospiraceae and Eubacterium, 
an adhesin protein from Blautia obeum, and a Lachnospiraceae 
MurNAc-LAA (N-acetylmuramoyl-l-alanine amidase) domain con-
taining protein involved in cell wall modifications. In some cases, 
even multiple peptides from the same protein appeared in the SHAP 
analysis (e.g., peptide nos.106628 and 209928; table S3), making it 
highly unlikely that these Ig responses against very specific bacterial 
taxa and protein groups would occur by chance.

These results indicate that microbial proteins beyond flagellins 
and species beyond Lachnospiraceae contribute to the differential 
antibody recognition between patients with severe ME/CFS and 
healthy controls. Notably, antibody binding of flagellins follows an 

opposing pattern observed for Bacteroidetes proteins and nonflagellin 
surface proteins from Lachnospiraceae (summarized in Fig. 3E): 
While patients with severe ME/CFS exhibit increased antibody 
responses against the former, the latter are overrepresented in healthy 
individuals and lower in patients with severe ME/CFS. These data 
may point toward a regulatory role of antibody responses against 
different surface proteins in healthy individuals. Lack of these anti-
bodies could be associated with a potential overreaction against 
flagellins in patients with severe ME/CFS.

Combining conventional blood tests with Ig epitope 
repertoires improves diagnosis
While antibacterial antibody responses in patients with severe ME/
CFS showed promise to gain etiological and pathophysiological in-
sights (Fig. 3), we aimed to assess their potential diagnostic potential 
in comparison with previously reported molecular markers. Con-
ventional blood tests covering routinely assessed hematological and 
biochemical parameters show substantial differences between pa-
tients with severe ME/CFS and healthy controls (63). As a variety 
of blood tests had been run on our cohorts from the UKMEB, we 

Fig. 2. Bacterial flagellins bound by antibodies disproportionally in patients with severe ME/CFS stem from the family of Lachnospiraceae and share an N-terminal 
motif. (A) Bacterial flagellins that exhibited antibody responses in ≥30% of CFS patients. Additional peptides per protein are shown if they appeared in >4 individuals. 
Peptide number: #, Uniref-derived annotation (see Methods). Ratio: Ratio of prevalence in CFS/healthy (Ctrl., control). See table S1 for a full list of all flagellin peptides. 
(B and C) Alignments of bound flagellin peptides suggest shared motifs bound by cross-reactive Ig responses. In (B), alignments of peptides appearing in ≥50% of CFS 
patients are shown. In (C), peptides appearing in ≥25% are shown. The peptides from (B) were also used in (C) but are not shown due to space constraints. See fig. S1 for 
full alignments. Alignments were generated with MegaX [MUSCLE algorithm in standard settings (81)].
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compared these results between patients with severe ME/CFS and 
healthy controls (Fig. 4A). The most notable difference was in 
creatine kinase concentration, which was significantly (two-sided 
Mann-Whitney-Wilcoxon, P < 1 × 10−5) lower in patients with severe 
ME/CFS than in healthy controls, as previously reported for samples 
from the UKMEB (63).

Next, we trained machine learning algorithms (XGB and GBR) 
to separate between cases and controls solely based on blood test 
results as features, yielding an AUC of 0.80 (Fig.  4B). This result 
surpassed the best-performing prediction from antibody repertoires 
(AUC = 0.67; Fig. 3A). However, combining conventional blood 
test results with antibody repertoire data significantly (outside 95% 

Fig. 3. Machine learning algorithms trained on Ig epitope repertoires separate patients with severe ME/CFS from healthy controls. The classifications are driven 
by antibody responses against Lachnospiraceae flagellins overrepresented in patients with severe ME/CFS as well as antibody responses against other surface proteins of 
Bacteroidetes and Lachnospiraceae in the healthy controls. All predictions were performed with GBR (60) and leave-one-out cross-validation on different prevalence cutoffs 
of antibody responses appearing in the cohorts (see Methods for details). (A) Receiver operator curve (ROC) of the best-performing combination of antibody-bound 
peptides and prevalence cutoffs. The light gray lines illustrate ROC confidence intervals (CIs, 95%) as computed by bootstrapping. (B) Summary of model performance 
trained on antibody responses against different subsets within the antigen library. See Methods for details on the subgroups of the antigen library. Error bars represent 
95% CIs as in (A). (C and D) SHAP analysis of the best-performing model [shown in (A)]. The top 15 contributing peptides are shown (C), and details are provided (D). See 
table S3 for a full list. Every line represents a peptide, and in every line, every dot represents the prediction result contribution for one individual (n = 80; 40 CFS patients 
and 40 controls). See Methods for abbreviations. (E) Schematic illustration of antibody responses against the respective proteins from Lachnospiraceae, Eubacteriaceae, 
and Bacteroidetes driving classification.
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confidence interval computed by bootstrapping) improved predic-
tions based on blood tests alone (Fig. 4, C and D). Next, we com-
bined the blood test data with different subgroups of the antigen 
library (Fig. 4D), revealing bacterial flagellins to yield the highest 
AUC of 0.85 (Fig.  4C). A SHAP analysis also identified antibody 
responses against a flagellin from Eubacterium (peptide no. 129819) 
as a key feature to this outcome (Fig. 4E and table S6). The GBR al-
gorithm (60) performed worse than XGB (61), possibly as XGB is a 
more advanced version of GBR allowing to deal with missing values 
without the need to perform imputation (the blood tests, which were 
added for these predictions, involved missing values for several samples; 
fig. S4 and table S5).

While XGB predictions based on blood tests alone (AUC = 0.80) 
surpassed antibody repertoire data alone (AUC = 0.67), their com-
bination yielded synergistic effects (AUC = 0.85). Antibody responses 
against flagellins allowed to classify 25% in addition to blood tests 
alone. Hence, antibody responses against gut microbiota detectable 
by PhIP-Seq represent a unique layer of information beyond stan-
dard blood tests, allowing for improved diagnosis of ME/CFS.

DISCUSSION
Antibody responses in ME/CFS versus CD
In this study, we have detected an overrepresentation of systemic anti-
flagellin Ig responses in patients with severe ME/CFS by leveraging 

a target-agnostic (50) PhIP-Seq screening approach (47). A similar 
overrepresentation of serum Ig responses against Lachnospiraceae 
flagellins has been reported in Crohn’s disease (CD) (64, 65). CD is 
a chronic inflammatory disease of the intestinal tract associated 
with intestinal microbial dysbiosis and immune system dysregulation 
(66). Lachnospiraceae and other Clostridiales produce short-chain 
fatty acids that mediate a range of beneficial effects in the gut such as en
hancing tolerance and the epithelial barrier function, anti-inflammatory 
effects, as well as activating regulatory T cells (64, 67). Hence, excessive, 
mistargeted immune reactions against these favorable commensals 
are conceptually in line with CD and irritable bowel syndrome, a 
common comorbidity reported by patients with severe ME/CFS (10). 
Notably, CD patients (compared to healthy individuals) have an in-
creased risk to also develop ME/CFS (68).

However, while there are some symptomatic similarities between 
CD and ME/CFS, there are also key differences. The majority of CD 
patients do not experience the lingering fatigue and postexertional 
malaise characteristic of ME/CFS [although a subset of CD patients 
do report fatigue (69)]. Vice versa, patients with severe ME/CFS 
typically do not experience severe gastrointestinal symptoms occur-
ring in CD [while IBS (irritable bowel syndrome) is commonly 
reported (10)]. It appears puzzling that both diseases would share 
an involvement of similar antimicrobial immune responses and display 
different phenotypes, pointing toward additional genetic or environ-
mental factors involved. However, we also did notice apparently unique 

Fig. 4. Antibody responses against gut microbiota represent a unique layer of information beyond conventional blood tests, allowing for improved diagnosis 
of ME/CFS by machine learning algorithms. (A) Blood test results of patients with severe ME/CFS and healthy controls. Significantly different (Mann-Whitney-Wilcoxon 
test with Bonferroni correction) tests are highlighted in green. Missing blood tests were removed from the comparisons. Mann-Whitney-Wilcoxon test two-sided results: 
U(Ncontrol = 40, NME/CFS = 40) = 291; P < 1 × 10−5). *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 1.00 × 10−04. See Methods for details and table S4 for abbreviations used and a 
full description of the respective blood test markers. (B) Machine learning algorithms on blood tests alone allow to classify patients with severe ME/CFS from healthy 
controls. ROC with the light gray lines illustrating model variability by bootstrapping (as in Fig. 3A). (C and D) Addition of antibody repertoire data improves diagnosis 
compared to conventional blood tests alone. In (C), an ROC of the best-performing combination of antibody bound peptides and prevalence cutoffs is shown [error bars 
represent 95% CIs as in (B)]. (D) Summary of model performance trained on antibody responses against different subsets within the antigen library. See Methods for 
details on the subgroups of the antigen library. (E) SHAP analysis of the best-performing model [shown in (C)]. The top 15 contributing features are listed. See table S6 for 
a full list, and see Fig. 3C for an explanation of the SHAP analysis. Predictions in (C) to (E) were performed with XGB (61) and leave-one-out cross-validation on different 
prevalence cutoffs of antibody responses appearing in the cohorts (see Methods for details).
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antibody responses in patients with severe ME/CFS, which have, to 
the best of our knowledge, not been reported in CD patients. Among 
these, systemic antibody responses against Bacteroidetes surface pro-
teins tended to be less frequent in patients with severe ME/CFS than 
in healthy controls. Notably, Ig responses against nonflagellin 
surface- and secreted-proteins from Clostridiales were also under-
represented in patients with severe ME/CFS. We had analyzed CD 
patients’ Ig repertoires against the same PhIP-Seq library, and while we 
did detect similar flagellins, differential antibody responses against 
other Clostridiales and Bacteroidetes surface proteins were not ap-
parent (65), making varying experimental workflows (64) or biased 
antigen selection unlikely accountable for the differences observed.

This antibody-binding pattern may point toward an antigen-
specific overreaction in ME/CFS: While in healthy individuals, both 
flagellins and other proteins from Lachnospiraceae are Ig bound at 
moderate rates, flagellins dominate the Ig epitope repertoires of 
patients with severe ME/CFS. Beyond Lachnospiraceae, the lower 
antibody responses against Bacteroidetes in patients with severe 
ME/CFS appear counterintuitive on first sight, as Bacteroidetes are 
generally associated with beneficial effects on human health. More 
frequent antibody responses in healthy individuals compared to 
patients with severe ME/CFS potentially clearing these species would 
appear teleologically unfavorable. However, we have previously also 
detected rather frequent systemic Ig responses against various 
Bacteroidetes in healthy individuals, with these antibody responses 
being potentially indicative of the presence of these bacteria and not 
necessarily associated with harmful effects (47). In this line of thought, 
Bacteroidetes abundances have been reported to be decreased in 
metagenomic sequencing in a different cohort of patients with 
severe ME/CFS (10, 70), potentially supporting this notion. Elevated 
Lachnospiraceae abundances have not explicitly been reported in gut 
microbiome sequencing of patients with severe ME/CFS [see (10, 71) 
for comprehensive reviews of gut microbiota changes in ME/CFS], 
pointing toward a peculiar role of anti-Lachnospiraceae Ig responses. 
However, stool samples or metagenomic data are unavailable for 
the individuals whose blood samples were used in our study. So, it 
is not directly possible to investigate such links for this cohort.

Limitations of the study
The Ig epitope repertoire profiling efforts outlined here for ME/CFS 
are constrained by technical limitations of PhIP-Seq previously dis-
cussed in detail [e.g., (46, 47)]. Our PhIP-Seq library relies on pre-
sentation of 64 amino acid peptides. Hence, larger conformational 
epitopes, structures not folding correctly within 64 amino acid seg-
ments, nonprotein antigens (such as glycans or lipids), or post-
translational modifications would be missed. However, linear epitopes 
are expected to be well represented, and ultimately, the ratio of linear 
to conformational epitopes is difficult to assess. Even if our PhIP-
Seq implementation were only capable of detecting 10% of antibody-
antigen interactions in ME/CFS, this approach would still exceed 
conventional efforts based on ELISAs or peptide arrays by an order 
of magnitude. Antibody binding against single peptides detected by 
PhIP-Seq needs to be carefully evaluated and verified with orthogonal 
methods (47). Key binding events reported in this study as responses 
against flagellin (Fig. 2) and other surface structures (Fig. 3D) were 
corroborated by binding of multiple, in part overlapping peptides 
per protein and several functionally related proteins from phyloge-
netically closely related species, making it highly unlikely that these 
signals would co-occur by chance.

Overall, our cohort of patients with severe ME/CFS consisted of 
severe cases only, and Ig epitope repertoires showed substantial 
variability, with classifications based on antibody repertoires yield-
ing an AUC of 0.67 (Fig. 3A)—far from a perfect separation. Assay-
ing a larger cohort could potentially improve the predictions (63). 
Also, addition of data from conventional blood tests as features left 
some uncertainty (AUC = 0.85; Fig. 4C). This result may point to-
ward subgroups of disease phenotypes existing within the umbrella 
term of ME/CFS, possibly caused by yet unknown genetic or envi-
ronmental factors. However, our data suggest at least the existence of 
a ME/CFS patient subpopulation with an imbalance of systemic 
antimicrobiota-directed Ig responses. Such heterogeneity is also 
known from other immune-mediated diseases. For example, anti-
body responses in CD were also reported to be variable with only a 
subset of patients showing high responses against several flagellins 
tested (64). Hence, leveraging larger ME/CFS cohorts, including 
different grades of disease severity as well as multiomic analyses, 
could identify disease subgroups more clearly and may help to stratify 
patient populations for treatments.

Furthermore, our data do not inform on a causal role of the anti-
body responses detected in the etiology of ME/CFS. The observed 
increased antibody binding against flagellins could be a collateral 
side effect downstream of disease onset. For example, differences in 
the conventional blood test marker creatine kinase (a marker for 
muscle activity significantly decreased in patients with severe ME/CFS 
(63); Fig. 4A) have been speculated to be caused by physical inactivity 
of patients with severe ME/CFS (63). Likewise, antibody responses 
against microbiota may be affected by other factors: Dietary changes 
due to loss of appetite could affect the gut microbiota composition 
or extensive resting periods, and impaired mobility could lead to in
creased intestinal permeability and bacterial translocation eliciting 
systemic antibody responses. However, even if arising from down
stream effects, these Ig responses nonetheless represent powerful 
molecular markers improving diagnosis of severe ME/CFS cases 
beyond conventional approaches.

Diagnostic potential and outlook
Despite all the limitations outlined in the last section, our data provide 
a link between an involvement of gut microbiota (10) and aberrant 
antibody repertoires detected by BCR-seq (44, 45) in ME/CFS. Both 
an involvement of gut microbiota and of the adaptive immune sys-
tem have been implicated in the pathogenesis of ME/CFS. Enteric 
dysbiosis, increased gut permeability, and bacterial translocation 
have been reported in patients with severe ME/CFS compared to 
healthy individuals [reviewed in (10)]. In addition, increased serum 
IgA and IgM concentrations against bacterial LPS have been detected 
in patients with severe ME/CFS, and BCR-seq studies, representing 
the genetic basis for antibody binding, have indicated differences in 
patients with severe ME/CFS compared to healthy individuals 
(44, 45). However, the actual bacterial or viral antigens targeted by 
Ig responses in patients with severe ME/CFS had been incompletely 
characterized.

Therefore, our work demonstrates that PhIP-Seq can be used as 
a powerful tool to mine for immune biomarkers in a target-agnostic 
way (50), as we leveraged a broad antigen library created from data-
bases and metagenomic sequencing of healthy individuals (47) 
without any specific preconceptions of ME/CFS. Despite the smaller 
cohort size compared to other efforts (47, 59, 65), the PhIP-Seq work-
flow yielded sufficiently sensitive detection thresholds and accuracy 
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to generate previously unidentified insights into the relatively little 
researched disease ME/CFS. Training machine learning algorithms 
on this Ig epitope repertoire data showed that immune responses 
against gut microbiota represent a unique layer of information 
beyond standard blood tests, allowing for improved molecular diag-
nosis of ME/CFS.

These findings can be interpreted toward disease mechanisms, as 
Ig responses in patients with severe ME/CFS against Lachnospiraceae 
were dominated by binding against flagellins, while Ig respones 
against other surface proteins of this family and Bacteroidetes were 
underrepresented compared to healthy controls. These observations 
highlight both similarities and differences to IBD, where only an 
overrepresentation of anti-flagellin responses has been reported 
(64, 65). This finding may indicate a different mechanism in ME/CFS, 
where lack of neutralization of other surface targets may trigger an 
overreaction against flagellins. Supporting this notion, varying effects 
elicited by antibody binding of different bacterial surface proteins 
have been shown in animal models (72).

While the focus of this work lies in diagnostics, these observations 
point also toward potential therapeutic strategies since the identified 
ME/CFS–specific antibody responses could be leveraged for prognosis 
and targeted in future personalized therapies [as discussed similarly 
for CD (64)]. Such efforts may include preventive vaccination with 
Lachnospiraceae or Bacteroidetes surface antigens to counteract anti-
flagellin overreaction as well as therapies reducing anti-flagellin 
binding.

Ultimately, findings from this study may also be relevant to gain 
insights into long COVID, where a subset of patients who recovered 
from SARS-CoV-2 infection experience persisting ME/CFS–like 
fatigue symptoms (34–39). Genetic or environmental factors affect-
ing the development of long COVID are vastly unknown, with PhIP-Seq 
screening for Ig responses against microbiota (47) antigens observed 
in classical ME/CFS as well as coronaviruses (55, 59) representing a 
potential avenue to pursue.

METHODS
Serum samples and blood tests
Serum samples of 40 severe ME/CFS cases and 40 healthy controls 
were obtained from the UKMEB (58). As antibody epitope reper-
toires are affected by age and sex (47), the healthy controls were 1:1 
matched to the ME/CFS cases to eliminate any bias. The healthy con-
trols had also been recruited by the UKMEB, reducing potential biases 
related to geography or sample handling (identity of matched pairs was 
not specified). Research with these samples has been approved by the 
Weizmann Institute of Science’s institutional review board (#1410-2), 
and the donors had consented to research use of the samples.

A variety of conventional blood tests had also been obtained for 
our cohorts by the UKMEB (58, 63), and we used these data in this 
study. Details on the exact hematological and biochemical parameters 
assessed (as well as ranges) are provided in table S4. Tests, where 
more than 10 individuals had missing data, were removed from the 
analysis (marked in table S4).

Content of the PhIP-Seq microbiota antigen library, 
immunoprecipitation, and sequencing
We used a 244,000-variant phage display library previously created 
with design considerations, and the exact antigens included were 
detailed in (47). In short, this antigen library encompasses diverse 

bacterial and viral antigens originating from common gut pathogens 
(47, 73), probiotics [strains from a recent review (74)], gut microbiota 
previously reported to be coated by antibodies (75), and commensal 
bacteria, including antigens selected from metagenomic sequencing 
of nearly 1000 healthy individuals (76). We have also included all 
B cell antigens of pathogens from the IEDB [the largest resource for 
previously reported antigens (51)] as well as bacterial virulence fac-
tors from the VFDB (52).

Proteins from these species were functionally prioritized, includ-
ing the groups of membrane proteins, secreted proteins, and motility 
proteins/flagella [the detailed process is described in (47)]. The flagel-
lins studied in this work are based on this annotation. There are a 
few additional flagellins (originating from databases) that were not 
grouped in this way and manually added to table S1 (see column 
there). Especially for genes obtained from metagenomic sequencing, 
in part no functional annotations were available. Hence, protein 
functions were annotated by mapping to the UniRef90 database 
(uniref and uniref_func) (47), which is marked if applicable in 
figures and tables.

The PhIP-Seq experiments were carried out as outlined in a pub-
lished protocol (46) with laboratory-specific modifications detailed 
in (47). In short, in each reaction, 3 g of IgG from a person’s serum 
sample (concentration measured by ELISA) was added to the phage 
library (4000-fold coverage of phages per library variant). The 
microbiota library was mixed in a 2:1 ratio with a 200-nucleotide 
oligomer 100,000 variant pool (65, 77).

The antibody-phage mixture was mixed at 4°C overnight on a 
rotator. Forty microliters of a 1:1 mixture of protein A and G mag-
netic beads (Thermo Fisher Scientific, catalog nos. 10008D/10009D, 
washed according to the manufacturer’s recommendations) was added 
after overnight incubation and incubated on a rotator at 4°C. All 
80 samples were processed in the same 96-well plate. After 4 hours, 
the beads were transferred to polymerase chain reaction (PCR) 
plates and washed twice as previously reported (46) using a Tecan 
Freedom Evo liquid handling robot with filter tips. PCR amplifica-
tions for pooled Illumina amplicon sequencing were performed with 
Q5 polymerase (New England Biolabs, catalog no. M0493L) accord-
ing to the manufacturer’s recommendations [primer pairs PCR1: 
tcgtcggcagcgtcagatgtgtataagagacagGTTACTCGAGTGCGGCCG-
CAAGC and gtctcgtgggctcggagatgtgtataagagacagATGCTCGGG-
GATCCGAATTC; PCR2: Illumina Nextera combinatorial dual index 
primers, PCR3 (of PCR2 pools): AATGATACGGCGACCACCGA 
and CAAGCAGAAGACGGCATACGA (46); custom sequencing 
primers for R1: ttactcgagtgcggccgcaagctttca and for R2: tgtgtataa-
gagacagatgctcggggatccgaattct, R1/R2 44/31 nts]. Paired end reads 
were processed, and statistical analysis was performed as previously 
outlined (47).

While it is possible to resolve binding profiles of different anti-
body classes with PhIP-Seq (55), our standard workflow based on 
protein A/G beads detects primarily IgG (47). Studying different 
antibody classes such as IgA not only in blood but also at mucosal 
sites may improve diagnostic power in ME/CFS as well as generate 
hypotheses on disease mechanisms.

Machine learning and data analysis
We filtered the 244,000 peptides making up the entire antigen library 
to those significantly bound in at least one individual from the cohort, 
resulting in a total of 20,694 epitopes. We processed the PhIP-Seq 
data in two ways. The first is the fold change as defined in (47) 
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(comparing the read number after antibody binding to the input 
library, a proxy for binding strength). The second is binary existence of 
binding (e.g., any fold change greater than 1).

We compared the distribution of antibody bound peptides between 
healthy controls and patients with severe ME/CFS by the number of 
epitopes each individual displayed and the Shannon- diversity (78). 
We compared the two groups using Mann-Whitney-Wilcoxon tests.

For each subgroup of the antigen library, we performed multiple 
statistical tests. First, we compared the healthy controls and the pa-
tients with severe ME/CFS by performing a rank-sum test on the 
number of peptides that were significantly bound in each individual. 
This methodology is not biased by the number of antigens within the 
specific antigen subgroup. The second test we performed was a t test 
on the ratio between healthy controls and patients with severe ME/
CFS. For this test, we filtered only for peptides that appeared in at 
least one healthy control and at least one ME/CFS patient. We then 
computed the ratio for each peptide. The distribution of ratios was 
compared using a t test between each subgroup of the antigen 
library and all other peptides. We also performed a Mann-Whitney-
Wilcoxon comparisons between the ratios of each pair of subgroups 
(including the complete library).

We identified that one blood test (astbloodb) appeared in all but 
one patients with severe ME/CFS and in less than half of the healthy 
controls and removed it from our analyses. Blood test results were 
compared between healthy controls and patients with severe ME/CFS 
using a Mann-Whitney-Wilcoxon test and corrected for multiple 
testing using the Bonferroni method.

We performed classification of outcomes using both Scikit-learn 
(79) Gradient Boosting Classifier and XGB (61) classifier. When 
predicting with XGB, we used the following parameters: use_label_
encoder = False, objective = “binary:logistic,” and eval_metric = “logloss.” 
In the case of GBR, we used the following parameters: n_estimators = 
2000, learning_rate = 0.01, max_depth = 6, max_features = 1, and 
min_samples_leaf = 10. All other parameters remained default. 
Classifications were performed using a leave-one-out cross valida-
tion. For the first classifier, we performed imputation using Scikit-
learn SimpleImputer to eliminate missing values. Predictions were 
performed multiple times filtering for peptides that appear in at least a 
threshold percent of individuals (thresholds used were 0, 1, 5, 10, 
20, 50, 95, and 100%). Predictions were also performed on both fold 
change data and existence data. In our figures, we display the best 
result for each subgroup of the antigen library. The complete results 
appear in supporting tables (tables S2 and S5).

Performance of our models was evaluated using AUC. We com-
puted the SD (and thus the 95% confidence intervals) of the AUC 
using bootstrapping of the predictions.

To interpret the models and the effect of features on predictions, 
we used SHAP TreeExplainer (80). From it, we obtained the Shapley 
additive explanation values of each feature, allowing us to identify 
the importance of the different features to the model. This analysis 
was performed using the best performance model parameters trained 
on the entire cohort.

Statistics and machine learning details in Figs. 1, 2, and 4
In Fig. 1C, the center line of the boxplots shows the median. Box 
limits indicate the 25th and 75th percentiles. Whiskers extend to 
1.5 times the interquartile range from the 25th and 75th percentiles. 
n = 40 for each group. Mann-Whitney-Wilcoxon two-sided tests were 
found to be not significant (P > 0.05) when comparing ME/CFS to 

control groups in both measurements. Number of significantly 
bound peptides per individual U(Ncontrol = 40, NME/CFS = 40) = 704, 
P  >  0.3; Shannon -diversity U(Ncontrol = 40, NME/CFS = 40) = 
809, P > 0.9.

In Fig. 1E, the ratio (of the prevalence) between antibody bound 
peptides that appear in both at least one healthy control and at least 
one ME/CFS patient is presented. The y axis shows the ratio be-
tween the number of patients with severe ME/CFS and healthy controls 
who exhibit an antibody response to a peptide. The x axis shows the 
different subgroups of the antigen library. Bars above show the 
significant differences in Mann-Whitney-Wilcoxon two-sided tests 
after Bonferroni correction.

In Fig. 1F, a summary of rank sum (Mann-Whitney-Wilcoxon 
U) tests and t tests of ME/CFS versus healthy controls ratios is pro-
vided. See the Anti-flagellin Ig responses are overrepresented in pa-
tients with severe ME/CFS and Methods (section “Machine learning 
and data analysis”) for additional details on the analyses. We chose 
to perform both tests as we feel that t tests are more frequently used 
and easier to interpret, whereas the Mann-Whitney-Wilcoxon does 
not assume normal distribution, which is an assumption that does 
not apply to these data. Numbers of peptides in each of the subgroups 
(total number of peptides, and number of peptides appearing in at 
least one ME/CFS and at least one healthy control) are as follows: 
metagenomic antigens 11275 and 629; pathogenic strains 2469 and 
256; probiotic strains 1609 and 138; antibody-coated strains 1999 
and 133; flagellins 382 and 64; IEDB/controls 1110 and 349; and 
complete library 20694 and 1953.

In Fig. 3, in addition to the complete PhIP-Seq antigen library, 
subsets of antigens were also tested. The best-performing prevalence 
cutoff per subgroup is shown in the figure, while full results are pro-
vided in table S2. Additional predictions with XGB yielded lower 
discriminatory power and are shown in fig. S3 and table S2.

In Fig. 3  (C and D), the following abbreviations were used: #, 
Uniref-derived annotation (see the “Content of the PhIP-Seq micro-
biota antigen library, immunoprecipitation, and sequencing” section 
for details); ~, annotation extended by BLAST search; PSS, por 
secretion system; SDC, sorting domain containing; ADCP, adhesin 
domain containing protein.

In Fig. 4, in addition to the complete PhIP-Seq antigen library, 
subsets of antigens were also tested (Fig. 4D). The best-performing 
prevalence cutoff per subgroup is shown in Fig. 4D, while full re-
sults are provided in table S5. Additional predictions with GBR yielded 
lower discriminatory power and are also shown in fig. S4.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abq2422

View/request a protocol for this paper from Bio-protocol.
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